Robust Estimation w/
RANSAC



Dealing with outliers

* Estimating E relies on correspondences
* What if correspondences are incorrect?
* Fitting: find the parameters of a model that best fit the data

* Other examples:
* |least squares linear regression



Example:

Fitting lines
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Outliers in linear regression

Outliers

Problem: Fit a line to these datapoints

Least squares fit
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Outliers

* Grossly incorrect

 Dominate objective

* Lead to incorrect solutions

* Must be eliminated

* But how do we know which data points are outliers?



More general problem setup

* Given
* A noisy dataset D = { p, vy, ..., Py} With some completely incorrect outliers

* Example 1: Line fitting: { (x1, y1), -, (X, Y1)}

« Example 2: Fundamental matrix: { (p1, q1), (02, G2), ---» (PN, GN)}
* A set of parameters 6 that need to be fitted

* Line fitting: @ = (m, b)

* Festimationd =F, ||f|| =1
* A cost function C(p, 6)

+ Line fitting: C((x,¥), (m, b)) = ||y — (mx + b)||?

* F estimation: C((ﬁ, q), F) = p_T)Fci(Reprojection error)

 Find @




Anna Karenina principle

e “Happy families are all alike; every unhappy family is unhappy in its
own way.” — Leo Tolstoy, Anna Karenina

* Inliers bound to agree with each other

* Qutliers are all outliers in different ways
* So assume outliers will not all point towards same hypothesis

* More precise assumption:
* QOutliers either <50%
* Or noisy points don’t all agree



Approach

* Search through all possible hypotheses
e E.g., all possible lines

* For every point count number of potential inliers
* Points that agree with the line

* Find line with maximum # of inliers

* Since outliers don’t agree with each other, they won’t all lie on the same line
* So the points on this line must be true inliers



Counting inliers




Counting inliers

Inliers: 3



Counting inliers

Inliers: 20



Which hypotheses?

* Sample hypotheses randomly?
* Might sample useless hypotheses that doesn’t fit any data

* Only want hypotheses that fit at least some data
* |[dea: sample minimum points to fit hypothesis
* This yields candidate hypothesis



RANSAC (Random Sample Consensus) o O
O

Line fitting example ' '

Algorithm: O

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

lllustration by Savarese



RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




RANSAC

Line fitting example

N, =6

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




Problem setup (again)

e Given

* Adataset D = { p{, D9, ..., PN}

« Example 1: Line fitting: { (x4, 1), -, (X, Vi) }

« Example 2: Fundamental matrix: { (p1, q1), (02, G2), ---» (PN, GN)}
* A set of parameters 6 that need to be fitted

* Line fitting: @ = (m, b)

* Festimationd =F, ||f|| =1
* A cost function C(p, 6)

* Line fitting: C((x, y), (m, b)) = |ly — (mx + b)||?

* Festimation: C((B,¢),F) = p_T)Fc_])(Reprojection error)
* A minimum number needed k

* Line fitting: 2

* F estimation: 8




RANSAC (RAndom SAmple Consensus)

* Repeat:
* Sample minimum number of points k to fit hypothesis
* Fit hypothesis
e Count number of inliers in entire dataset

* Choose hypothesis with most number of inliers
* Re-update hypothesis with estimated inliers



RANSAC - hyperparameters

* Inlier threshold related to the amount of noise we
expect in inliers
e Often model noise as Gaussian with some standard
deviation (e.g., 3 pixels)

* Number of rounds related to the percentage of
outliers we expect, and the probability of success
we’d like to guarantee



RANSAC

* An example of a “voting”-based fitting scheme

* Each hypothesis gets voted on by each data point, best hypothesis
wins

* There are many other types of voting schemes
* E.g., Hough transforms...



The correspondence
problem



Till now

 Geometry of image formation

e Stereo reconstruction
* Given 3D = 2D correspondence, find K, R, t
* Given 2 images, correspondence, K, R, t, find 3D points
* Given 2 images, correspondence, find F, E, R, t, 3D points



Till now

 Geometry of image formation

e Stereo reconstruction
* Given 3D = 2D correspondence, find K, R, t
* Given 2 images, correspondence, K, R, t, find 3D points
* Given 2 images, correspondence, find F, E, R, t, 3D points



Correspondence can be
challenging

Fei-Fei Li



Harder case

NIRRT O ER e

by Diva Sian


http://www.flickr.com/photos/diaphanus/136915456/
http://www.flickr.com/photos/scpgt/328570837/

Harder still?




Answer below (look for tiny colored squares...)

NASA Mars Rover images
with SIFT feature matches



The correspondence problem

e




The aperture problem

* When viewed from a small “aperture”, correspondence is ambiguous




The aperture problem

* Individual pixels are ambiguous
* |dea: Look at whole patches!




The aperture problem

* Individual pixels are ambiguous
* |dea: Look at whole patches!




The aperture problem

e Some local neighborhoods are ambiguous




The aperture problem

«




Sparse vs dense correspondence

e Sparse correspondence: produce a few, high confidence
matches

* Good enough for estimating pose or relationship between cameras

* Dense correspondence: try to match every pixel
* Needed if we want 3D location of every pixel (e.g., stereo)




Sparse correspondences

* For many applications, a few good correspondences suffice
e Camera calibration
* Estimating essential matrix
* Reconstructing a sparse cloud of 3D points

* Detect points that will produce good correspondences
* Match detected points from both images



Interest
point
detector

Interest
point
detector

Feature
descriptor

Feature
descriptor

Feature
matching




Characteristics of good feature
points

« Repeatability / invariance

« The same feature point can be found in several images despite
geometric and photometric transformations

« Saliency / distinctiveness
» Each feature point is distinctive
« Fewer "false” matches / less ambiguity

Slide credit: Kristen Graumanc



Goal: repeatability

e We want to detect (at least some of) the same points in both images.

