Optical flow for moving scenes

Optical flow for moving scenes

Optical flow constraint equation

- Image intensity continuous function of x, y, t
- In time dt, pixel (x,y,t) moves to (x + u dt, y + v dt, t + dt)

$$\min_{u,v} (I(x + u\Delta t, y + v\Delta t, t + \Delta t) - I(x, y, t))^{2}$$

$$\equiv \min_{u,v} (I(x, y, t) + I_{x}u\Delta t + I_{y}v\Delta t + I_{t}\Delta t - I(x, y, t))^{2}$$

$$\equiv \min_{u,v} (I_{x}u\Delta t + I_{y}v\Delta t + I_{t}\Delta t)^{2}$$

$$I_{x}u + I_{y}v + I_{t} = 0$$

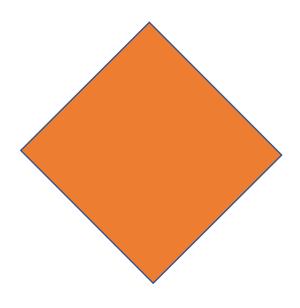
• Optical flow constraint equation: One equation, two variables

- Assume all pixels in patch have the same flow
- When will this produce a unique solution?

$$\begin{pmatrix} \nabla I(x_1, y_1)^T \\ \vdots \\ \nabla I(x_n, y_n)^T \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = - \begin{pmatrix} I_t(x_1, y_1) \\ \vdots \\ I_t(x_n, y_n) \end{pmatrix}$$

Aperture problem

Aperture problem



$$\begin{pmatrix} \nabla I(x_1, y_1)^T \\ \vdots \\ \nabla I(x_n, y_n)^T \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = - \begin{pmatrix} I_t(x_1, y_1) \\ \vdots \\ I_t(x_n, y_n) \end{pmatrix}$$

- Equation of the form Ax = b
- Solve using Normal equations: $x = (A^T A)^{-1} A^T b$
- Need A^TA to be invertible corners!

- What if we consider the whole image as one patch?
 - Constant optical flow for the entire image?
- Better: what if we consider flow as a parametric function of pixel location?
 - - More generally: $\begin{bmatrix} u \\ v \end{bmatrix} = f(\mathbf{x}, \theta)$
 - "Motion models"

$$\min_{\theta} \sum_{\mathbf{x}} (I(\mathbf{x} + f(\mathbf{x}, \theta)dt, t + dt) - I(\mathbf{x}, t))^{2}$$

- Solve by iterating on heta
- Newton iteration
- Can we remove the parametric assumption?

Horn-Schunk

$$E(\mathbf{u}, \mathbf{v}) = E_{data}(\mathbf{u}, \mathbf{v}) + E_{smoothness}(\mathbf{u}, \mathbf{v})$$

$$E(\mathbf{u},\mathbf{v}) = \int \int (I(x+u(x,y)\Delta t,y+v(x,y)\Delta t,t+\Delta t)-I(x,y,t))^2 + \alpha(\|\nabla u\|^2 + \|\nabla v\|^2) dx dy$$
 Smoothness

Horn-Schunk

$$E(\mathbf{u}, \mathbf{v}) = E_{data}(\mathbf{u}, \mathbf{v}) + E_{smoothness}(\mathbf{u}, \mathbf{v})$$

$$E(\mathbf{u}, \mathbf{v}) = \int \int (I_x u + I_y v + I_t)^2 + \alpha(\|\nabla u\|^2 + \|\nabla v\|^2) dx dy$$

Variational minimization

- u and v are functions
- Euler-lagrange equations
 - Similar to "gradient=0"

$$\min_{q} \int L(t, q(t), \dot{q}(dt)) dt$$

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0$$

Variational minimization

$$\min_{q} \int L(t, q(t), \dot{q}(dt)) dt$$

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0$$

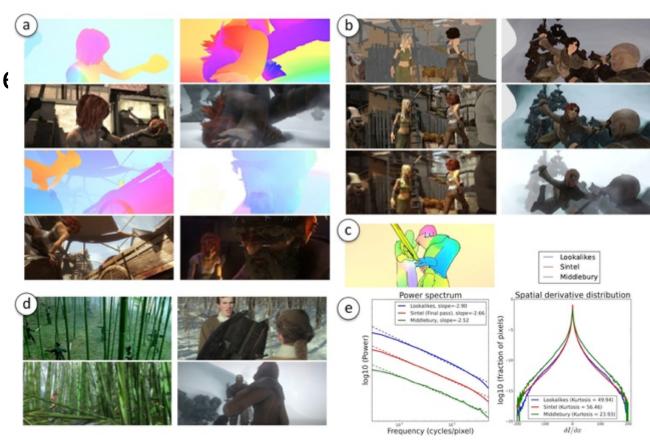
$$\min_{u,v} \int \int f(x,y,u,v,u_x,u_y,v_x,v_y) dx dy$$

$$\frac{\partial f}{\partial u} - \frac{d}{dx} \frac{\partial f}{\partial u_x} - \frac{d}{dy} \frac{\partial f}{\partial u_y} = 0$$

