CS674 Natural Language Processing

- Topics for today
 - Need for morphological analysis
 - Basics of English morphology
 - Finite-state morphological parsing

Morphology

 Studies how words are constructed from subword units

"A writer is someone who writes, and a stinger is something that stings. But fingers don't fing, grocers don't groce, haberdashers don't haberdash, hammers don't ham, and humdingers don't humding."

-Richard Lederer

- Morphological parsing is the process of finding the constituent morphemes in a word
 - » foxes → fox + es
 - » foxes → fox-N + es-PL
 - » killer → kill + er
 - » killer → kill-V + er-N
 - » going → go-V + ing-GER
 - » going → go-V + ing-PROGRESSIVE

Need for morphological analysis

- Information retrieval: search
 - Systems benefit from being able to search for singular and plural forms of search terms
 - Generally fairly easy in English
 - Complications
 - » Irregular plurals handled via morphological rules
 - ◆goose → geese
 - ♦fish → fish
 - ox → oxen
 - » Spelling rules needed
 - ♦fox +PL → foxes
 - ♦fly +PL → flies

Need for morphological analysis

- Information retrieval: stemming
 - Useful to map all of walks, walking, walked to walk.
 - Why?
 - Similar, but not identical to morphological parsing…how?

Need for morphological analysis

- Efficiency
 - Listing all of the plural forms of English nouns, all of the verb forms for a particular stem, etc...is a waste of space (and time if the entries are being made by hand).
 - » Suffixes are productive
 - Situation is much worse in other languages, e.g. agglutinative languages like Turkish
- Other uses for morphological parsing?

Basics of English morphology

- Morpheme minimal meaning-bearing unit in a language
 - Stems central meaning-bearing morpheme of the word
 - Affixes supply "additional" meanings
 - » Prefixes precede the stem
 - » Suffixes follow the stem
 - » Circumfixes precede and follow the stem
 - » Infixes inserted inside the stem
 - Non-concatenative morphemes are intermingled rather than concatenated
 - Root-and-pattern morphology e.g. Hebrew

Basics of English morphology

- Inflection
 - Combination of a word stem with a grammatical morpheme, usually resulting a word of the same class, and usually filling some syntactic function.
 - Nouns
 - » Suffixes for plural and possessive
 - Verbs
 - » Suffixes for –s form, -ing participle, past form or –ed participle •watch, watch(e)s, watching, watched
 - Adjectives
 - » Suffixes for comparatives
 - ◆cold, colder, coldest

Basics of English morphology

- Derivation
 - Combination of a word stem with a grammatical morpheme, usually resulting in a word of a different class, often with a meaning that's hard to predict exactly.
 - Nominalization
 - » organize (V) + -ation
 - » grant (V) + -ee
 - » kill (V) + -er
 - » silly (ADJ) + -ness
 - Creating Adjectives
 - Less productive than inflection
 - » Can't add –ation to every verb that ends in –ize, e.g. re-size

CS674 Natural Language Processing

- Topics for today
 - Need for morphological analysis
 - Basics of English morphology
 - Finite-state morphological parsing
 - » Representing the lexicon and morphosyntactics

Goal

- Input: surface form
- Output: stem plus morphological features
- Focus: productive nominal plural (-s)
 verbal progressive (-ing)
 - foxes → fox +N +PL
 - geese → goose +N +PL
 - eating → eat +V +PRES-PART
 - goose → (goose +N +SG) or (goose +V)
 - gooses → ??

What knowledge sources will we need?

- Lexicon
 - List of stems and affixes with basic information about each
- Morphotactics
 - Model of morpheme ordering
 - Explains which classes of morphemes can follow others
- Spelling rules
 - Orthographic rules
 - Model the spelling changes that occur in a word when two morphemes combine

The lexicon

- Usually not represented as a list of words
- Structured as
 - List of stems and affixes
 - Representation of the morphosyntactics
- Represent via a finite-state automaton (J&M Ch. 2)

J&M Fig 3.2

FSA's for derivational morphology

- Much more complex
- Often use CFG's instead
- Consider adjective morphology...what's the problem?

FSA's for morphological recognition

- Goal: Use the FSA's to determine whether an input string of letters makes up a legitimate English word
 - Combine the list of stems with the FSA
 - Expand each arc with all of the morphemes that comprise the class

