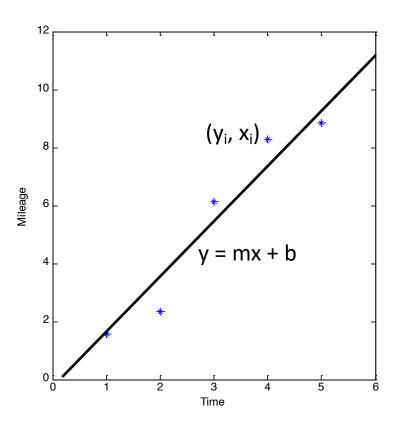
Robust Estimation w/ RANSAC

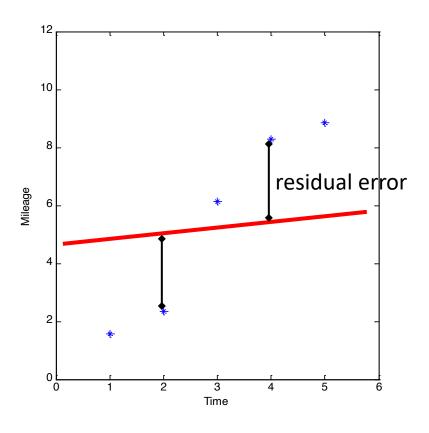
Dealing with outliers

- Estimating E relies on correspondences
- What if correspondences are incorrect?
- Fitting: find the parameters of a model that best fit the data
- Other examples:
 - least squares linear regression

Example: Fitting lines



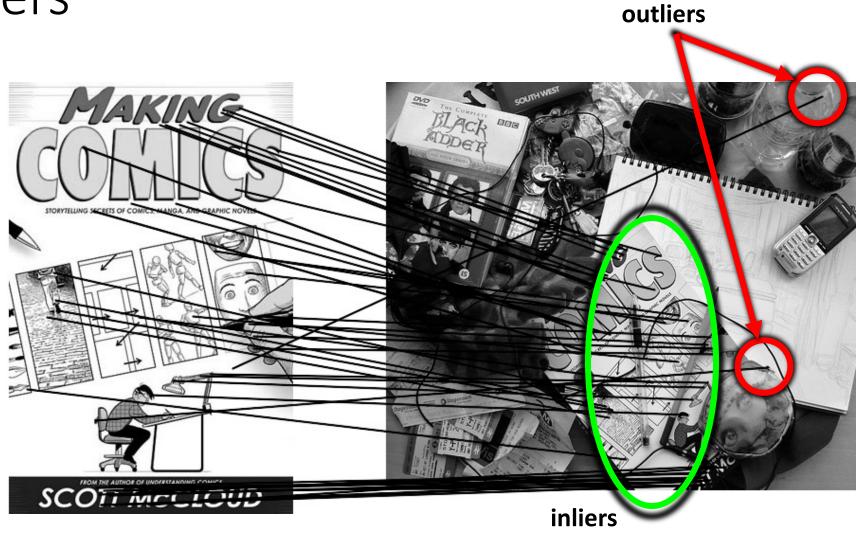
Linear regression



Outliers in linear regression



Outliers



Outliers

- Grossly incorrect
- Dominate objective
- Lead to incorrect solutions
- Must be eliminated
- But how do we know which data points are outliers?

More general problem setup

Given

- A **noisy** dataset $D = \{p_1, p_2, ..., p_N\}$ with some **completely incorrect** outliers
 - Example 1: Line fitting: $\{(x_1, y_1), ..., (x_n, y_n)\}$
 - Example 2: Fundamental matrix: $\{(\vec{p}_1, \vec{q}_1), (\vec{p}_2, \vec{q}_2), ..., (\vec{p}_N, \vec{q}_N)\}$
- A set of parameters θ that need to be fitted
 - Line fitting: $\theta = (m, b)$
 - F estimation $\theta = F$, ||f|| = 1
- A cost function $C(p, \theta)$
 - Line fitting: $C((x, y), (m, b)) = ||y (mx + b)||^2$
 - F estimation: $C((\vec{p}, \vec{q}), F) = \overrightarrow{p^T} F \vec{q}$ (Reprojection error)
- Find θ

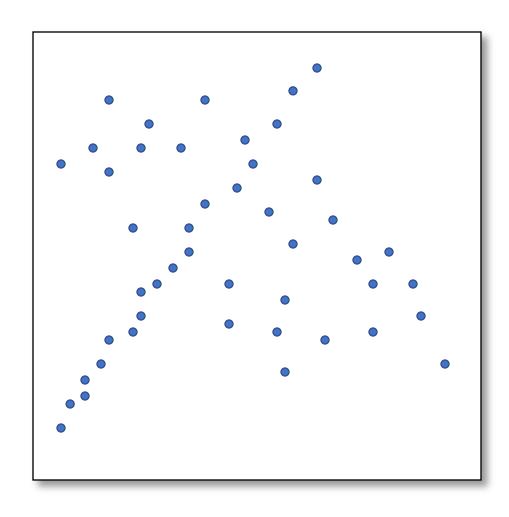
Anna Karenina principle

- "Happy families are all alike; every unhappy family is unhappy in its own way." – Leo Tolstoy, Anna Karenina
- Inliers bound to agree with each other
- Outliers are all outliers in different ways
 - So assume outliers will not all point towards same hypothesis
- More precise assumption:
 - Outliers either <50%
 - Or noisy points don't all agree

