CS674 Natural Language Processing

- Today
 - The EM algorithm

Some of the slides are created based on notes by Thorsten Joachims, Lillian Lee, and Roni Rosenfeld

The Statistical Modeling Framework

- Task
 - Given data x and a model parameterized by $\theta,$ find the θ that maximizes the likelihood of x.

$$\theta^* = \arg \max_{\theta} P_{\theta}(x) = \arg \max_{\theta} \log(P_{\theta}(x))$$

- Why using EM for ML estimation?
 - Suppose $P_{\theta}(\mathbf{x})$ hard to maximize, but there exists hidden data h such that $\arg\max_{\theta}P_{\theta}(x,h)$ is easy
 - EM (Dempster, Laird, Rubin, 1977) enables us to make MLE even under the presence of hidden data

Combining Language Models

- Given two language models M_A and M_B, create a hybrid model M_H that, every time it is consulted, stochastically chooses which of the two models to use, with probability λ of choosing M_A.
- Now, given a sample $D = \{s_1, s_2, ..., s_n\}$ generated by M_H, find an ML estimate for λ .

Combining Language Models

MLE: $arg max_{\lambda} log(P(D \mid \lambda))$

$$\log(P(D \mid \lambda))$$

$$=L(s_1,s_2,...,s_n\,|\,\lambda)$$

$$= \log \prod_{i} P_{H}(s_{i})$$

$$= \sum_{i} \log P_{H}(s_{i})$$

$$= \sum_{i} \log(\lambda P_A(s_i) + (1 - \lambda) P_B(s_i))$$

Combining Language Models

- Observation
 - If we knew which of the two models was used to generate each string s_i , we could estimate λ as follows:

$$\lambda = \frac{number of times M_A was chosen}{n}$$

- But the choice of the two models is a hidden event!
- But we do not need to know which model was used
- We only need to know # times MA was chosen
- Still we do not know this quantity
- But we can calculate its expected value!

Combining Language Models

• Idea: guess the value of λ and iteratively improve the estimate (with respect to the log likelihood)

Combining Language Models

- Initialize λ to some arbitrarily non-zero value
- At step k
 - Let λ^k be the current estimate for λ
 - Compute the expected # times M_A was used from data

$$E_{\lambda^{k}}(M = A \mid s_{1}, s_{2},...,s_{n})$$

$$= \sum_{i} P_{\lambda^{k}}(M = A \mid s_{i})$$

$$= \sum_{i} \frac{P(M_{A}, s_{i})}{P(s_{i})}$$

$$= \sum_{i} \frac{\lambda^{k} * P_{A}(s_{i})}{\lambda^{k} * P_{A}(s_{i}) + (1 - \lambda^{k}) * P_{B}(s_{i})}$$
E-step

Combining Language Models

- At step k
 - Let λ^k be the current estimate for λ
 - Compute the expected # times MA was used from
 - Improve the estimate of $\boldsymbol{\lambda}$ using the statistics

obtained from the E-step
$$\lambda^{k+1} = \frac{E_{\lambda^k}(M=A \mid s_1, s_2, ..., s_n)}{n}$$
 M-step

■ Terminate if $L(s_1, s_2,..., s_n \mid \lambda^{k+1}) \approx L(s_1,..., s_n \mid \lambda^k)$

Combining Language Models

- The log likelihood function is bounded above and always increases after each iteration
 - EM always converges (in terms of log likelihood)
- Resulting λ is the ML solution given the data

Sufficient Statistics

 If we knew which of the two models was used to generate each string s_i, we could estimate λ as follows:

$$\lambda = \frac{number of times M_A was chosen}{n}$$

- But the choice of the two models is a hidden event!
- Again, we do not need to know which model was used
- We only need to know # times M_A was chosen
- The number of times M_A was chosen is a sufficient statistic of the distribution of the hidden event
- Sufficient statistics convey all the information that we need to estimate the parameters

The Parameter Estimation Problem

 Given some incomplete data and a parametric model, use the data to compute the ML estimate of the parameters {θ_i} of the model

$$\theta^* = \arg\max_{\theta} L(data \mid \theta)$$

The EM Algorithm

- Identify the sufficient statistics for estimating the θ 's
- Initialize the θ's to some arbitrary (non-zero) values θ_i ⁰
- Iterate the E-step and the M-step. During step k,
 - compute the sufficient statistics based on the data and the current parameter estimates θ^k (E-step)
 - derive θ_i^{k+1} as an ML estimate using the values of the sufficient statistics computed in the E-step (M-step)
- Terminate when $L(data \mid \theta_i^{k+1}) \approx L(data \mid \theta_i^{k})$

