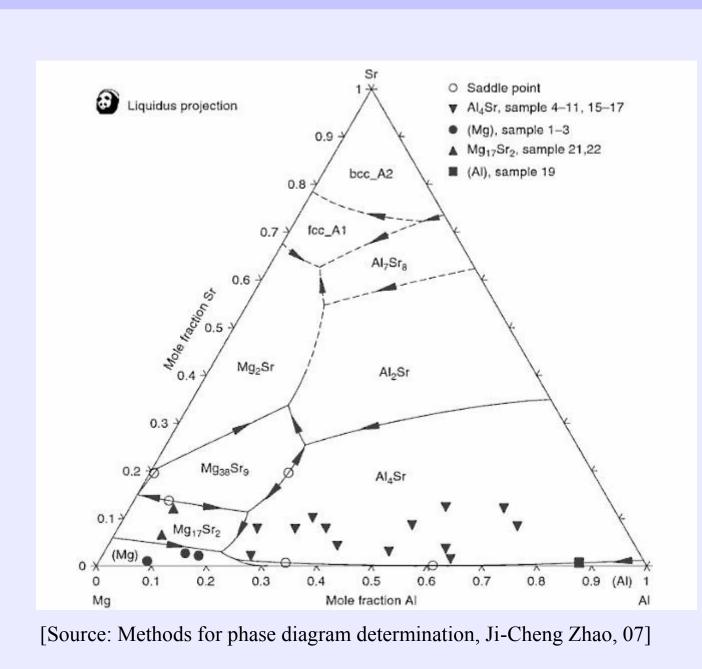


Computational Thinking for Material Discovery: Bridging Constraint Reasoning and Learning

Ronan LeBras, John M. Gregoire, Ashish Sabharwal, Carla P. Gomes, R. Bruce van Dover

Motivation



- Automating a laborious task
- Exploiting large amount of newly-available data

■ Finding new products

- Finding product substitutes
- Understanding material properties

Problem Complexity

Theorem: This problem is NP-complete.

Proof: Reduction from the Normal Set Basis Problem (which is itself reduced from the Vertex Cover Problem)

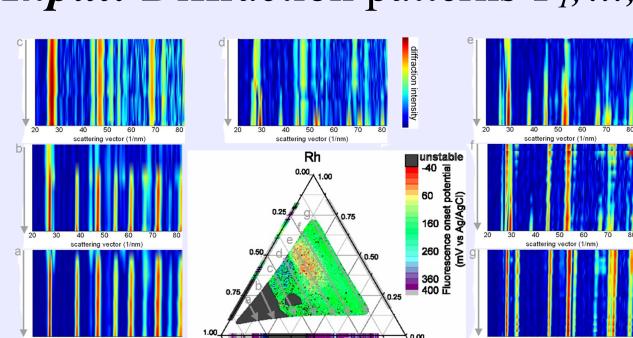
Limitations of previous work

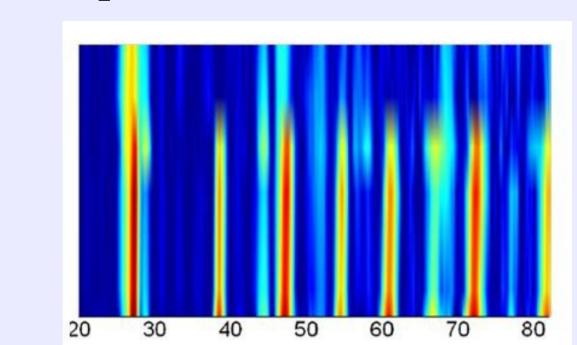
	[Long et al., '07] [Long et al., '09]		
Requires sampling of pure phases	X		
Detects regions but not phases	X		
Fails to ensure sparseness of A	X	X	
Assumes constant peak intensity	X	X	
Assumes there is no phase shift	X	\mathbf{X}	