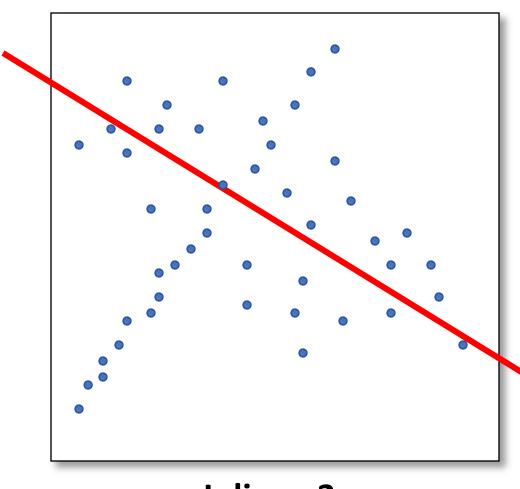
Approach

- Search through all possible hypotheses
 - E.g., all possible lines
- For every point count number of potential *inliers*
 - Points that agree with the line
- Find line with maximum # of inliers
 - Since outliers don't agree with each other, they won't all lie on the same line
 - So the points on this line must be true inliers

Counting inliers

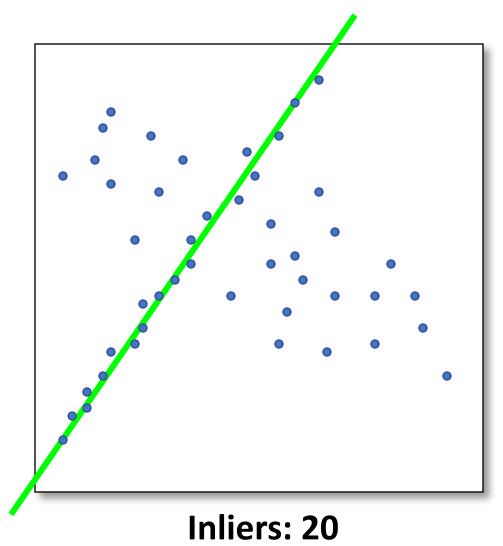


Counting inliers



Inliers: 3

Counting inliers



Which hypotheses?

- Sample hypotheses randomly?
 - Might sample useless hypotheses that doesn't fit any data
- Only want hypotheses that fit at least some data
- Idea: sample minimum points to fit hypothesis
- This yields candidate hypothesis

RANSAC (Random Sample Consensus) Line fitting example Algorithm:

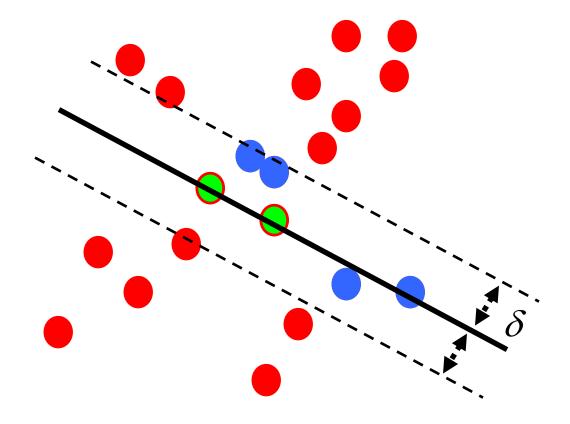
- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Line fitting example Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

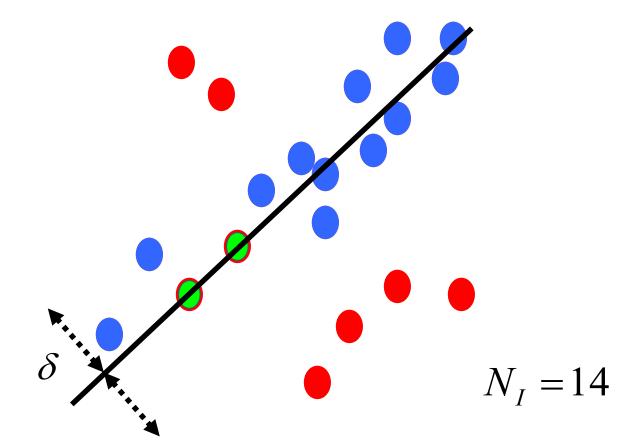
Line fitting example

$$N_I = 6$$



Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model



Algorithm:

- 1. Sample (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Problem setup (again)

Given

- A dataset $D = \{ p_1, p_2, ..., p_N \}$
 - Example 1: Line fitting: $\{(x_1, y_1), ..., (x_n, y_n)\}$
 - Example 2: Fundamental matrix: $\{(\vec{p}_1, \vec{q}_1), (\vec{p}_2, \vec{q}_2), ..., (\vec{p}_N, \vec{q}_N)\}$
- A set of parameters θ that need to be fitted
 - Line fitting: $\theta = (m, b)$
 - F estimation $\theta = F$, ||f|| = 1
- A cost function $C(p, \theta)$
 - Line fitting: $C((x, y), (m, b)) = ||y (mx + b)||^2$
 - F estimation: $C((\vec{p}, \vec{q}), F) = \overrightarrow{p^T} F \vec{q}$ (Reprojection error)
- A minimum number needed k
 - Line fitting: 2
 - F estimation: 8

RANSAC (RAndom SAmple Consensus)

- Repeat:
 - Sample minimum number of points k to fit hypothesis
 - Fit hypothesis
 - Count number of inliers in entire dataset
- Choose hypothesis with most number of inliers
- Re-update hypothesis with estimated inliers

RANSAC - hyperparameters

- Inlier threshold related to the amount of noise we expect in inliers
 - Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee

- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins

- There are many other types of voting schemes
 - E.g., Hough transforms...