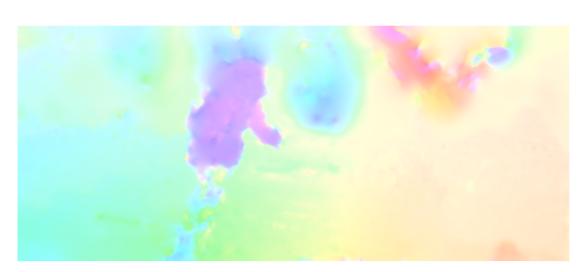
$$\frac{\partial f}{\partial v} - \frac{d}{dx} \frac{\partial f}{\partial v_x} - \frac{d}{dy} \frac{\partial f}{\partial v_y} = 0$$

MPI-Sintel

- Open-source animated movie "Sintel"
- "Naturalistic" video
- Ground truth optical flow
- Large motions
- Complex scenes

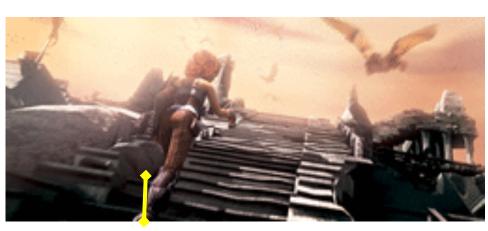


MPI-Sintel results



Optical flow with large displacements

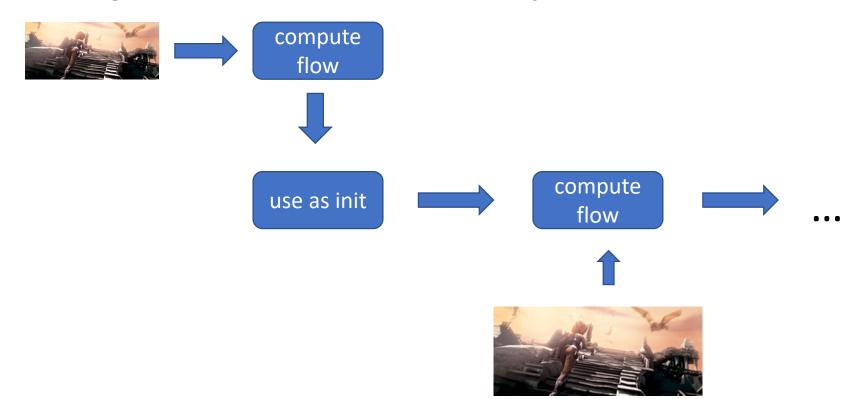
- Optical flow constraint equation assumes differential optical flow
- "Large displacement"?
- Key idea: reducing resolution reduces displacement
- Reduce resolution, then upsample?
 - will lose fine details



24

Optical flow with large displacements

- Key idea 2: Use upsampled flow as initialization
- Changes to initialization will be infinitesimal

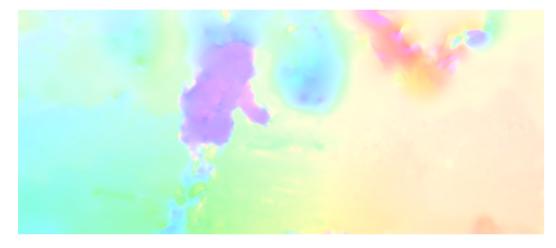


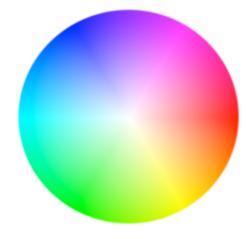
Brox, Thomas, et al. "High accuracy optical flow estimation based on a theory for warping." Computer Vision-ECCV 2004 (2004)

Optical flow for large displacements

- Horn-schunk variants match using color Bad!
- Use descriptor matching (e.g. SIFT) on sparse points
- Use smoothness to propagate

Large displacement optical flow (LDOF)

