Recognition

Learning

• Key idea: teach computer visual concepts by providing examples

 \mathcal{X} :Images

 \mathcal{Y} :Labels

 \mathcal{D} :Distribution over $\mathcal{X} \times \mathcal{Y}$

•
$$S = \{(x_i, y_i) \sim \mathcal{D}, i = 1, \dots, n\}$$

Example

- Binary classifier "Dog" or "not Dog"
- Labels: {0, 1}
- Training set

Choosing a model class

- Will try and find P(y = 1 | x)
- P(y=0 | x) = 1 P(y=1 | x)
- Need to find $\,h:\mathcal{X}
 ightarrow [0,1]\,$
- But: enormous number of possible mappings

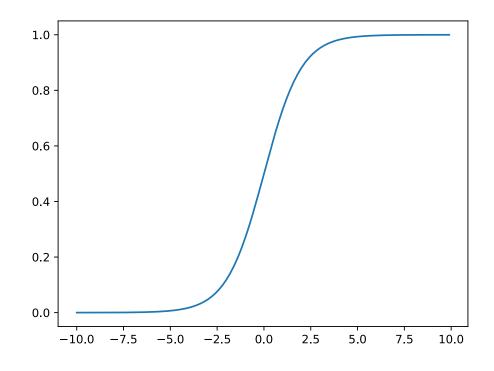
Choosing a model class

$$h: \mathcal{X} \to [0,1]$$

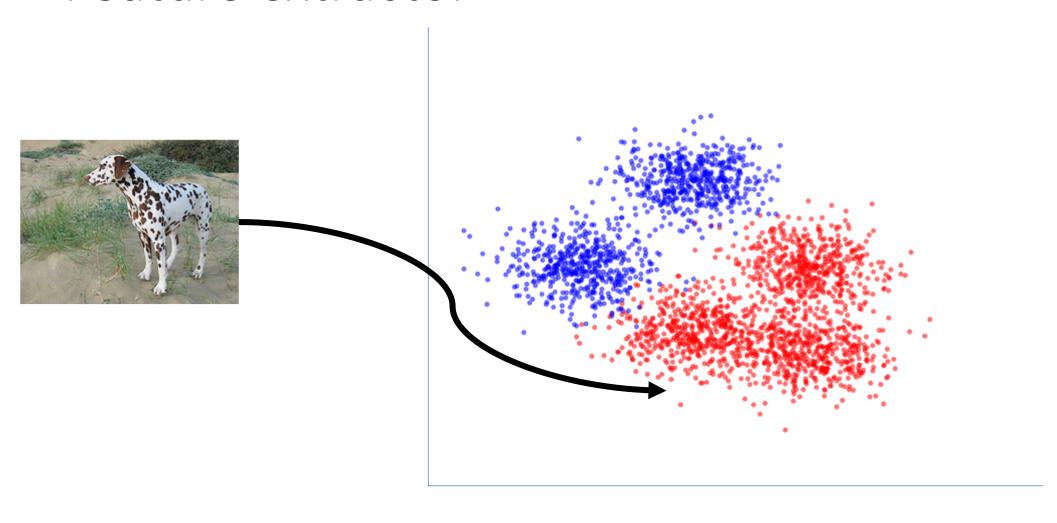
• E.g. Assume h is a linear classifier in feature space