The correspondence problem

Till now

- Geometry of image formation
- Stereo reconstruction
 - Given 3D → 2D correspondence, find K, R, t
 - Given 2 images, correspondence, K, R, t, find 3D points
 - Given 2 images, correspondence, find F, E, R, t, 3D points

Till now

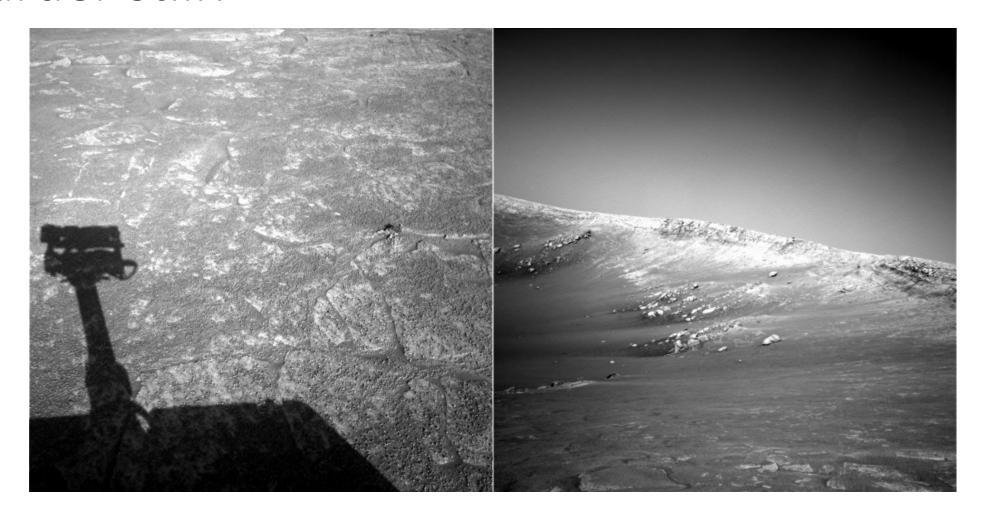
- Geometry of image formation
- Stereo reconstruction
 - Given 3D → 2D correspondence, find K, R, t
 - Given 2 images, correspondence, K, R, t, find 3D points
 - Given 2 images, correspondence, find F, E, R, t, 3D points

Correspondence can be challenging

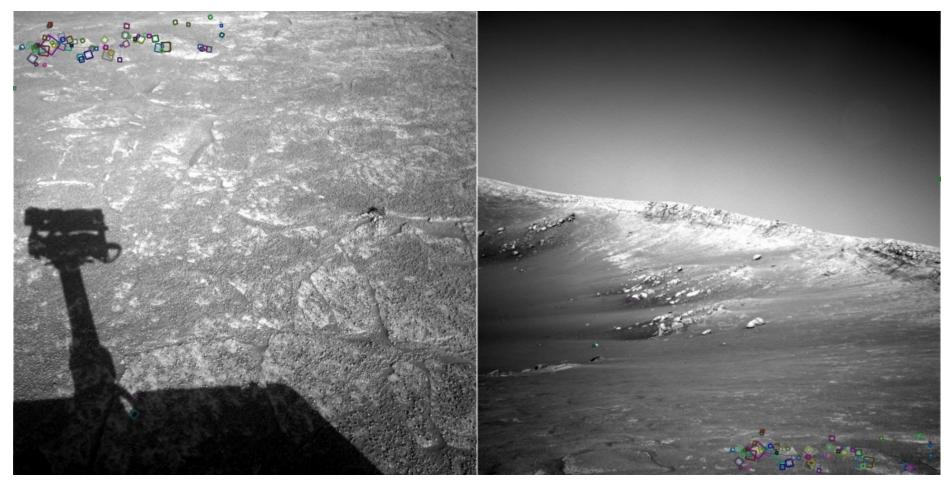
Harder case

by <u>Diva Sian</u> by <u>scgbt</u>

Harder still?

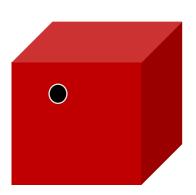


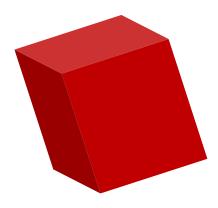
Answer below (look for tiny colored squares...)



NASA Mars Rover images with SIFT feature matches

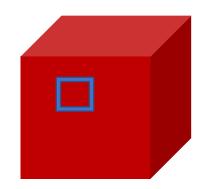
The correspondence problem

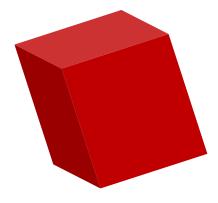




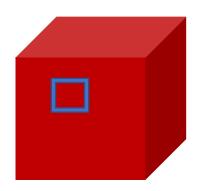
• When viewed from a small "aperture", correspondence is ambiguous

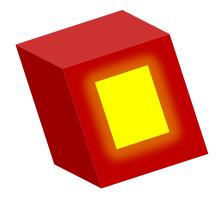
- Individual pixels are ambiguous
- Idea: Look at whole patches!