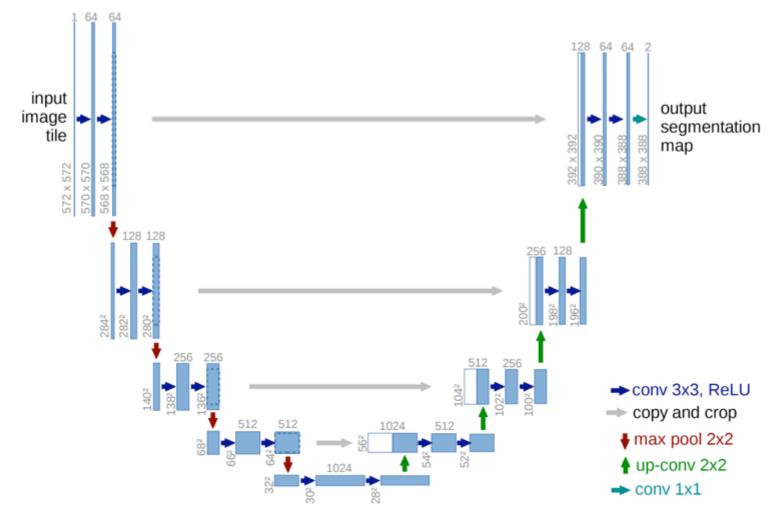




Coarse-to-fine processing

- A specific instance of a general idea
- Coarse scales:
 - Global / large structures
 - Long-range relationships
 - But: imprecise localization
- Fine scales:
 - Precise localization
 - But: aperture problem
- Idea: start from coarse scales, add fine scale detail

Coarse-to-fine processing



U-Net: Convolutional Networks for Biomedical Image Segmentation. Olaf Ronneberger, Philipp Fischer, and Thomas Brox. In *MICCAI*, 2015.

Intro to ML

- Given an image, produce a label
- Label can be:
 - 0/1 or yes/no: Binary classification
 - one-of-k: Multiclass classification
 - 0/1 for each of k concepts: Multilabel classification

Is this a dog? Yes

Which of these is it: dog, cat or zebra?

Dog

Is this a dog? Yes
Is this furry? Yes
Is this sitting down? Yes

MNIST

- 2D
- 10 classes
- 6000 examples per class

Caltech 101

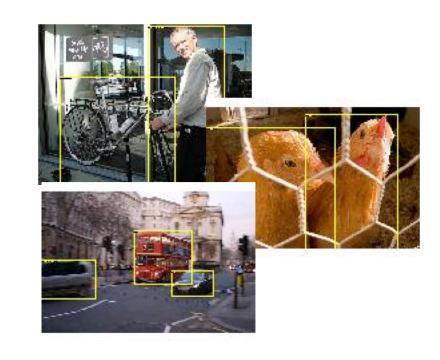
- 101 classes
- 10 classes
- 30 examples per class
- Strong category-specific biases
- Clean images

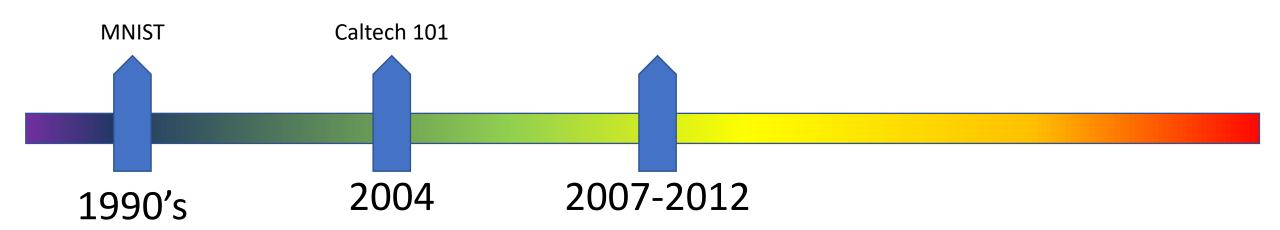
1990's

2004

PASCAL VOC

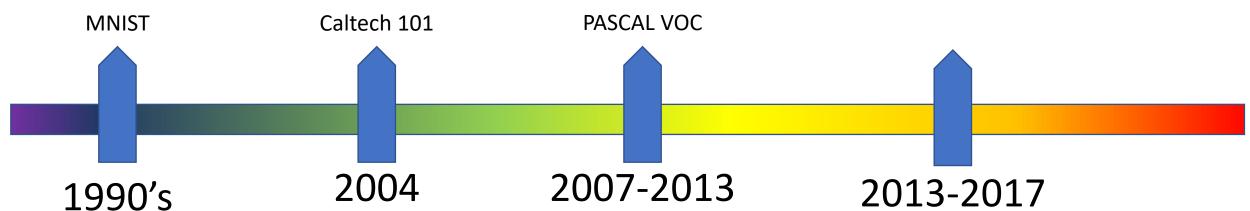
- 20 classes
- ~500 examples per class
- Clutter, occlusion, natural scenes