$$h_{\mathbf{w}}(x) = \sigma(\mathbf{w}^T \phi(x))$$

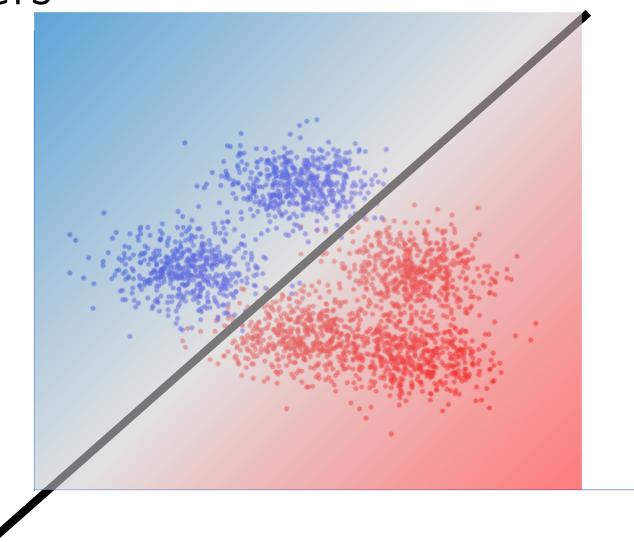
$$\sigma(s) = \frac{1}{1 + e^{-s}}$$



Feature extractor



Linear classifiers



Linear classifiers in feature space

$$h_{\mathbf{w}}(x) = \sigma(\mathbf{w}^T \phi(x))$$

- Family of functions
- Each function is called a hypothesis
- Family is called a *hypothesis class*
- Hypotheses indexed by w
- Need to find the best hypothesis = need to find best w

- Use training set to find best-fitting hypothesis
- Question: how do we define fit?
- Loss function
 - h_w(x) is estimated probability label is 1
 - Log likelihood: negative log of estimated probability of the true label

$$li(h_{\mathbf{w}}(x), y) = \begin{cases} h_{\mathbf{w}}(x) & \text{if } y = 1\\ 1 - h_{\mathbf{w}}(x) & \text{ow} \end{cases}$$

$$li(h_{\mathbf{w}}(x), y) = h_{\mathbf{w}}(x)^{y} (1 - h_{\mathbf{w}}(x))^{1-y}$$

$$li(h_{\mathbf{w}}(x), y) = h_{\mathbf{w}}(x)^{y} (1 - h_{\mathbf{w}}(x))^{1-y}$$

- Likelihood of a single data point
- Fit = total likelihood of entire training dataset

$$S = \{(x_i, y_i) \sim \mathcal{D}, i = 1, \dots, n\}$$

$$\prod_{i=1}^{n} h_{\mathbf{w}}(x_i)_i^y (1 - h_{\mathbf{w}}(x_i))^{1-y_i}$$

Use negative log likelihood

$$-\sum_{i=1}^{n} y_i \log h_{\mathbf{w}}(x_i) + (1 - y_i) \log(1 - h_{\mathbf{w}}(x_i))$$

Maximizing log likelihood = Minimizing negative log likelihood

$$\max_{\mathbf{w}} \sum_{i=1}^{n} y_i \log h_{\mathbf{w}}(x_i) + (1 - y_i) \log(1 - h_{\mathbf{w}}(x_i))$$

$$\min_{\mathbf{w}} (-\sum_{i=1}^{n} y_i \log h_{\mathbf{w}}(x_i) + (1 - y_i) \log(1 - h_{\mathbf{w}}(x_i)))$$

Training = Optimization

- Need to minimize an objective
- Simple solution: gradient descent

$$\min_{\mathbf{w}} f(\mathbf{w})$$

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha \nabla_{\mathbf{w}} f(\mathbf{w}^{(t)})$$

Stochastic gradient descent

$$f(\mathbf{w}) = \frac{1}{n} \sum_{i} L(h_{\mathbf{w}}(x_i), y_i)$$

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{n} \sum_{i} \nabla_{\mathbf{w}} L(h_{\mathbf{w}}(x_i), y_i)$$

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = <\nabla_{\mathbf{w}} L(h_{\mathbf{w}}(x_i), y_i) >$$

$$g_i(\mathbf{w}) = L(h_{\mathbf{w}}(x_i), y_i)$$

Stochastic gradient descent

- Randomly sample small subset of examples
- Compute gradient on small subset
 - Unbiased estimate of true gradient
- Take step along estimated gradient

$$h_{\mathbf{w}}(x) = \sigma(\mathbf{w}^T \phi(x)) \qquad \qquad \sigma(s) = \frac{1}{1 + e^{-s}}$$

$$L(h_{\mathbf{w}}(x), y) = (-y \log h_{\mathbf{w}}(x) + (1 - y) \log(1 - h_{\mathbf{w}}(x)))$$

$$\min_{\mathbf{w}} \sum_{i=1}^{n} L(h_{\mathbf{w}}(x_i), y_i)$$

Logistic Regression!