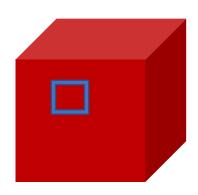


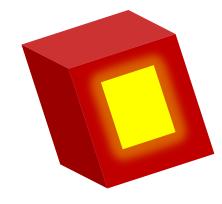
- Individual pixels are ambiguous
- Idea: Look at whole patches!

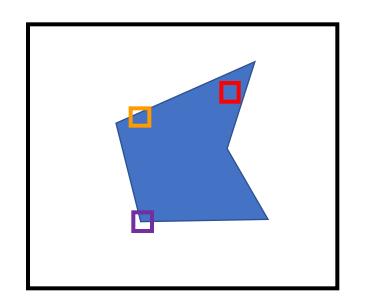


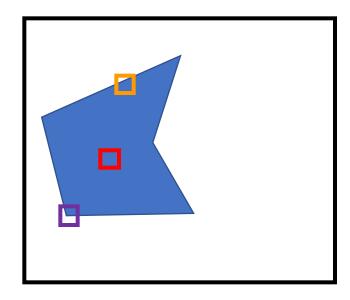


• Some local neighborhoods are ambiguous









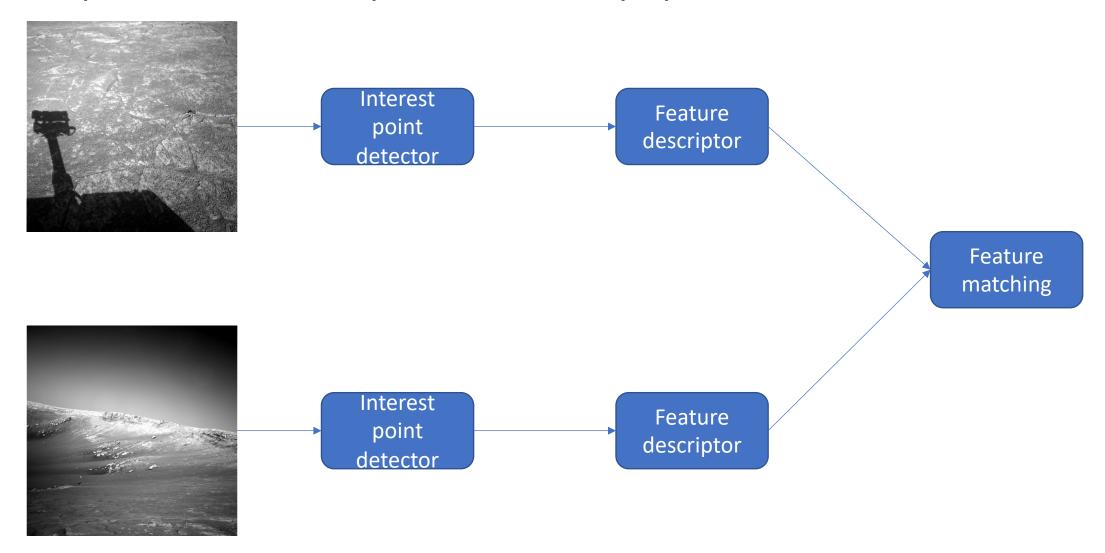
Sparse vs dense correspondence

- Sparse correspondence: produce a few, high confidence matches
 - Good enough for estimating pose or relationship between cameras
- Dense correspondence: try to match every pixel
 - Needed if we want 3D location of every pixel (e.g., stereo)

Sparse correspondences

- For many applications, a few good correspondences suffice
 - Camera calibration
 - Estimating essential matrix
 - Reconstructing a sparse cloud of 3D points
- Detect points that will produce good correspondences
- Match detected points from both images

Sparse correspondence pipeline

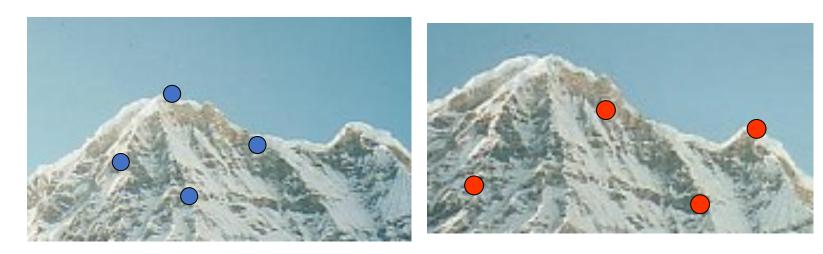


Characteristics of good feature points

- Repeatability / invariance
 - The same feature point can be found in several images despite geometric and photometric transformations
- Saliency / distinctiveness
 - Each feature point is distinctive
 - Fewer "false" matches / less ambiguity

Goal: repeatability

• We want to detect (at least some of) the same points in both images.