ImageNet

- 1000 classes
- ~1000 examples per class
- Mix of cluttered and clean images



Lighting variation

Scale variation

Clutter and occlusion

Intrinsic intra-class variation

Inter-class similarity

Discussion

Learning

• Key idea: teach computer visual concepts by providing examples

 \mathcal{X} :Images

 \mathcal{Y} :Labels

 \mathcal{D} :Distribution over $\mathcal{X} \times \mathcal{Y}$

•
$$S = \{(x_i, y_i) \sim \mathcal{D}, i = 1, \dots, n\}$$

Example

- Binary classifier "Dog" or "not Dog"
- Labels: {0, 1}
- Training set

Choosing a model class

- Will try and find P(y = 1 | x)
- P(y=0 | x) = 1 P(y=1 | x)
- Need to find $\,h:\mathcal{X}
 ightarrow [0,1]\,$
- But: enormous number of possible mappings

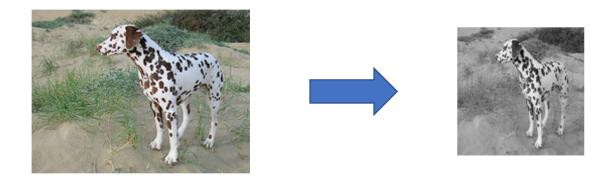
Choosing a model class

$$h: \mathcal{X} \to [0,1]$$

- Assume h is a linear classifier in feature space
- Feature space?
- Linear classifier?

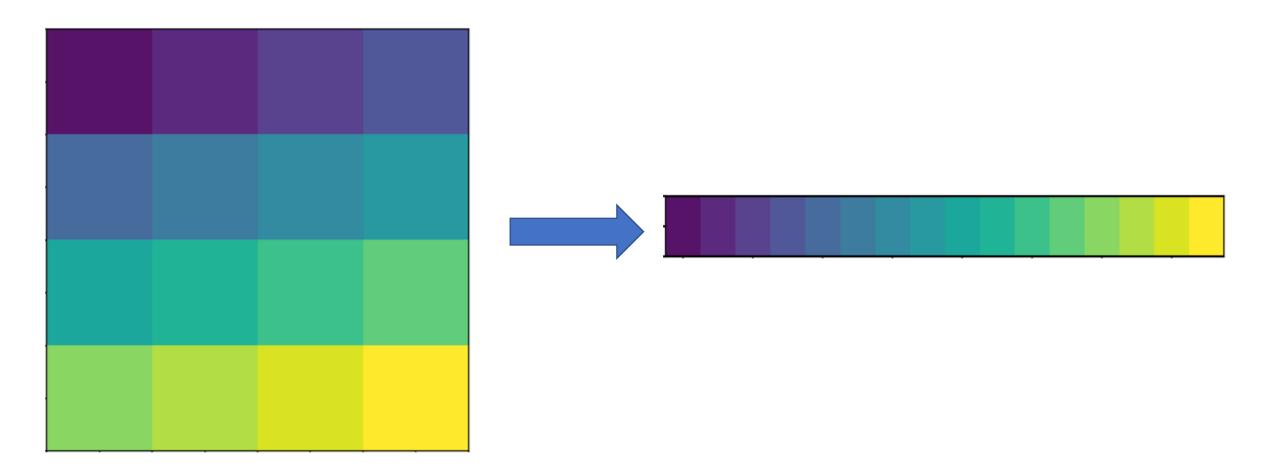
Feature space: representing images as vectors