General recipe

Fix hypothesis class

$$h_{\mathbf{w}}(x) = \sigma(\mathbf{w}^T \phi(x))$$

Define loss function

$$L(h_{\mathbf{w}}(x), y) = (-y \log h_{\mathbf{w}}(x) + (1 - y) \log(1 - h_{\mathbf{w}}(x)))$$

Minimize total loss on the training set

$$\min_{\mathbf{w}} \sum_{i=1}^{n} L(h_{\mathbf{w}}(x_i), y_i)$$

Why should this work?

Risk

- Given:
 - Distribution \mathcal{D}
 - A hypothesis $h \in H$
 - Loss function L
- We are interested in Expected Risk:

$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(h(x),y)$$

• Given training set S, and a particular hypothesis h, Empirical Risk:

$$\hat{R}(S,h) = \frac{1}{|S|} \sum_{(x,y) \in S} L(h(x),y)$$

Risk

$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(h(x),y)$$
 $\hat{R}(S,h) = \frac{1}{|S|}\sum_{(x,y)\in S}L(h(x),y)$

• By central limit theorem.

$$\mathbb{E}_{S \sim \mathcal{D}^n} \hat{R}(S, h) = R(h)$$

- Variance proportional to 1/n
- For randomly chosen h, empirical risk is an unbiased estimator of expected risk

Risk

- Empirical risk unbiased estimate of expected risk
- Want to minimize expected risk
- Idea: Minimize empirical risk instead
- This is the Empirical Risk Minimization Principle

$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(h(x),y) \qquad \hat{R}(S,h) = \frac{1}{|S|} \sum_{(x,y)\in S} L(h(x),y)$$

$$h^* = \arg\min_{h \in H} \hat{R}(S, h)$$

Generalization

$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(h(x),y) \qquad \hat{R}(S,h) = \frac{1}{|S|} \sum_{(x,y)\in S} L(h(x),y)$$

$$R(h) = \hat{R}(S,h) + (R(h) - \hat{R}(S,h))$$
 Training Generalization error

Overfitting

- We are minimizing training error
- Empirical risk of chosen hypothesis *no longer* unbiased estimate:
 - We chose hypothesis based on S
 - Might have chosen h for which S is a special case
- Overfitting:
 - Minimize training error, but generalization error increases

Controlling generalization error

- Variance of empirical risk inversely proportional to size of S
 - Choose very large S!
- Larger the hypothesis class H, Higher the chance of hitting bad hypotheses with low training error and high generalization error
 - Choose small H!
- For many models, can bound generalization error using some property of parameters
 - Regularize during optimization!
 - Eg. L2 regularization

Controlling generalization error

- How do we know we are overfitting?
 - Use a held-out "validation set"
 - To be an unbiased sample, must be completely unseen

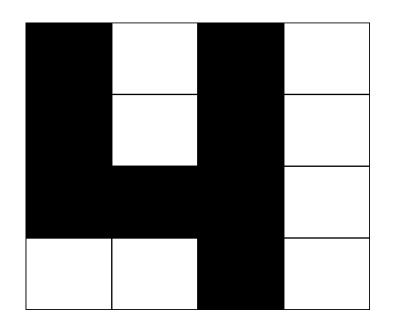
Putting it all together

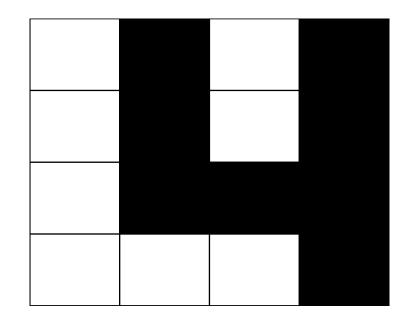
- Collect training set and validation set
- Pick hypothesis class
- Pick loss function
- Minimize empirical risk (+ regularization)
- Measure performance on held-out validation set
- Profit!