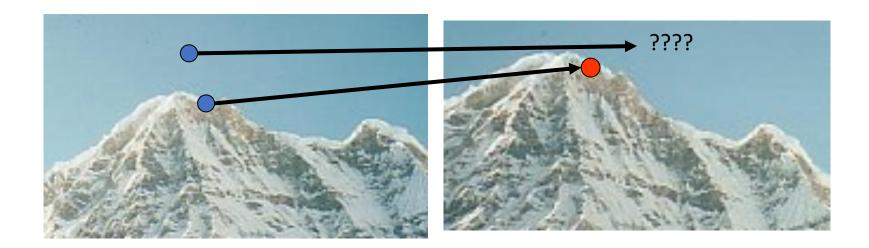


No chance to find true matches!

• Yet we have to be able to run the detection procedure *independently* per image.

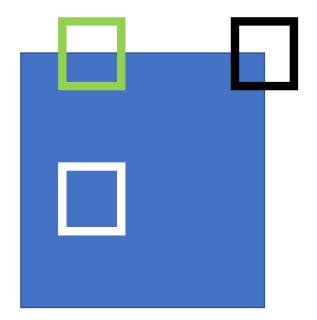
Goal: distinctiveness

- The feature point should be distinctive enough that it is easy to match
 - Should at least be distinctive from other patches nearby



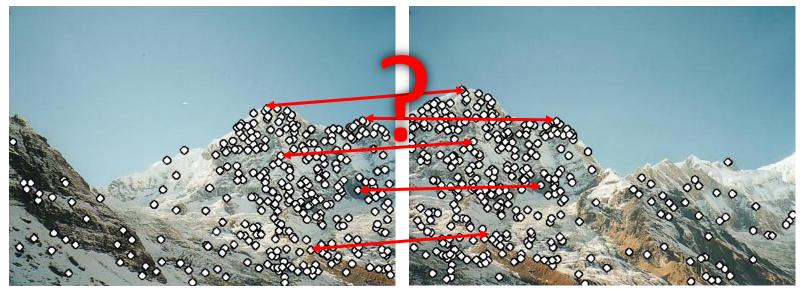
Harris corner detector

- Let us tackle second goal
- Main idea: Translating patch should cause large differences
- An example of an interest point detector



Matching feature points

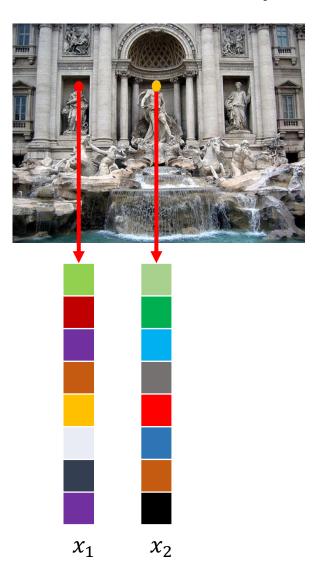
We know how to detect good points Next question: How to match them?

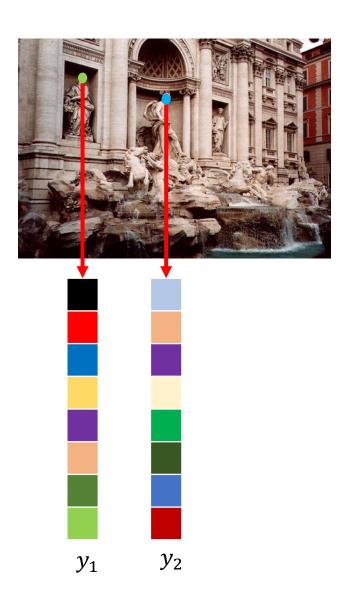


Two interrelated questions:

- 1. How do we *describe* each feature point?
- 2. How do we *match* descriptions?

Feature descriptor





Feature matching

 Measure the distance between (or similarity between) every pair of descriptors

	y_1	y_2
x_1	$d(x_1, y_1)$	$d(x_1, y_2)$
x_2	$d(x_2, y_1)$	$d(x_2, y_2)$

Invariance vs. discriminability

- Invariance:
 - Distance between descriptors should be small even if image is transformed

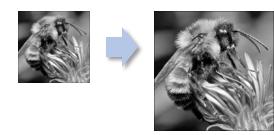
- Discriminability:
 - Descriptor should be highly unique for each point (far away from other points in the image)

Image transformations

• Geometric

Rotation

Scale

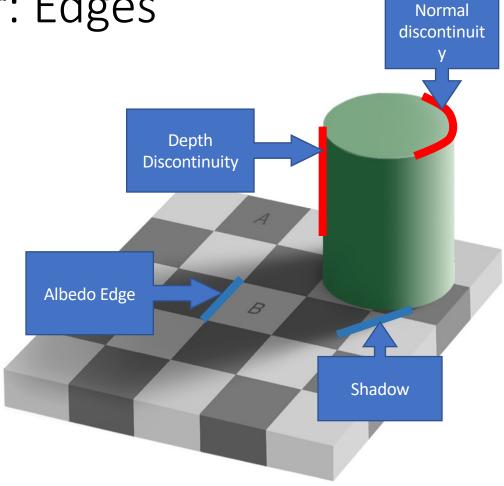


Invariance

- Most feature descriptors are designed to be invariant to
 - Translation, 2D rotation, scale

- They can usually also handle
 - Limited 3D rotations (SIFT works up to about 60 degrees)
 - Limited affine transformations (some are fully affine invariant)
 - Limited illumination/contrast changes