ullet Find a way to project images onto \mathbb{R}^d



Feature space: representing images as vectors

ullet Find a way to project images onto \mathbb{R}^d

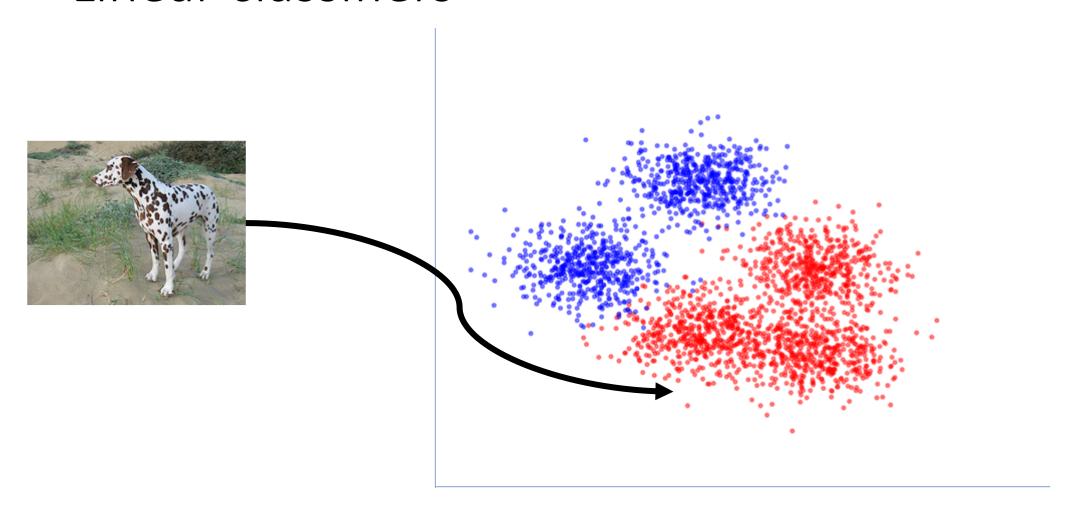


Feature space: representing images as vectors

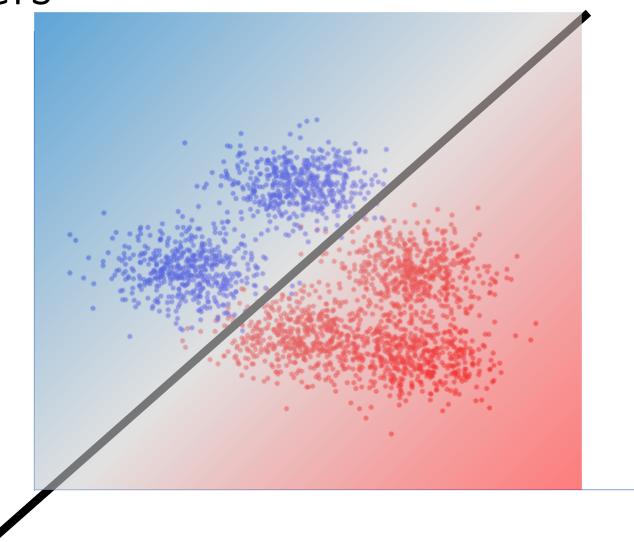
ullet Find a way to project images onto \mathbb{R}^d

$$\phi$$
 () =

Linear classifiers



Linear classifiers

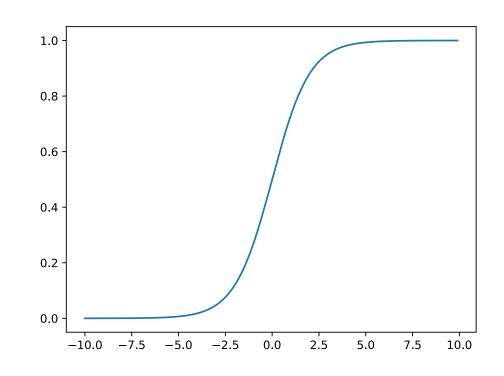


Linear classifiers in feature space

$$h_{\mathbf{w}}(x) = \sigma(\mathbf{w}^T \phi(x) + b)$$

$$\sigma(s) = \frac{1}{1 + e^{-s}}$$

$$h_{\mathbf{w}}(x) = \sigma(\mathbf{w}^T \phi(x))$$



Linear classifiers in feature space

$$h_{\mathbf{w}}(x) = \sigma(\mathbf{w}^T \phi(x))$$

- Family of functions
- Each function is called a hypothesis
- Family is called a *hypothesis class*
- Hypotheses indexed by w
- Need to find the best hypothesis = need to find best w