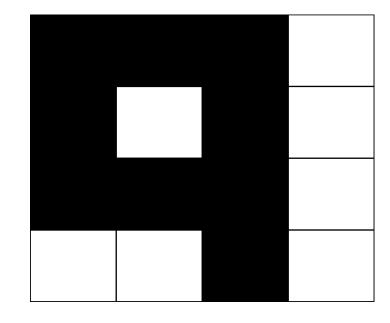
Loss functions and hypothesis classes

Loss function	Problem	Range of h	\mathcal{Y}	Formula
Log loss	Binary Classification	\mathbb{R}	$\{0, 1\}$	$\log(1 + e^{-yh(x)})$
Negative log likelihood	Multiclass classification	$[0, 1]^k$	$\{1,\ldots,k\}$	$-\log h_y(x)$
Hinge loss	Binary Classification	\mathbb{R}	$\{0, 1\}$	$\max(0, 1 - yh(x))$
MSE	Regression	\mathbb{R}	\mathbb{R}	$(y-h(x))^2$

Linear classifiers on pixels are bad

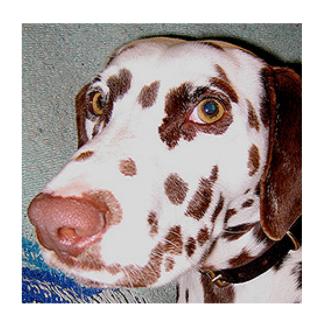






- Better feature vectors
- Non-linear classifiers

Invariance to large deformations

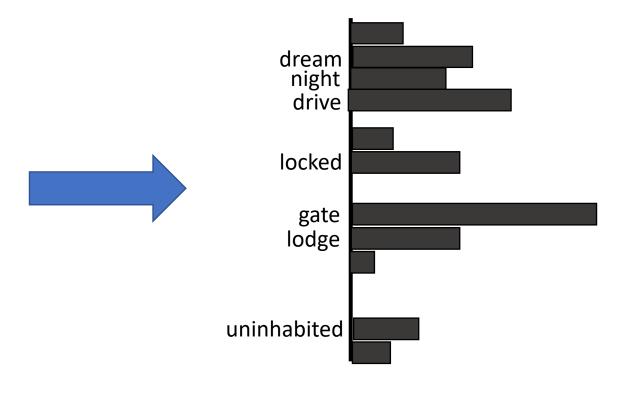


Important aspect of a class: presence / absence of parts?

Bags of words

Last night I dreamt I went to Manderley again.

It seemed to me I stood by the iron gate
leading to the drive, and for a while I could not
enter, for the way was barred to me. There
was a padlock and a chain upon the gate. I
called in my dream to the lodge-keeper, and
had no answer, and peering closer through the
rusted spokes of the gate I saw that the lodge
was uninhabited....



Bags of visual words

What should be visual words?

A visual word is a cluster of image patches that mean the same thing

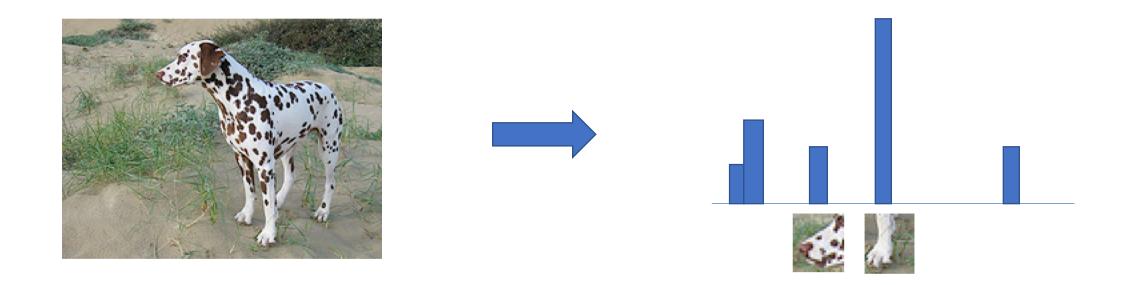
- Object parts
- Texture patterns
- Idea: collect patches from many different images
- Cluster using k-means cluster centers are words

Detecting visual words

Nearest neighbor

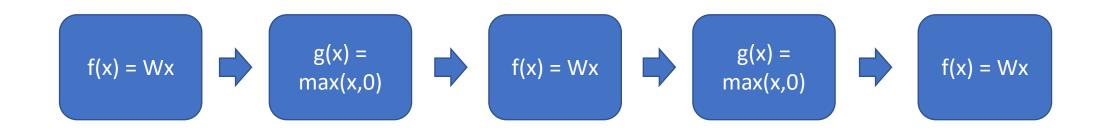
Encoding images as bag of words

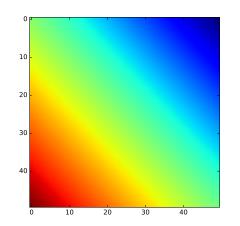
- Densely extract image patches from image
- Assign each patch to a visual word
- Compute histogram of occurrence