No chance to find true matches!

e Yet we have to be able to run the detection procedure independently per
image.

Slide credit: Kristen Graumanc



Goal: distinctiveness

* The feature point should be distinctive enough that it is easy to match
* Should at least be distinctive from other patches nearby

Slide credit: Kristen Graumanc



Harris corner detector

* Let us tackle second goal
* Main idea: Translating patch should cause large differences
* An example of an interest point detector




Matching feature points

We know how to detect good points
Next question: How to match them?

Two interrelated questions:
1. How do we describe each feature point?
2. How do we match descriptions?



Feature descriptor

ENEEEEN -
HEN BN -



Feature matching

* Measure the distance between (or similarity between) every pair of

descriptors

X1 d(xq,y1) d(x1,Y2)

d(x2,¥1) d(x2,¥2)




Invariance vs. discriminability

* |nvariance:
* Distance between descriptors should be small even if image is transformed

* Discriminability:
e Descriptor should be highly unique for each point (far away from other points
in the image)



Image transformations

e Geometric
Rotation
Scale

* Photometric
Intensity change




Invariance

* Most feature descriptors are designed to be invariant to
* Translation, 2D rotation, scale

* They can usually also handle
 Limited 3D rotations (SIFT works up to about 60 degrees)
* Limited affine transformations (some are fully affine invariant)
 Limited illumination/contrast changes



Better representation
than color: Edges —

discontinuit
y

Depth
Discontinuity

Albedo Edge !

Shadow



Towards a better feature descriptor

* Match pattern of edges
* Edge orientation —clue to shape

* Be resilient to small deformations
* Deformations might move pixels around, but slightly
* Deformations might change edge orientations, but slightly



Invariance to deformation by quantization
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Between 30 and 45




Invariance to deformation by quantization

0 if 0 <0 <27/N
1 if 2r/N < 6 <4n/N
g(0) =< 2 if dr/N < 6 < 67/N

N-1 if 2(N — 1) /N



Spatial invariance by histograms

N7

2 blue balls, one red box

balls boxes



Normalization

* Compute orientation histogram
e Select dominant orientation
e Normalize: rotate to fixed orientation

Rotation Invariance by Orientation

[Lowe, SIFT, 1999]
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The SIFT descriptor

P —m—
/X.__-T‘ ﬂ\
## Nkl 7
711
\*\N/!JI -
— \‘ng N x
- - ] |~
P /‘/,\‘A’/
N L ‘
\Y‘*"\Y

Image gradients Keypoint descriptor

SIFT — Lowe [JCV 2004



Scale Invariant Feature Transform

Basic idea:
e DoG for scale-space feature detection
e Take 16x16 square window around detected feature
e Compute gradient orientation for each pixel
e Throw out weak edges (threshold gradient magnitude)
e Create histogram of surviving edge orientations

0 27

angle histogram

Image gradients Keypoint descriptor
Adapted from slide by David Lowe



SIFT descriptor

Create histogram
e Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
e Compute an orientation histogram for each cell
e 16 cells * 8 orientations = 128 dimensional descriptor

Xk

Image gradients Keypoint descriptor

Adapted from slide by David Lowe



SIFT vector formation

 Computed on rotated and scaled version of window
according to computed orientation & scale

* resample the window

* Based on gradients weighted by a Gaussian

Image gradients



Properties of SIF

Extraordmarlly robust matching technique

e Can handle changes in viewpoint

* Up to about 60 degree out of plane rotation
* Can handle significant changes in illumination

* Sometimes even day vs. night (below)
* Fast and efficient—can run in real time

e Lots of code available:

http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known imple
mentations of SIFT



http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Summary

* Keypoint detection: repeatable
and distinctive

* Corners, blobs, stable regions
* Harris, DoG

* Descriptors: robust and selective
* spatial histograms of orientation

* SIFT and variants are typically good
for stitching and recognition

e But, need not stick to one

Keypoint descriptor




Learning-based correspondence

If(z4) = f(z)]| =0
[l () == f(l'_)|| >m

Fully Convolutional NN  Convolutional Spatial Transformer L2-Normalization

Choy, Christopher B., et al. "Universal correspondence network." Proceedings of the 30th International Conference on
Neural Information Processing Systems. 2016.



Learning interest points
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DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Superpoint: Self-supervised interest point detection
and description." Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2018.



Learning descriptors without supervision

SuperPoin
Interest
Point Loss
”JII‘\I Descriptor
- o gl Loss
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DeTone, Daniel, Tomasz Malisiewicz, and Andrew Rabinovich. "Superpoint: Self-supervised interest point detection
and description." Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2018.



Epipolar constraint = Epipolar loss

Query point

Ground truth epipolar line

Predicted correspondence

Epipolar loss

Cycle consistency loss

Wang, Qiangian, et al. "Learning feature descriptors using camera pose supervision." European Conference on
Computer Vision. Springer, Cham, 2020.



Evaluation on relative pose estimation

Rotation accuracy on MegaDepth
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The structure from motion pipeline

* Image matching

* Estimate correspondences, use epipolar geometry + RANSAC to clean
correspondences

* Incremental 3D reconstruction
* Reconstruct keypoints from a pair of images
* Add images in, do triangulation to reconstruct more 3D points

* Bundle adjustment
e Take all 3D points and all cameras and minimize reprojection error

* Lots of details; decades of work in getting this right!



The stru -from-motion pipeline

https://colmap.github.io