Properties of EM

- Log likelihood is guaranteed to converge
 - EM is guaranteed to converge
 - But convergence may be to a local maximum

NLP Applications using EM

- Estimating the values of hidden variables
 - HMM training: forward-backward/Baum-Welch (1972)
 - PCFG training: inside-outside (Baker, 1979)
 - Word alignment in a parallel corpus (Brown et al., 1993)
- Unsupervised learning of clusters
 - Distributional clustering of nouns (Periera et al., 1993)
 - Learning subcategorization frames (Rooth et al., 1999)
- Improving parameter estimates of finite mixtures
 - Semi-supervised text classification (Nigam et al., 2000)

Text Classification

- Assign pieces of text to predefined categories based on content
- Types of text
 - Documents, paragraphs, sentences
- Different types of categories
 - Topic, author, style

Naïve Bayes Classifiers for Text

 Assumption: choosing the best class c* for a text d amounts to choosing the most probable class for the text

$$c^* = \underset{c \in C}{\arg \max} \ P(c \mid d)$$

$$= \underset{c \in C}{\arg \max} \ \frac{P(c)P(d \mid c)}{P(d)}$$
 (Bayes rule)
$$= \underset{c \in C}{\arg \max} \ P(c) \prod_{i=1}^{\# words \ in \ d} P(w_i \mid c)$$

Parameter Estimation from Training Data

- Define
 - D: training data (a set of labeled texts)
 - V: vocabulary
 - -N(w,d): number of times word w occurs in text d

■ Estimate
$$P(w \mid c)$$
:
$$P(w_i \mid c_j) = \frac{\sum_{i=1}^{|D|} N(w_i, d_i) P(c_j \mid d_i)}{\sum_{s=1}^{|D|} \sum_{i=1}^{|D|} N(w_s, d_i) P(c_j \mid d_i)}$$

P(c): prior probabilities
$$P(c_j) = \frac{\sum_{i=1}^{|D|} P(c_j \mid d_i)}{|D|}$$

What do we want to do now?

- We know how to build a naïve Bayes classifier for text from training data
 - Naïve Bayes maximizes the probability of the model $\boldsymbol{\theta}$ given the training data D

$$\theta^* = \arg\max_{\theta} P(\theta \mid D)$$

- So θ is a maximum a posteriori (MAP) hypothesis
- What if we have very little training data?
 - The model parameters may not be estimated accurately

What do we want to do now?

- Goal
 - To train a naïve Bayes classifier θ^* on both the labeled data D and the unlabeled data U

$$\theta^* = \arg\max_{\alpha} P(\theta \mid (D \cup U))$$

What do we want to do now?

- Goal
 - To train a naïve Bayes classifier θ^* on both the labeled data D and the unlabeled data U

$$\theta^* = \arg\max_{\alpha} P(\theta \mid (D \cup U))$$

• EM allows us to do that!

The EM Algorithm

- Identify the sufficient statistics for estimating the θ 's
- Initialize the θ 's to some arbitrary (non-zero) values $\theta_i^{\ 0}$
- Iterate the E-step and the M-step. During step k,
 - compute the sufficient statistics based on the data and the current parameter estimates θ_i^k (E-step)
 - derive $\theta_i^{\text{k+1}}$ as an ML/MAP estimate using the values of the sufficient statistics computed in the E-step (M-step)
- Terminate when $L(data \mid \theta_i^{k+1}) \approx L(data \mid \theta_i^{k})$

Identifying the Sufficient Statistics

• $\theta = \langle P(w \mid c), P(c) \rangle$

$$P(w_t \mid c_j) = \frac{\sum_{i=1}^{|D \cup U|} N(w_t, d_i) P(c_j \mid d_i)}{\sum_{s=1}^{|V|} \sum_{i=1}^{|D \cup U|} N(w_s, d_i) P(c_j \mid d_i)}$$

$$P(c_j) = \frac{\sum_{i=1}^{|D \cup U|} P(c_j \mid d_i)}{|D \cup U|}$$

• The sufficient statistics are |D∪U|, |V|, N(w_t, d_i), and P(c_i | d_i)