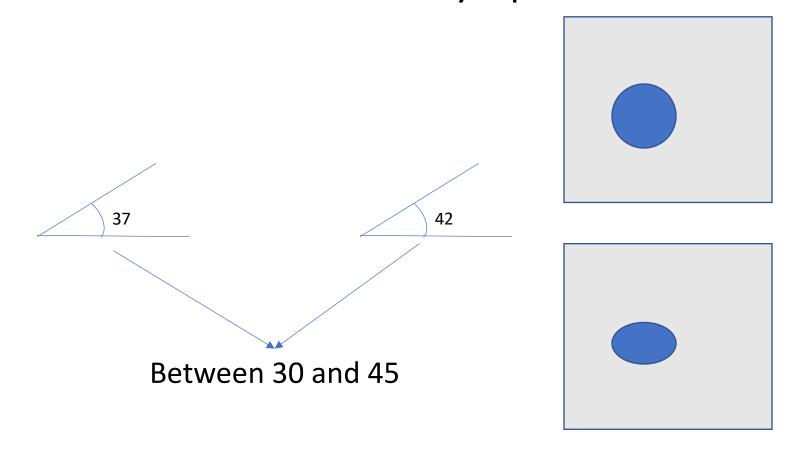
Better representation than color: Edges



Towards a better feature descriptor

- Match pattern of edges
 - Edge orientation clue to shape
- Be resilient to *small deformations*
 - Deformations might move pixels around, but slightly
 - Deformations might change edge orientations, but slightly

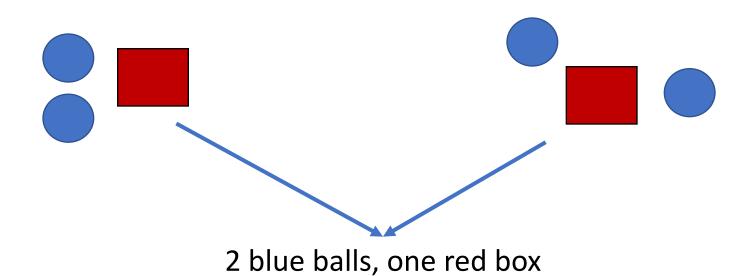
Invariance to deformation by quantization

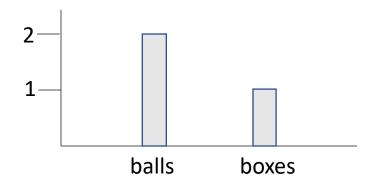


Invariance to deformation by quantization

$$g(\theta) = \begin{cases} 0 & \text{if } 0 < \theta < 2\pi/N \\ 1 & \text{if } 2\pi/N < \theta < 4\pi/N \\ 2 & \text{if } 4\pi/N < \theta < 6\pi/N \\ \dots & \dots \\ N-1 & \text{if } 2(N-1)\pi/N \end{cases}$$

Spatial invariance by histograms

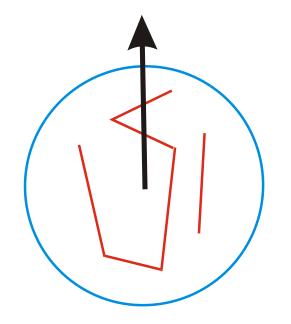


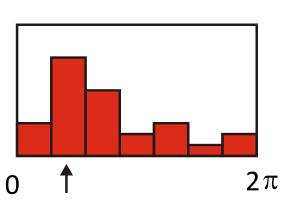


Rotation Invariance by Orientation Normalization

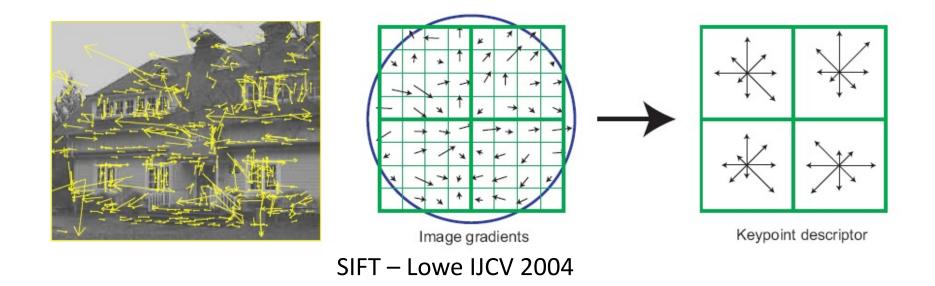
[Lowe, SIFT, 1999]

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation





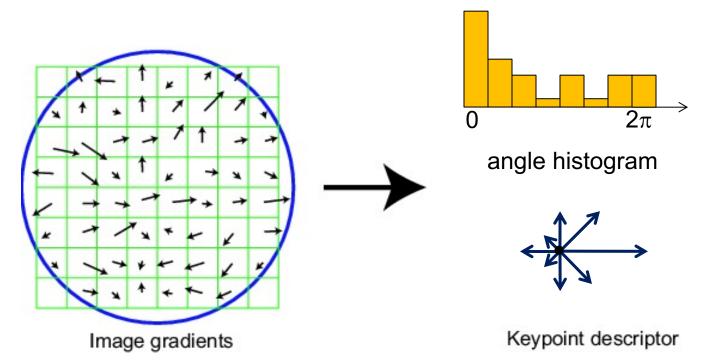
The SIFT descriptor



Scale Invariant Feature Transform

Basic idea:

- DoG for scale-space feature detection
- Take 16x16 square window around detected feature
 - Compute gradient orientation for each pixel
 - Throw out weak edges (threshold gradient magnitude)
 - Create histogram of surviving edge orientations