Problem Definition

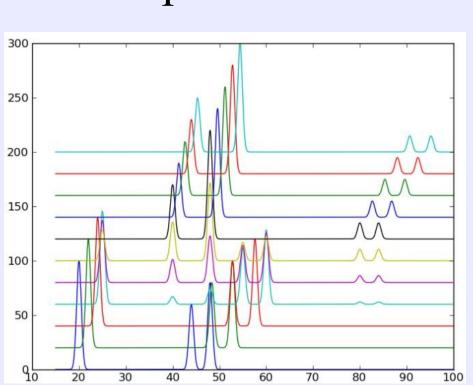
Combinatorial Method: sputtering 3 metals (or oxides) onto a silicon wafer (which produces a *thin-film*) and using x-ray diffraction to obtain structural information about crystal lattice.

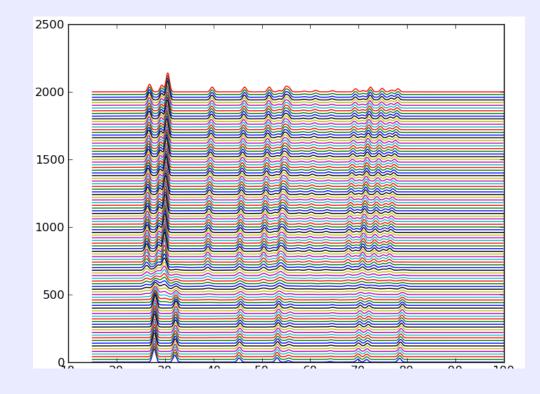
Input: Diffraction patterns $Y_1, ..., Y_n$ of n points on the thin-film





Output: Set of k basis patterns (or *phases*) $X_1, ..., X_k$. Weights $A_1, ..., A_n$ and shifts $B_1, ..., B_n$ of these basis patterns in the n points





First Approach - CP

Variab	les Description	Type
$\overline{p_{ki}}$	Normalizing peak for phase k in pattern c_i	Decision
a_{ki}	Whether phase k is present in pattern c_i	Auxiliary
q_k	Set of normalized peak locations of phase k	Auxiliary

$a_{ki} = 0 \iff p_{ki} = 0$	$\forall \ 1 \leq k \leq K, 1 \leq i \leq n$	(1)
$1 \le \sum_{s=1}^{K} a_{si} \le 3$	$\forall \ 1 \leq i \leq n$	(2)

$$p_{ki} = j \land \sum_{s=1}^{K} a_{si} = 1 \to q_k \subseteq r_{ij} \quad \forall \ 1 \le k \le K, 1 \le i \le n, 1 \le j \le |c_i|$$
 (3)

$$p_{ki} = j \land \sum_{s=1}^{K} a_{si} = 1 \to r_{ij} \subseteq q_k \quad \forall \ 1 \le k \le K, 1 \le i \le n, 1 \le j \le |c_i|$$
 (4)

$$P(k, k', i, j, j') \rightarrow \begin{cases} member(r_{ij}[j''], q_k) \\ \lor \\ member(r_{ij'}[j''], q_{k'}) \end{cases} \quad \forall \ 1 \le k < k' \le K, 1 \le i \le n, 1 \le j, j', j'' \le |c_i|$$

$$(5)$$

where $P(k, k', i, j, j')$ is the pro-	position: $p_{ki} = j$	$j \wedge p_{k'i} = j' \wedge \sum_{s=1}^{K} a_{si}$	$\epsilon = 2.$
$p_{ki} = j \to p_{ki'} \neq j' $	$1 \le k \le K, (i, j)$	$j, i', j') \in \Phi$	(6)
$phaseConnectivity(\{a_{ki} 1 \le i\})$	$\langle n \rangle$	$\forall 1 < k < K$	(7)

Advantage: Captures physical properties and relies on peak location rather than height. **Drawback:** Does not scale to realistic instances; poor propagation if experimental noise.