- Use training set to find best-fitting hypothesis
- Question: how do we define fit?
- Given (x,y), and candidate hypothesis h_w
 - h_w(x) is estimated probability label is 1
 - Idea: compute estimated probability for true label y
 - Want this probability to be high
 - Likelihood

$$li(h_{\mathbf{w}}(x), y) = \begin{cases} h_{\mathbf{w}}(x) & \text{if } y = 1\\ 1 - h_{\mathbf{w}}(x) & \text{ow} \end{cases}$$

$$li(h_{\mathbf{w}}(x), y) = \begin{cases} h_{\mathbf{w}}(x) & \text{if } y = 1\\ 1 - h_{\mathbf{w}}(x) & \text{ow} \end{cases}$$

$$li(h_{\mathbf{w}}(x), y) = h_{\mathbf{w}}(x)^{y} (1 - h_{\mathbf{w}}(x))^{1-y}$$

$$li(h_{\mathbf{w}}(x), y) = h_{\mathbf{w}}(x)^{y} (1 - h_{\mathbf{w}}(x))^{1-y}$$

- Likelihood of a single data point
- Fit = total likelihood of entire training dataset

$$S = \{(x_i, y_i) \sim \mathcal{D}, i = 1, \dots, n\}$$

$$\prod_{i=1}^{n} h_{\mathbf{w}}(x_i)_i^y (1 - h_{\mathbf{w}}(x_i))^{1-y_i}$$

Use log likelihood

$$\sum_{i=1}^{n} y_i \log h_{\mathbf{w}}(x_i) + (1 - y_i) \log(1 - h_{\mathbf{w}}(x_i))$$

Maximize log likelihood

$$\max_{\mathbf{w}} \sum_{i=1}^{\infty} y_i \log h_{\mathbf{w}}(x_i) + (1 - y_i) \log(1 - h_{\mathbf{w}}(x_i))$$

Maximizing log likelihood = Minimizing negative log likelihood

$$\max_{\mathbf{w}} \sum_{i=1}^{n} y_i \log h_{\mathbf{w}}(x_i) + (1 - y_i) \log(1 - h_{\mathbf{w}}(x_i))$$

$$\min_{\mathbf{w}} (-\sum_{i=1}^{n} y_i \log h_{\mathbf{w}}(x_i) + (1 - y_i) \log(1 - h_{\mathbf{w}}(x_i)))$$

Negative log likelihood is a loss function

$$L(h_{\mathbf{w}}(x), y) = (-y \log h_{\mathbf{w}}(x) + (1 - y) \log(1 - h_{\mathbf{w}}(x)))$$

$$\min_{\mathbf{w}} \sum_{i=1}^{n} L(h_{\mathbf{w}}(x_i), y_i)$$

Training = Optimization

- Need to minimize an objective
- Simple solution: gradient descent

$$\min_{\mathbf{w}} f(\mathbf{w})$$

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \alpha \nabla_{\mathbf{w}} f(\mathbf{w}^{(t)})$$

Stochastic gradient descent

$$f(\mathbf{w}) = \frac{1}{n} \sum_{i} L(h_{\mathbf{w}}(x_i), y_i)$$

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = \frac{1}{n} \sum_{i} \nabla_{\mathbf{w}} L(h_{\mathbf{w}}(x_i), y_i)$$

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = <\nabla_{\mathbf{w}} L(h_{\mathbf{w}}(x_i), y_i) >$$

$$g_i(\mathbf{w}) = L(h_{\mathbf{w}}(x_i), y_i)$$

Stochastic gradient descent

- Randomly sample small subset of examples
- Compute gradient on small subset
 - Unbiased estimate of true gradient
- Take step along estimated gradient

$$h_{\mathbf{w}}(x) = \sigma(\mathbf{w}^T \phi(x)) \qquad \qquad \sigma(s) = \frac{1}{1 + e^{-s}}$$

$$L(h_{\mathbf{w}}(x), y) = (-y \log h_{\mathbf{w}}(x) + (1 - y) \log(1 - h_{\mathbf{w}}(x)))$$

$$\min_{\mathbf{w}} \sum_{i=1}^{n} L(h_{\mathbf{w}}(x_i), y_i)$$

Logistic Regression!

General recipe

Fix hypothesis class

$$h_{\mathbf{w}}(x) = \sigma(\mathbf{w}^T \phi(x))$$

Define loss function

$$L(h_{\mathbf{w}}(x), y) = (-y \log h_{\mathbf{w}}(x) + (1 - y) \log(1 - h_{\mathbf{w}}(x)))$$

Minimize total loss on the training set

$$\min_{\mathbf{w}} \sum_{i=1}^{n} L(h_{\mathbf{w}}(x_i), y_i)$$

Why should this work?