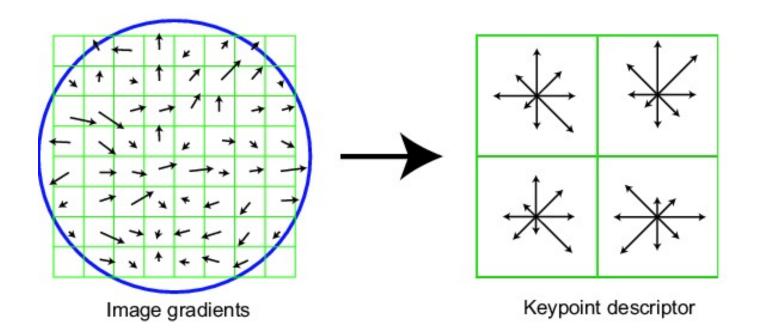


Adapted from slide by David Lowe

SIFT descriptor

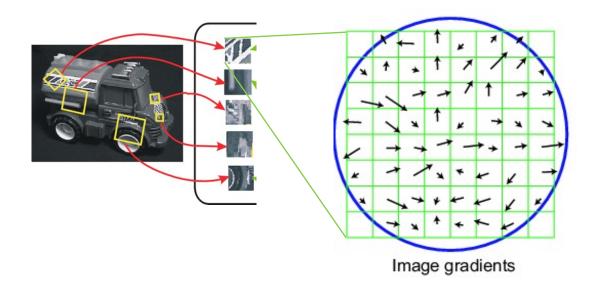
Create histogram

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor



SIFT vector formation

- Computed on rotated and scaled version of window according to computed orientation & scale
 - resample the window
- Based on gradients weighted by a Gaussian



Properties of SIFT

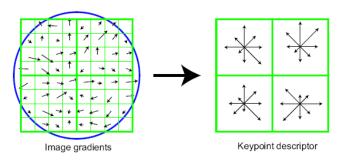
Extraordinarily robust matching technique

- Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
- Fast and efficient—can run in real time
- Lots of code available: <u>http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations of SIFT</u>

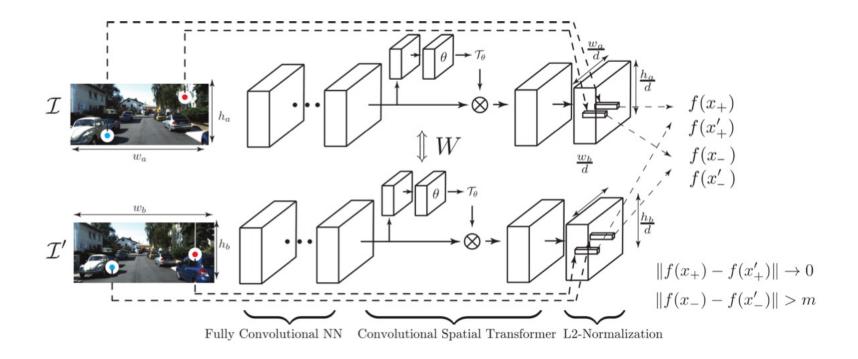
Summary

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG

- Descriptors: robust and selective
 - spatial histograms of orientation
 - SIFT and variants are typically good for stitching and recognition
 - But, need not stick to one

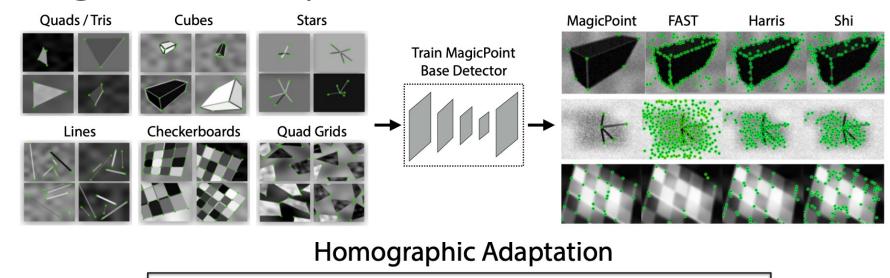


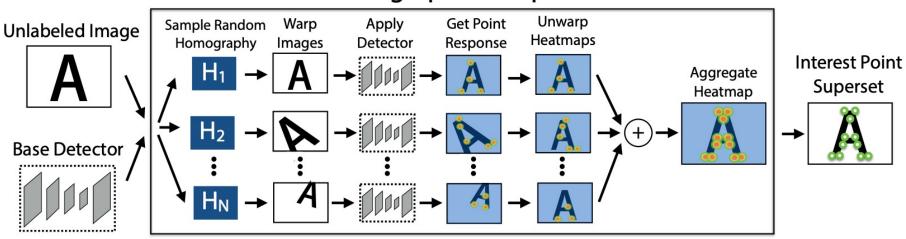
Learning-based correspondence



Choy, Christopher B., et al. "Universal correspondence network." *Proceedings of the 30th International Conference on Neural Information Processing Systems*. 2016.

