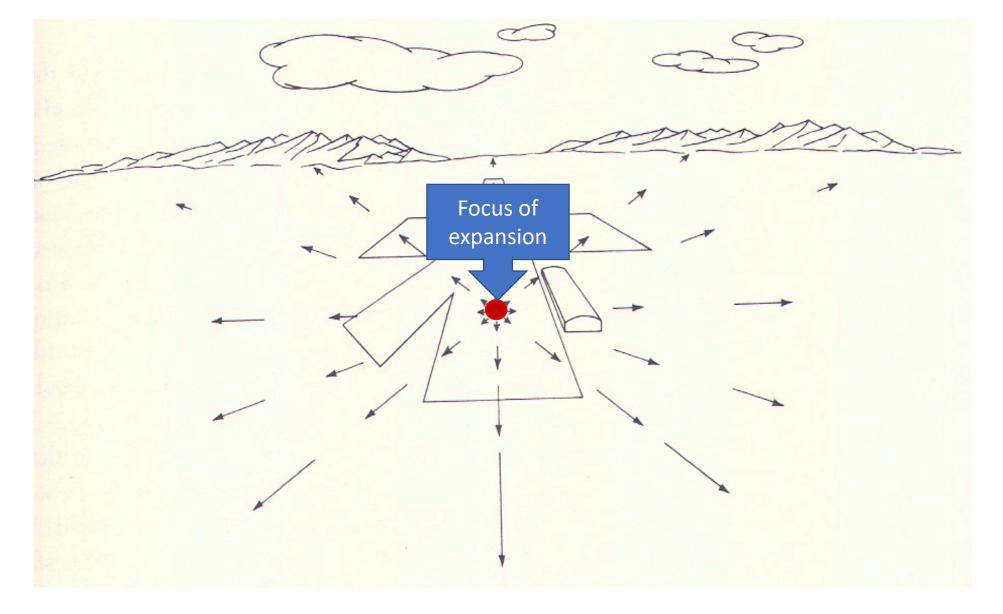
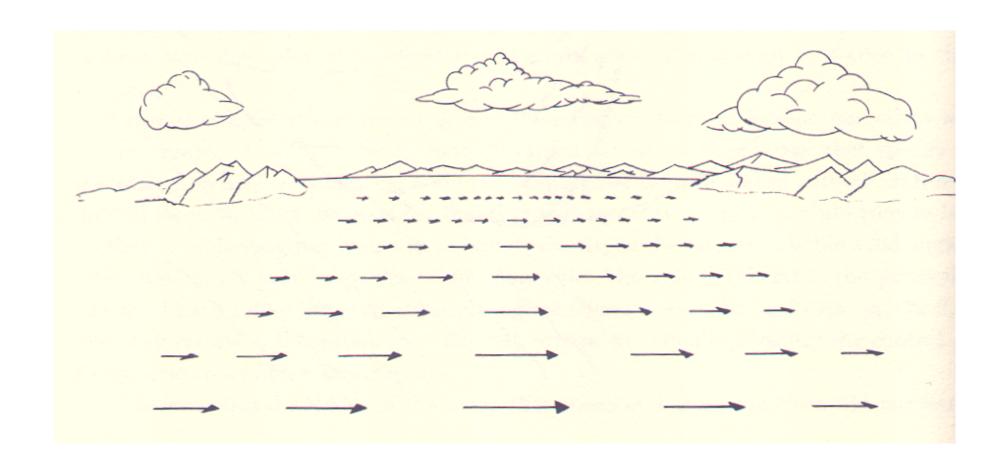