The EM Algorithm

- Identify the sufficient statistics for estimating the θ 's
- Initialize the θ 's to some arbitrary (non-zero) values θ_i^{0}
- Iterate the E-step and the M-step. During step k,
 - compute the sufficient statistics based on the data and the current parameter estimates θ_i^k (E-step)
 - derive θ_i^{k*1} as an ML/MAP estimate using the values of the sufficient statistics computed in the E-step (M-step)
- Terminate when $L(data \mid \theta_i^{k+1}) \approx L(data \mid \theta_i^{k})$

Initializing the Parameters

- Arbitrarily initialize θ?
- We have labeled training data!
- Initialize θ based on the labeled data

$$P(w_t \mid c_j) = \frac{\sum_{i=1}^{|D|} N(w_t, d_i) P(c_j \mid d_i)}{\sum_{s=1}^{|V|} \sum_{i=1}^{|D|} N(w_s, d_i) P(c_j \mid d_i)}$$

$$P(c_{j}) = \frac{\sum_{i=1}^{|D|} P(c_{j} | d_{i})}{|D|}$$

The EM Algorithm

- Identify the sufficient statistics for estimating the θ 's
- Initialize the θ 's to some arbitrary (non-zero) values $\theta_i^{\ 0}$
- Iterate the E-step and the M-step. During step k,
 - compute the sufficient statistics based on the data and the current parameter estimates θ_i^k (E-step)
 - derive $\theta_i^{\text{l+1}}$ as an ML/MAP estimate using the values of the sufficient statistics computed in the E-step (M-step)
- Terminate when $L(data \mid \theta_i^{k+1}) \approx L(data \mid \theta_i^{k})$

Computing the Sufficient Statistics

- Sufficient statistics
 - $|D \cup U|$, |V|, $N(w_r, d_i)$, and $P(c_i | d_i)$
 - The first three can be computed without knowledge of the label of a text
- Use Bayes rule to compute P(c_j | d_i) based on the current estimates of the parameters of θ

$$P(c_{j} | d_{i}) \propto P(c_{j})P(d_{i} | c_{j})$$

$$= P(c_{j}) \prod_{k=1}^{|d_{i}|} P(w_{d_{i,k}} | c_{j})$$

The EM Algorithm

- Identify the sufficient statistics for estimating the θ 's
- Initialize the θ 's to some arbitrary (non-zero) values $\theta_i^{\ 0}$
- Iterate the E-step and the M-step. During step k,
 - compute the sufficient statistics based on the data and the current parameter estimates θ_i^k (E-step)
 - derive θ_i^{k*1} as an ML/MAP estimate using the values of the sufficient statistics computed in the E-step (M-step)
- Terminate when $L(data \mid \theta_i^{k+1}) \approx L(data \mid \theta_i^{k})$

Re-estimating the Parameters

 Improve the estimate θ of based on the current values of the sufficient statistics

$$P(w_t \mid c_j) = \frac{\sum_{i=1}^{|D \cup U|} N(w_t, d_i) P(c_j \mid d_i)}{\sum_{s=1}^{|V|} \sum_{i=1}^{|D \cup U|} N(w_s, d_i) P(c_j \mid d_i)}$$

$$P(c_{j}) = \frac{\sum_{i=1}^{|D \cup U|} P(c_{j} | d_{i})}{|D \cup U|}$$

The EM Algorithm

- Identify the sufficient statistics for estimating the $\theta\mbox{'s}$
- Initialize the θ 's to some arbitrary (non-zero) values $\theta_i^{\ 0}$
- Iterate the E-step and the M-step. During step k,
 - compute the sufficient statistics based on the data and the current parameter estimates $\theta_i^{\rm k}$ (E-step)
 - derive $\theta_i^{\text{k+1}}$ as an ML/MAP estimate using the values of the sufficient statistics computed in the E-step (M-step)
- Terminate when $L(data \mid \theta_i^{k+1}) \approx L(data \mid \theta_i^{k})$

Can EM really improve the model?

- It depends on whether
 - the data is generated by a mixture
 - there is a 1-to-1 mapping between the mixture components and classes
 - the mixture components are multinomial distributions of words