Neural Implicit Fields



Implicit vs explicit equations

* Explicit representations of a curve

cy=f@)

* Implicit representation of a curve
* f(x,y) =0



Implicit representations of 3D shape

* Shape can be represented by the level sets of a function f: R> - R

* Occupancy:
* f(x,vy,z) is the probability (x, y, z) is inside the object
e Surfaceis given by f(x,y,z) = 0.5

* Signed distance fields
* f(x,vy,z) is the signed distance of (x, y, z) from the surface
e Sign is positive for points inside, negative for points outside
e Surfaceis given by f(x,y,z) =0



Neural implicit representations

* Traditionally f is tabular array

* But can approximate with a neural network

Mescheder, Lars, et al. "Occupancy networks: Learning 3d reconstruction in function space." Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

Park, Jeong Joon, et al. "Deepsdf: Learning continuous signed distance functions for shape
representation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.



Shape representations

(a) Voxel

* Easyto
produce

* Very
expensive to
store

e Limited
resolution



Fitting an implicit field

* Occupancy
» Essentially a binary classification problem
* Sample points, label them as inside or outside the surface

* SDF

* Essentially a regression problem
* Sample points, label them with true signed distance

* In both cases, need watertight meshes to compute



Rendering with an implicit field




Generalization with neural fields

* Each neural field captures a particular shape
* Shape is encoded in the weights of the neural network

* How to generalize to new shapes?
* Latent codes
* Transfer learning



Implicit fields with latent codes
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Producing latent codes for input shapes
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Using implicit fields for 3D reconstruction
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Generalizing neural fields through transfer
learning

* Use meta-learning framework
* Learn initialization for network 6,

* In each training iteration
e Sample a shape
* Perform SGD steps to update parameters to 6, + A6
* Backpropagate final loss to update 6,

* Compared to latent code approach, allows greater fidelity/cheaper
networks since new shapes can use different weights

Sitzmann, Vincent, et al. "Metasdf: Meta-learning signed distance functions." arXiv preprint arXiv:2006.09662 (2020).



Beyond shapes: Representing appearance
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Mildenhall, Ben, et al. "Nerf: Representing scenes as neural radiance fields for view synthesis." European conference
on computer vision. Springer, Cham, 2020.



Representing high frequency details

e Standard neural networks use RelLU as activation
* So they approximate functions with piecewise linear functions
* Bad idea for high-frequency signals

e Common in images, textured 3D surfaces etc
* Need lots and lots of pieces!



Representing high frequency details
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Tancik, Matthew, et al. "Fourier features let networks learn high frequency functions in low dimensional domains." arXiv
preprint arXiv:2006.10739 (2020).



Representing high frequency details

Sitzmann, Vincent, et al. "Implicit neural representations with periodic activation functions." Advances in Neural
Information Processing Systems 33 (2020).



Challenges with neural fields

e Shape information is stored in neural network weights
 Difficult to edit

* Appearance information entangled with shape and pose

* Generalization across complex scenes unclear.