Second Approach - Learning

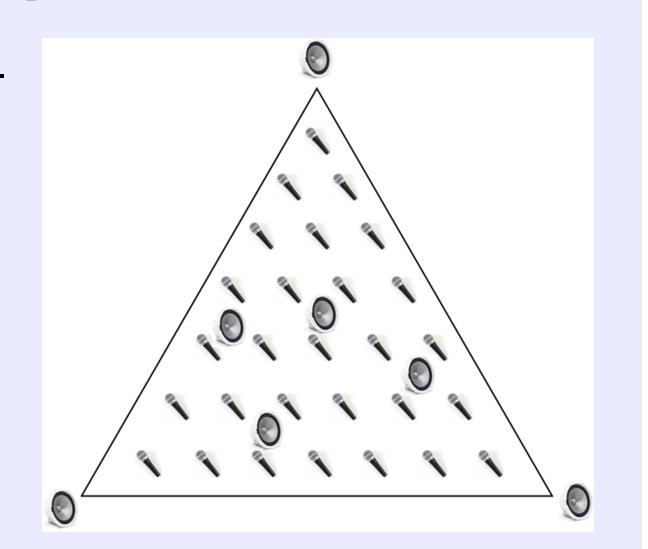
[Analogy to the Cocktail Party Problem]

Every point [microphone] receives signals from various phases [speakers].

[ICA] We solve *Y*=*ABX* using stochastic gradient ascent, and assuming signals to be independent.

Advantage: Efficient.

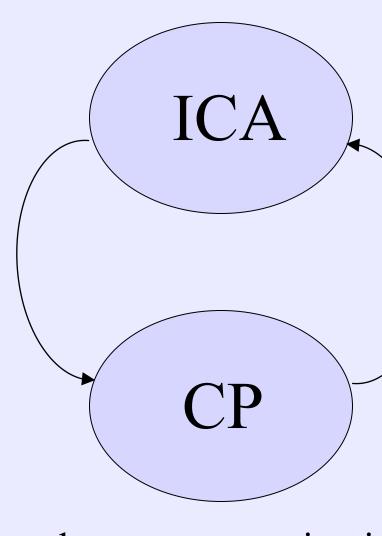
Drawback: Assumes constant peak intensity.



Third Approach - Bridging I & II

We merge ICA and CP, alternating between the two approaches. One provides input for the other.

Generates
basis patterns
& minimizes
experimental
noise s.t. physical properties

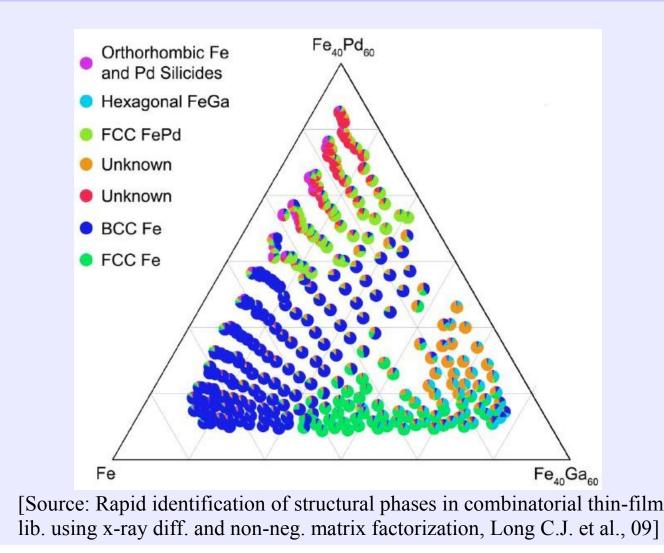


Feedback loop sets ICA parameters w.r.t. the most violated constraint

Advantage: Basis patterns enhance propagation in CP model. Feedback loop tends to overcome limitations of previous work.

Drawback: No longer an exact method.

Experiments & Evaluation



- 2 sets of instances: real and synthetic data.
- 2 evaluations: numerical score (based on KL-divergence) and blind tests where physicists assess the quality of the results.