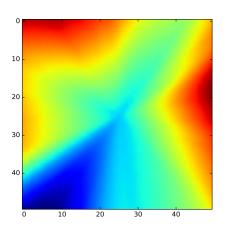


Multilayer perceptrons

Key idea: build complex functions by composing simple functions



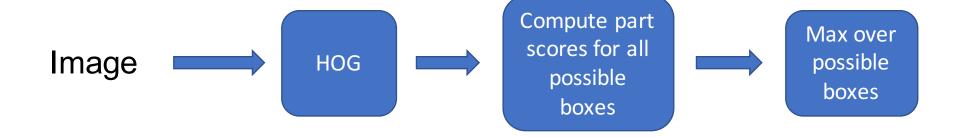




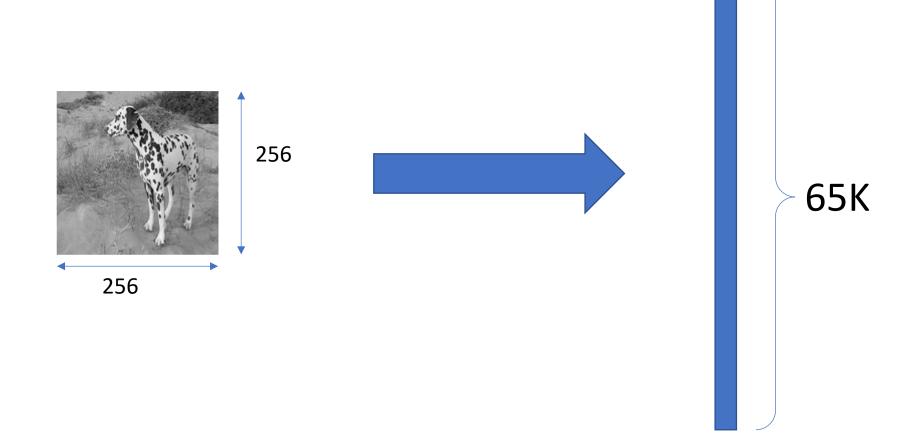
Multilayer perceptrons

- Key idea: build complex functions by composing simple functions
- Caveat: simple functions must include non-linearities
- W(U(Vx)) = (WUV)x