Videos - Optical flow



J. J. Gibson



Optical flow due to camera motion

Consider camera translating and rotating

$$\mathbf{P} = (X, Y, Z)^{T}$$

$$x = \frac{X}{Z} \qquad y = \frac{Y}{Z}$$

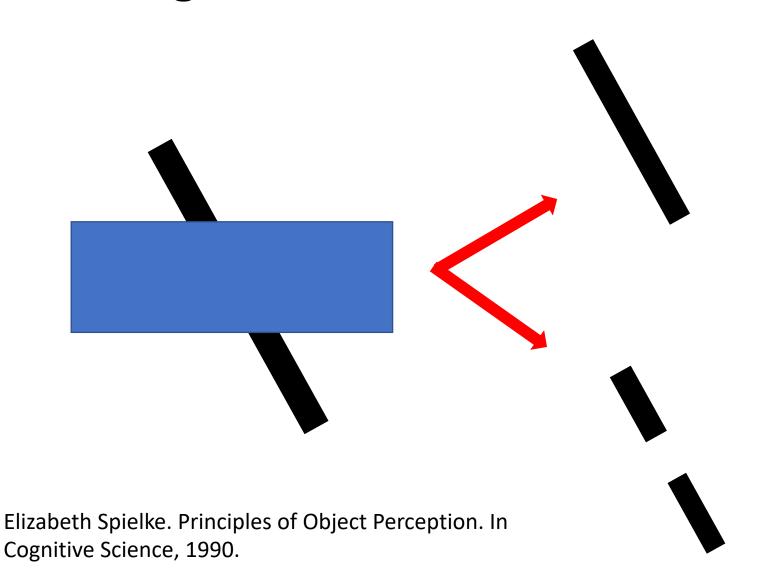
$$\dot{\mathbf{P}} = -\mathbf{t} - \omega \times \mathbf{P}$$

Optical flow due to camera motion

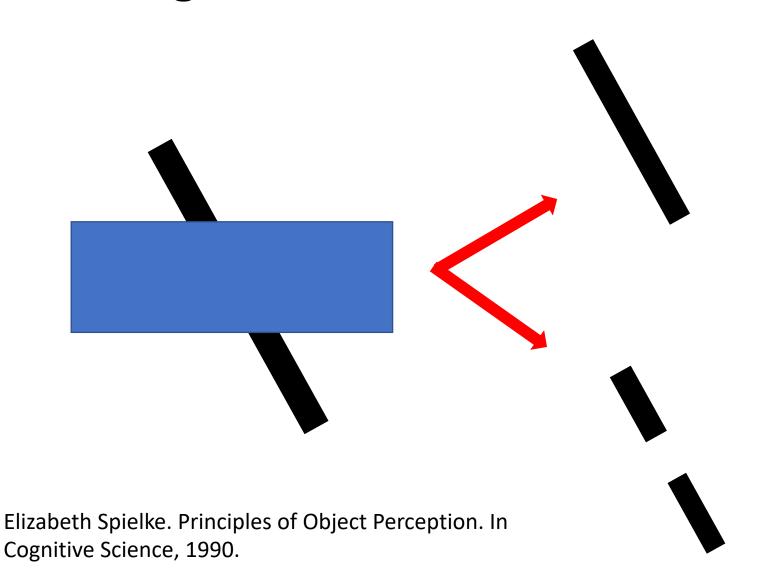
$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \frac{1}{Z} \begin{bmatrix} -1 & 0 & x \\ 0 & -1 & y \end{bmatrix} \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} + \begin{bmatrix} xy & -(1+x^2) & y \\ 1+y^2 & -xy & -x \end{bmatrix} \begin{bmatrix} \omega_x \\ \omega_y \\ \omega_z \end{bmatrix}$$

- Optical flow helps grouping
- Gestalt principle of common fate
 - Things that move together belong together