Risk

- Given:
 - Distribution \mathcal{D}
 - A hypothesis $h \in H$
 - Loss function L
- We are interested in Expected Risk:

$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(h(x),y)$$

• Given training set S, and a particular hypothesis h, Empirical Risk:

$$\hat{R}(S,h) = \frac{1}{|S|} \sum_{(x,y) \in S} L(h(x),y)$$

Risk

$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(h(x),y)$$
 $\hat{R}(S,h) = \frac{1}{|S|}\sum_{(x,y)\in S}L(h(x),y)$

• By central limit theorem.

$$\mathbb{E}_{S \sim \mathcal{D}^n} \hat{R}(S, h) = R(h)$$

- Variance proportional to 1/n
- For randomly chosen h, empirical risk is an unbiased estimator of expected risk

Risk

- Empirical risk unbiased estimate of expected risk
- Want to minimize expected risk
- Idea: Minimize empirical risk instead
- This is the Empirical Risk Minimization Principle

$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(h(x),y) \qquad \hat{R}(S,h) = \frac{1}{|S|} \sum_{(x,y)\in S} L(h(x),y)$$

$$h^* = \arg\min_{h \in H} \hat{R}(S, h)$$

Generalization

$$R(h) = \mathbb{E}_{(x,y)\sim\mathcal{D}}L(h(x),y) \qquad \hat{R}(S,h) = \frac{1}{|S|} \sum_{(x,y)\in S} L(h(x),y)$$

$$R(h) = \hat{R}(S,h) + (R(h) - \hat{R}(S,h))$$
 Training Generalization error

Overfitting

- We are minimizing training error
- Empirical risk of chosen hypothesis *no longer* unbiased estimate:
 - We chose hypothesis based on S
 - Might have chosen h for which S is a special case
- Overfitting:
 - Minimize training error, but generalization error increases

Controlling generalization error

- Variance of empirical risk inversely proportional to size of S
 - Choose very large S!
- Larger the hypothesis class H, Higher the chance of hitting bad hypotheses with low training error and high generalization error
 - Choose small H!
- For many models, can bound generalization error using some property of parameters
 - Regularize during optimization!
 - Eg. L2 regularization

Controlling generalization error

- How do we know we are overfitting?
 - Use a held-out "validation set"
 - To be an unbiased sample, must be completely unseen

Putting it all together

- Want model with least expected risk = expected loss
- But expected risk hard to evaluate
- Empirical Risk Minimization: minimize empirical risk in training set
- Might end up picking special case: overfitting
- Avoid overfitting by:
 - Constructing large training sets
 - Reducing size of model class
 - Regularization

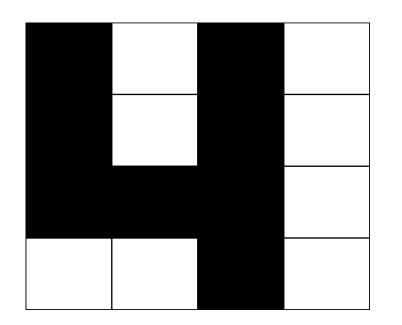
Putting it all together

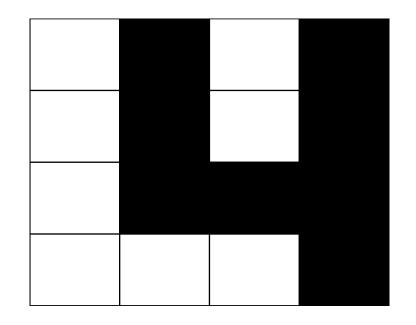
- Collect training set and validation set
- Pick hypothesis class
- Pick loss function
- Minimize empirical risk (+ regularization)
- Measure performance on held-out validation set
- Profit!

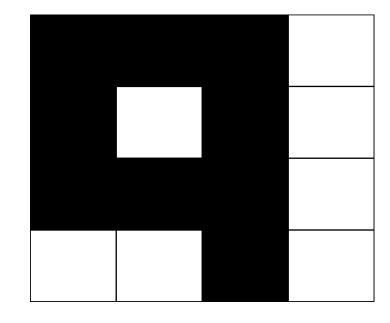
Loss functions and hypothesis classes

Loss function	Problem	Range of h	\mathcal{Y}	Formula
Log loss	Binary Classification	\mathbb{R}	$\{0, 1\}$	$\log(1 + e^{-yh(x)})$
Negative log likelihood	Multiclass classification	$[0, 1]^k$	$\{1,\ldots,k\}$	$-\log h_y(x)$
Hinge loss	Binary Classification	\mathbb{R}	$\{0, 1\}$	$\max(0, 1 - yh(x))$
MSE	Regression	\mathbb{R}	\mathbb{R}	$(y-h(x))^2$