Multilayer perceptrons



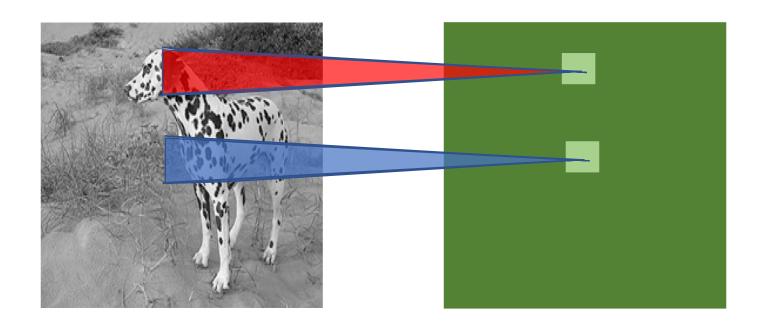
Reducing capacity



Reducing capacity

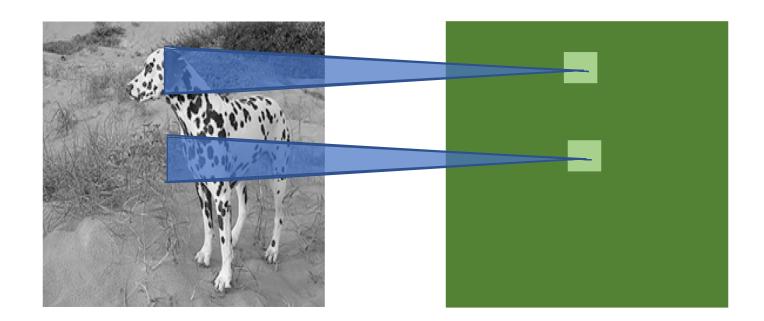
Idea 1: local connectivity

• Pixels only related to nearby pixels



Idea 2: Translation invariance

• Pixels only related to nearby pixels

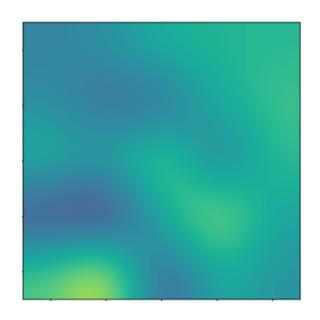


Local connectivity + translation invariance = convolution

5.4	0.1	3.6
1.8	2.3	4.5
1.1	3.4	7.2

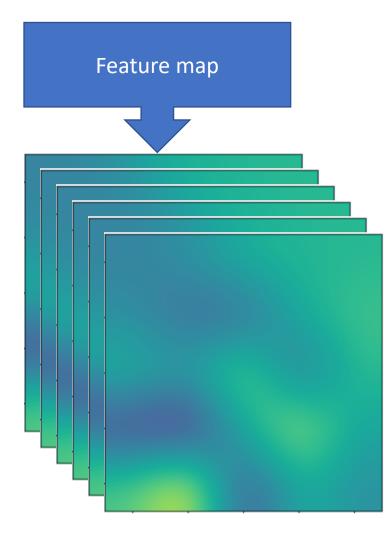
Local connectivity + translation invariance = convolution