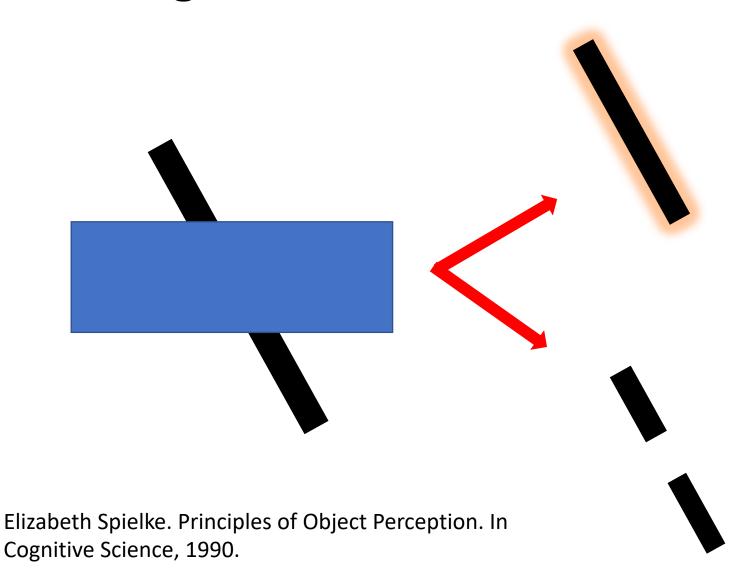
Motion segmentation in humans

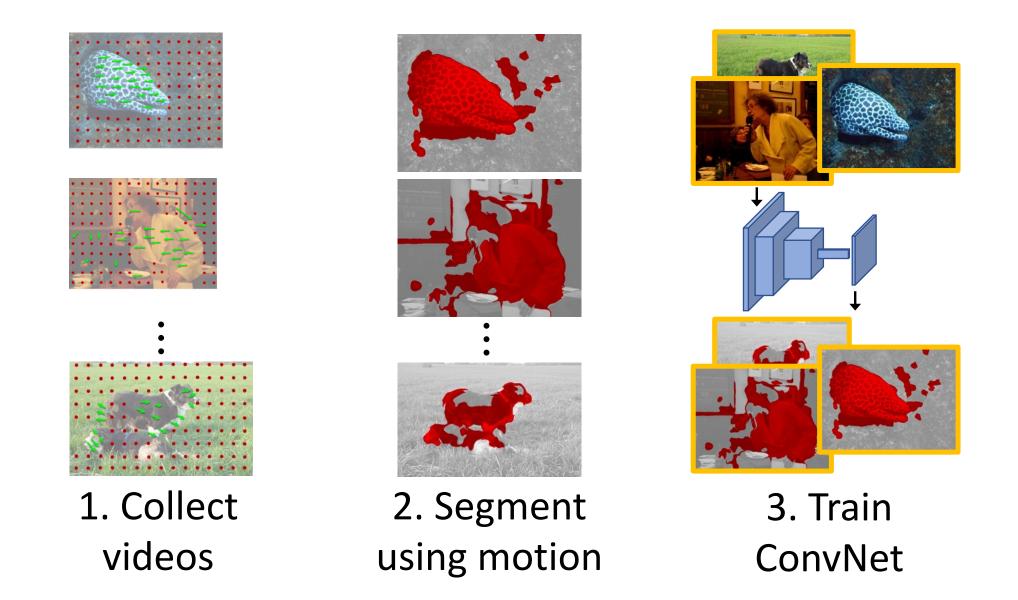


Motion segmentation in humans

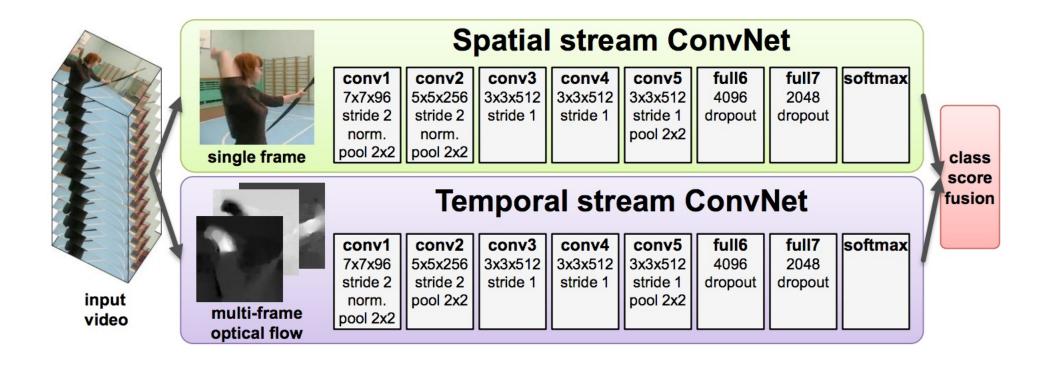


Motion segmentation in humans





- Motion is cue for recognition
 - Gestures, actions, ...