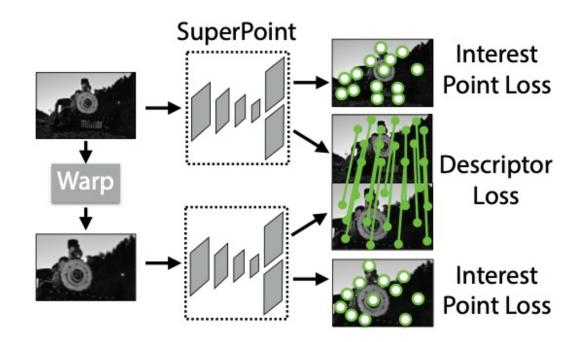
Learning interest points





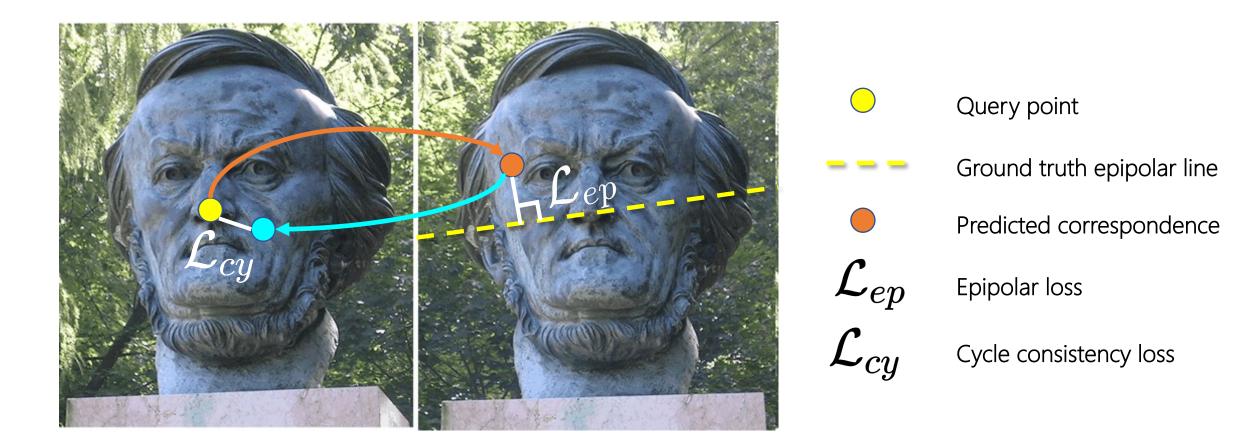
DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Superpoint: Self-supervised interest point detection and description." *Proceedings of the IEEE conference on computer vision and pattern recognition workshops.* 2018.

Learning descriptors without supervision



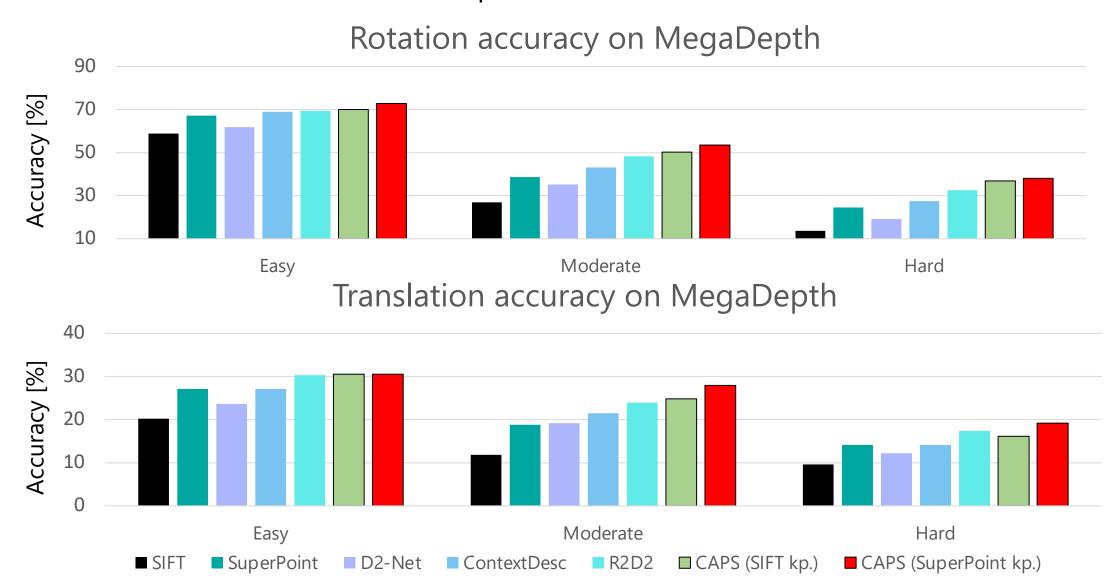
DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Superpoint: Self-supervised interest point detection and description." *Proceedings of the IEEE conference on computer vision and pattern recognition workshops*. 2018.

Epipolar constraint -> Epipolar loss



Wang, Qianqian, et al. "Learning feature descriptors using camera pose supervision." *European Conference on Computer Vision*. Springer, Cham, 2020.

Evaluation on relative pose estimation



The structure from motion pipeline

- Image matching
 - Estimate correspondences, use epipolar geometry + RANSAC to clean correspondences
- Incremental 3D reconstruction
 - Reconstruct keypoints from a pair of images
 - Add images in, do triangulation to reconstruct more 3D points
- Bundle adjustment
 - Take all 3D points and all cameras and minimize reprojection error
- Lots of details; decades of work in getting this right!

The structure-from-motion pipeline