5.4	0.1	3.6
1.8	2.3	4.5
1.1	3.4	7.2

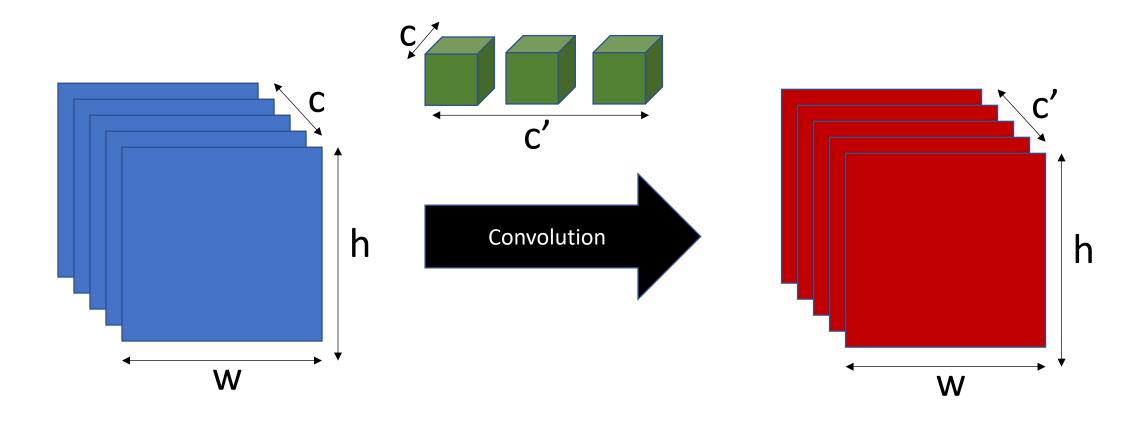


Local connectivity + translation invariance = convolution

5.4	0.1	3.6
1.8	2.3	4.5
1.1	3.4	7.2

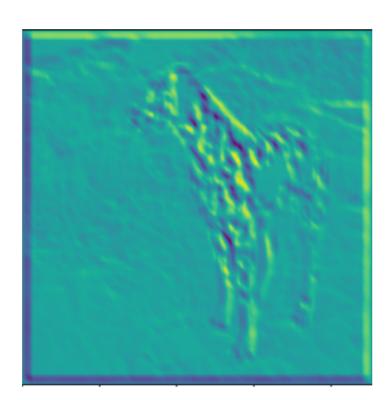


Convolution as a primitive

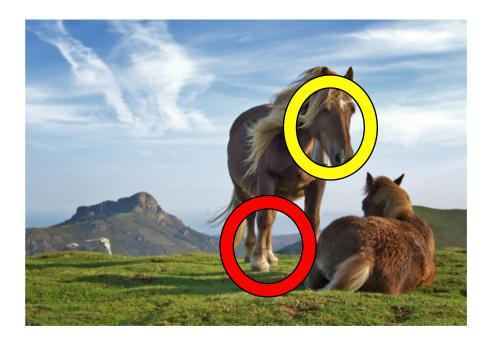


Convolution as a feature detector

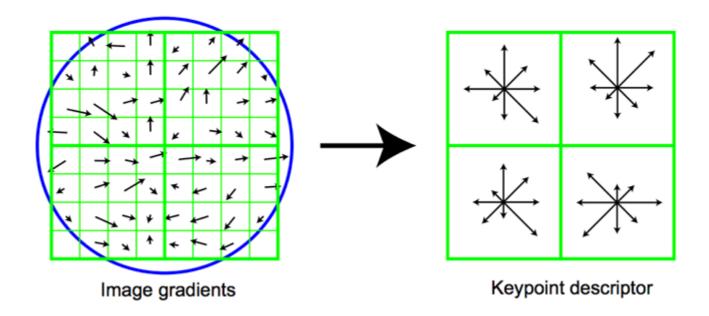
- score at (x,y) = dot product (filter, image patch at (x,y))
- Response represents similarity between filter and image patch