Two-Stream Convolutional Networks for Action Recognition in Videos. Simonyan and Zisserman. In NIPS 2014.

- Motion is cue for recognition
 - Gestures, actions, ...

Model	Accuracy
Without optical flow	73.0%
With optical flow	88.0%

Estimating optical flow

- Yet another correspondence problem!
- But:
 - Bad: scene can move
 - Good: changes are usually very small (often sub-pixel)

Optical flow constraint equation

- Image intensity continuous function of x, y, t
- In time dt, pixel (x,y,t) moves to (x + u dt, y + v dt, t + dt)

$$\min_{u,v} (I(x + u\Delta t, y + v\Delta t, t + \Delta t) - I(x, y, t))^{2}$$

$$\equiv \min_{u,v} (I(x, y, t) + I_{x}u\Delta t + I_{y}v\Delta t + I_{t}\Delta t - I(x, y, t))^{2}$$

$$\equiv \min_{u,v} (I_{x}u\Delta t + I_{y}v\Delta t + I_{t}\Delta t)^{2}$$

$$I_{x}u + I_{y}v + I_{t} = 0$$

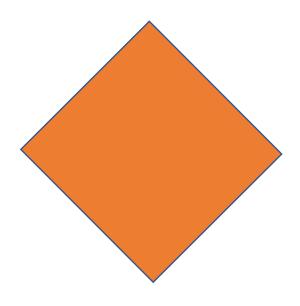
• Optical flow constraint equation: One equation, two variables

- Assume all pixels in patch have the same flow
- When will this produce a unique solution?

$$\begin{pmatrix} \nabla I(x_1, y_1)^T \\ \vdots \\ \nabla I(x_n, y_n)^T \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = - \begin{pmatrix} I_t(x_1, y_1) \\ \vdots \\ I_t(x_n, y_n) \end{pmatrix}$$

Aperture problem

Aperture problem



$$\begin{pmatrix} \nabla I(x_1, y_1)^T \\ \vdots \\ \nabla I(x_n, y_n)^T \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = - \begin{pmatrix} I_t(x_1, y_1) \\ \vdots \\ I_t(x_n, y_n) \end{pmatrix}$$

- Equation of the form Ax = b
- Solve using Normal equations: $x = (A^T A)^{-1} A^T b$
- Need A^TA to be invertible corners!

- What if we consider the whole image as one patch?
 - Constant optical flow for the entire image?
- Better: what if we consider flow as a *parametric function* of pixel location?
 - location? • e.g. affine $\begin{bmatrix} u \\ v \end{bmatrix} = A\mathbf{x} + b$
 - More generally: $\mathbf{x}' = W(\mathbf{x}; \mathbf{p})$
 - W is some 2D → 2D parametric warp function
 - **p** is a parameter vector
 - "Motion models"

$$\min_{\mathbf{p}} \sum_{\mathbf{x}} (I(W(\mathbf{x}; \mathbf{p})) - T(\mathbf{x}))^2$$

- T is the previous frame, also called template
- I is the current frame
- Goal is to find p

- Iterative process
- ullet Assume that we have a current iterate $oldsymbol{p}$ and we want to find the next iterate $p + \Delta p$
- $\bullet \ \text{Find} \ \Delta \pmb{p} \ \text{by optimizing} \quad \min_{\Delta \mathbf{p}} \sum (I(W(\mathbf{x};\mathbf{p}+\Delta \mathbf{p})) T(\mathbf{x}))^2$
- Hard because I and W are both non-linear
- Assume Δp is small and linearize:

 - Linearize W: $W(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p}) \approx W(\mathbf{x}; \mathbf{p}) + \frac{\partial W}{\partial \mathbf{p}} \Delta \mathbf{p}$ Linearize I: $I(W(\mathbf{x}; \mathbf{p} + \Delta \mathbf{p})) \approx I(W(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial W}{\partial \mathbf{p}} \Delta \mathbf{p}$

Baker, Simon, and Iain Matthews. "Lucas-kanade 20 years on: A unifying framework." International journal of computer vision 56.3 (2004): 221-255.

- Iterative process
- At each step, find Δp that optimizes

$$\min_{\Delta \mathbf{p}} (I(W(\mathbf{x}; \mathbf{p})) + \nabla I \frac{\partial W}{\partial \mathbf{p}} \Delta \mathbf{p} - T(\mathbf{x}))^2$$

- Warped image
- Gradient of warped image
- Jacobian of warp function
- Template
- Quadratic in $\Delta \boldsymbol{p}$, solve exactly

- Solve by iterating on parameters
- Equivalent to Newton iteration + linearization
- Can we remove the parametric assumption?

Horn-Schunk

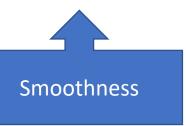
$$E(\mathbf{u}, \mathbf{v}) = E_{data}(\mathbf{u}, \mathbf{v}) + E_{smoothness}(\mathbf{u}, \mathbf{v})$$

$$E(\mathbf{u},\mathbf{v}) = \int \int (I(x+u(x,y)\Delta t,y+v(x,y)\Delta t,t+\Delta t)-I(x,y,t))^2 + \alpha(\|\nabla u\|^2 + \|\nabla v\|^2) dx dy$$
 Smoothness

Horn-Schunk

$$E(\mathbf{u}, \mathbf{v}) = E_{data}(\mathbf{u}, \mathbf{v}) + E_{smoothness}(\mathbf{u}, \mathbf{v})$$

$$E(\mathbf{u}, \mathbf{v}) = \int \int (I_x u + I_y v + I_t)^2 + \alpha(\|\nabla u\|^2 + \|\nabla v\|^2) dx dy$$



Variational minimization

- u and v are functions
- Euler-lagrange equations
 - Similar to "gradient=0"

$$\min_{q} \int L(t, q(t), \dot{q}(dt)) dt$$

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0$$

Variational minimization

$$\min_{q} \int L(t, q(t), \dot{q}(dt)) dt$$

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0$$

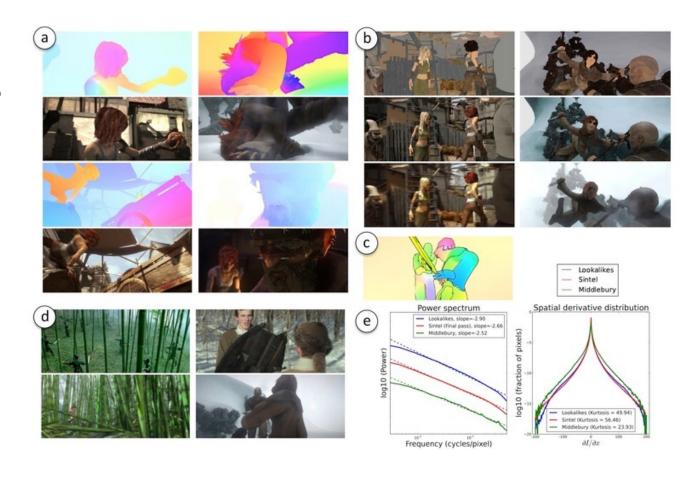
$$\min_{u,v} \int \int f(x,y,u,v,u_x,u_y,v_x,v_y) dx dy$$

$$\frac{\partial f}{\partial u} - \frac{d}{dx} \frac{\partial f}{\partial u_x} - \frac{d}{dy} \frac{\partial f}{\partial u_y} = 0$$

$$\frac{\partial f}{\partial v} - \frac{d}{dx} \frac{\partial f}{\partial v_x} - \frac{d}{dy} \frac{\partial f}{\partial v_y} = 0$$

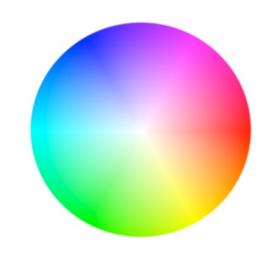
MPI-Sintel

- Open-source animated movie "Sintel"
- "Naturalistic" video
- Ground truth optical flow
- Large motions
- Complex scenes



MPI-Sintel results

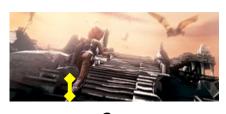




Optical flow with large displacements

- Optical flow constraint equation assumes differential optical flow
- "Large displacement"?
- Key idea: reducing resolution reduces displacement
- Reduce resolution, then upsample?
 - will lose fine details

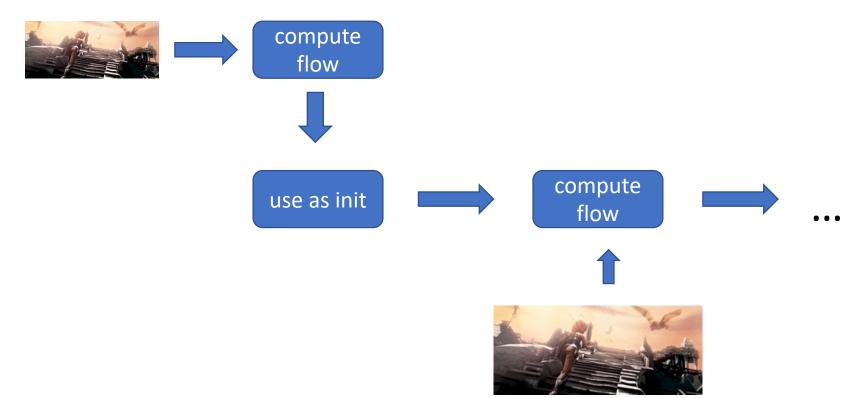
13



24

Optical flow with large displacements

- Key idea 2: Use upsampled flow as initialization
- Changes to initialization will be infinitesimal



Brox, Thomas, et al. "High accuracy optical flow estimation based on a theory for warping." Computer Vision-ECCV 2004 (2004)

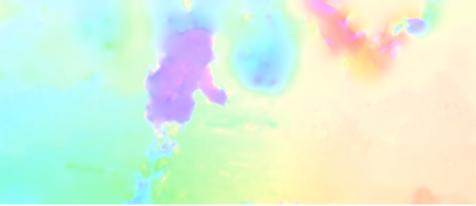
Optical flow for large displacements

- Possible issue: large appearance change => incorrect matching based on color alone
- Use descriptor matching (e.g. SIFT) on sparse points
- Use smoothness to propagate to all pixels:
 - Flow is weighted average of nearest neighbors: $F(p) = \frac{\sum_{q} k(p,q)F(q)}{\sum_{q} k(p,q)}$
 - *Kernel k* dependent on relative position + edges
- Use this as initialization for optimization

LDOF and EpicFlow

Video

LDOF (Brox et al, 2009) (Error = 1.606)