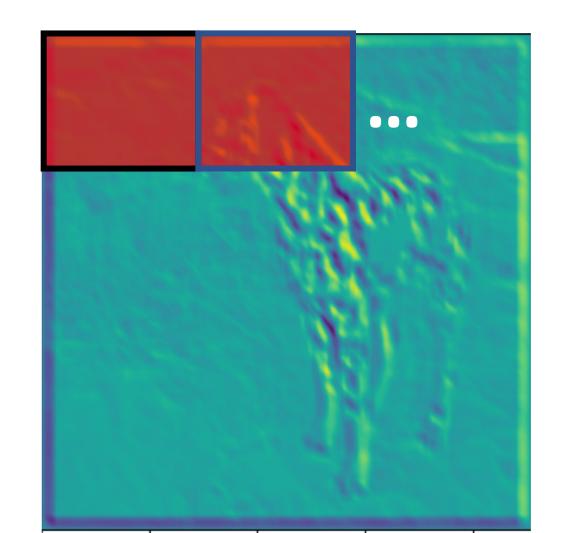
Invariance to distortions



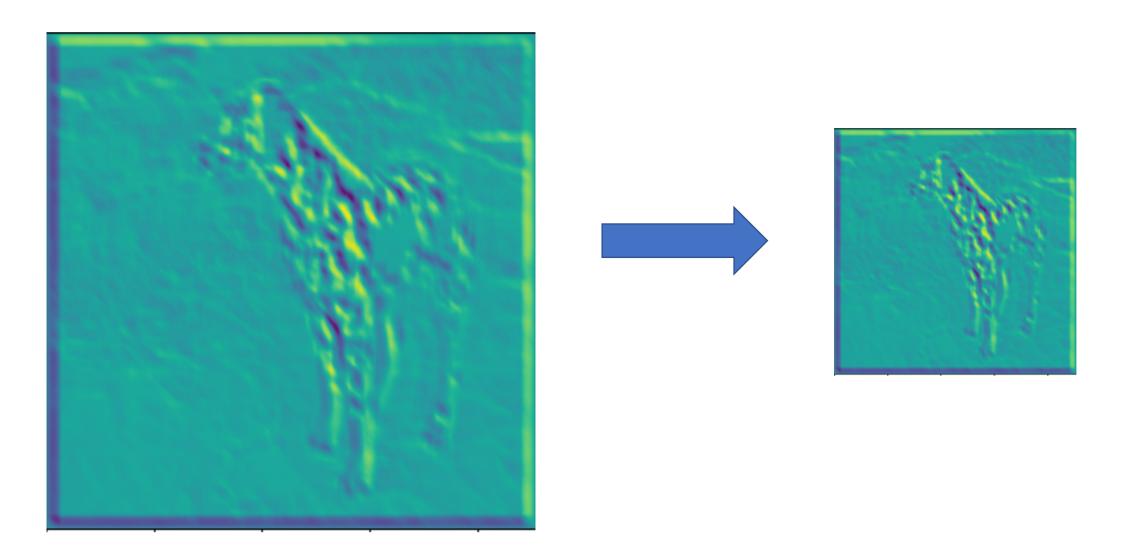
Invariance to distortions



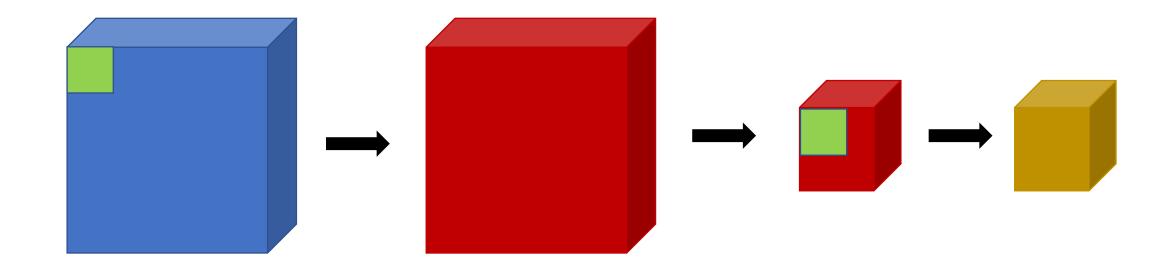
Invariance to distortions: Pooling



Invariance to distortions: Subsampling



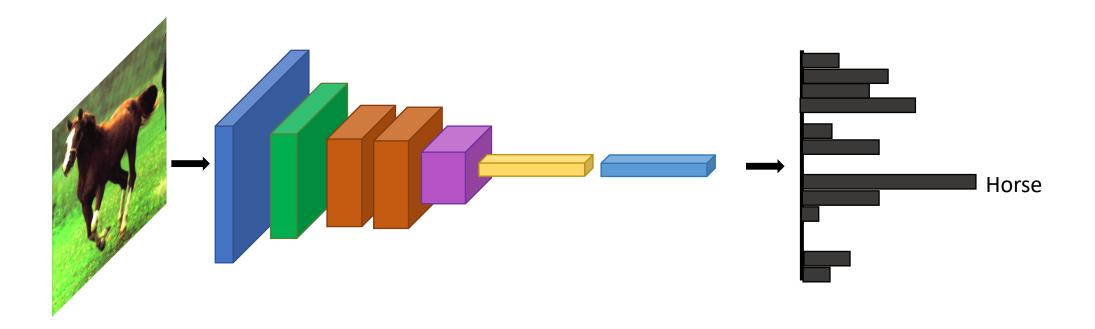
Convolution subsampling convolution



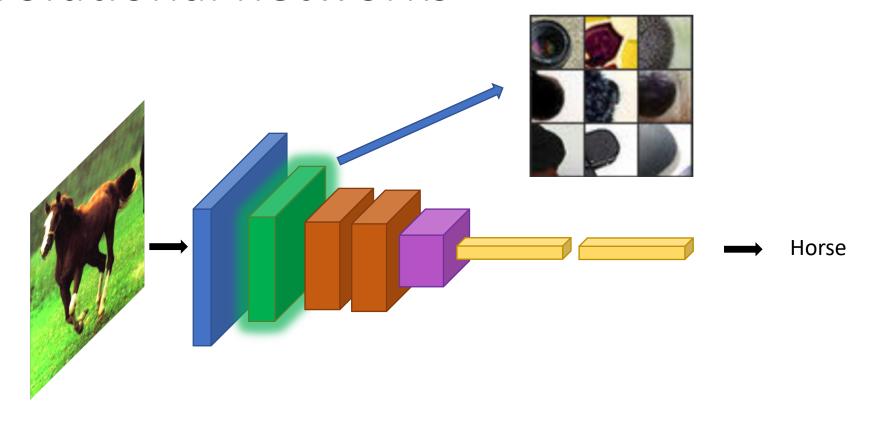
Convolution subsampling convolution

- Convolution in earlier steps detects more local patterns less resilient to distortion
- Convolution in later steps detects more global patterns more resilient to distortion
- Subsampling allows capture of larger, more invariant patterns

Convolutional networks



Convolutional networks



Convolutional networks