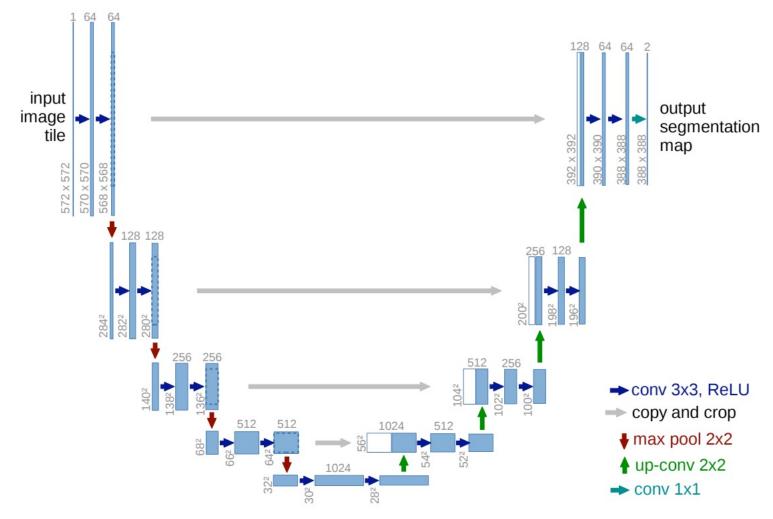
Basic Horn-Schunk (Error = 2.069)

EpicFlow (Revaud et al, 2015) (Error = 1.295)

Coarse-to-fine processing

- A specific instance of a general idea
 - Also coarse-to-fine versions of Lucas-Kanade
- Coarse scales:
 - Global / large structures
 - Long-range relationships
 - But: imprecise localization
- Fine scales:
 - Precise localization
 - But: aperture problem
- Idea: start from coarse scales, add fine scale detail

Coarse-to-fine processing



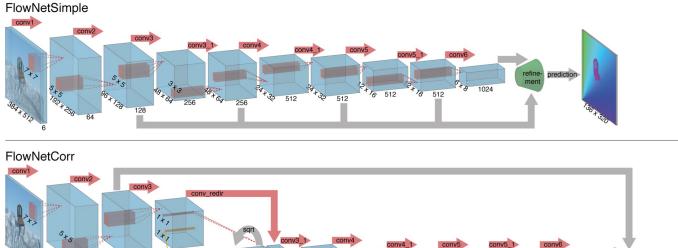
U-Net: Convolutional Networks for Biomedical Image Segmentation. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. In *MICCAI*, 2015.

Learning optical flow

Dosovitskiy, Alexey, et al. "Flownet: Learning optical flow with convolutional networks." *Proceedings of the IEEE international conference on computer vision*. 2015.

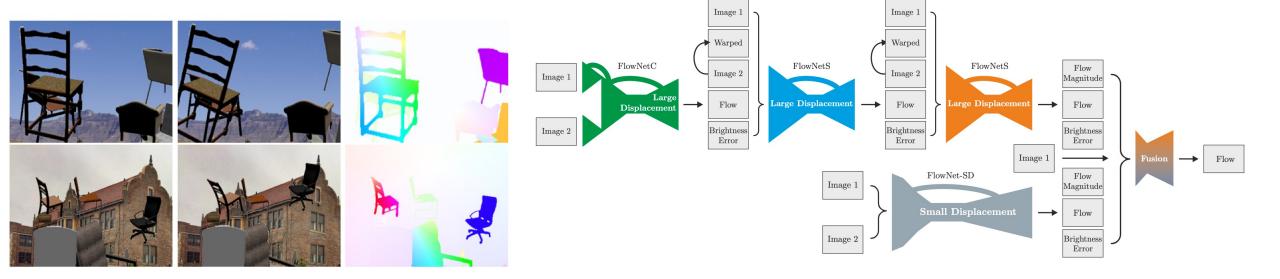
- Training data?
 - Synthetic
- Architecture?
 - Based on segmentation
 - Based on correlating pairs of pixels





Learning optical flow

 Better flow through coarse-to-fine refinement Ilg, Eddy, et al. "Flownet 2.0: Evolution of optical flow estimation with deep networks." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2017.



Learning optical flow

Teed, Zachary, and Jia Deng. "Raft: Recurrent all-pairs field transforms for optical flow." *European conference on computer vision*. Springer, Cham, 2020.

- Have learning architecture mimic actual computation?
- Should iteratively optimize flow
- Should use data term (pairwise similarity of pixels) and prior term