Linear classifiers on pixels are bad







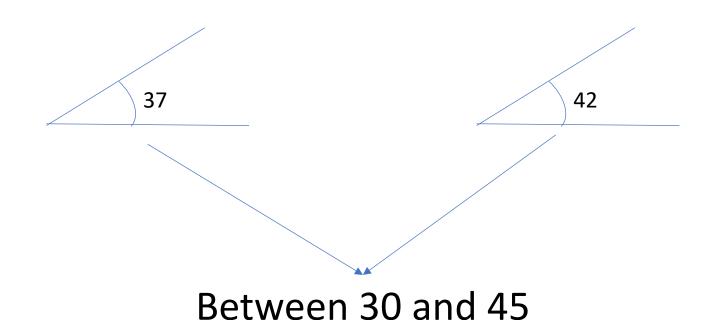
- Better feature vectors
- Non-linear classifiers

Recognition before convnets

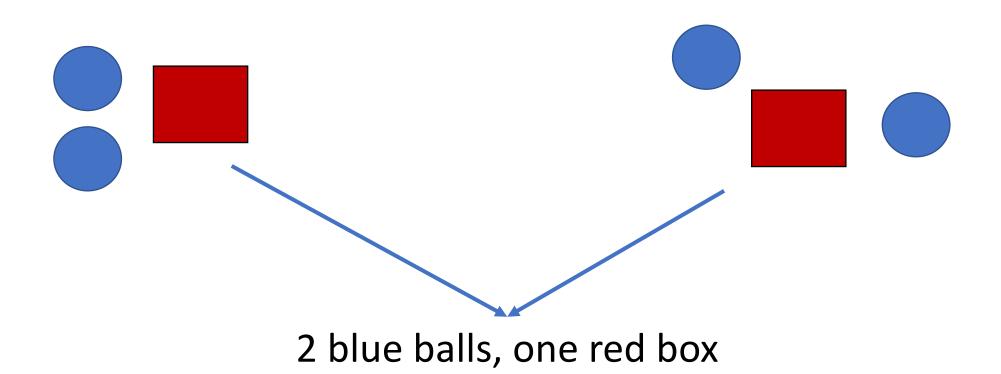
Better feature vectors

- Need to be invariant to:
 - Small deformations
 - Small orientation changes
 - Color / lightness variation

Rotational invariance by quantization

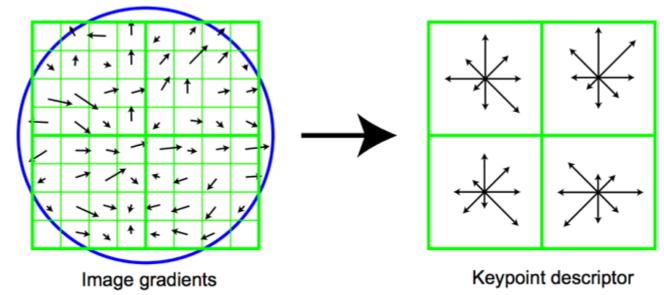


Spatial invariance by histogramming



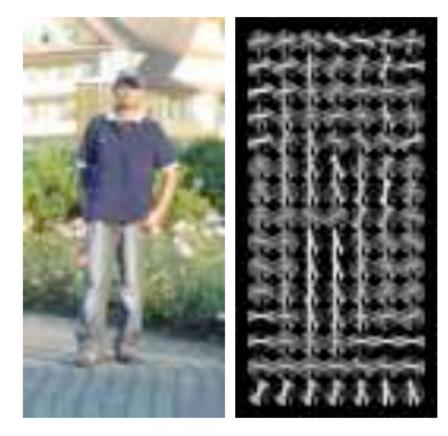
The SIFT descriptor

- Compute edge magnitudes + orientations
- Quantize orientations (rotational invariance)
- Divide into spatial cells
- Compute orientation histogram in each cell (spatial invariance)



Distinctive Image Features from Scale-Invariant Keypoints. Lowe. In IJCV 2004

Same but different: HOG



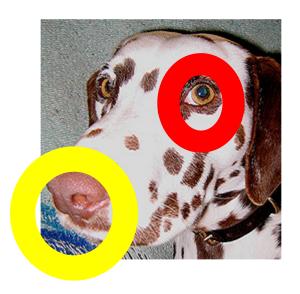
Histogram of oriented gradients

Invariance to large deformations

Invariance to large deformations

Issue: object / object part may occur at any image location



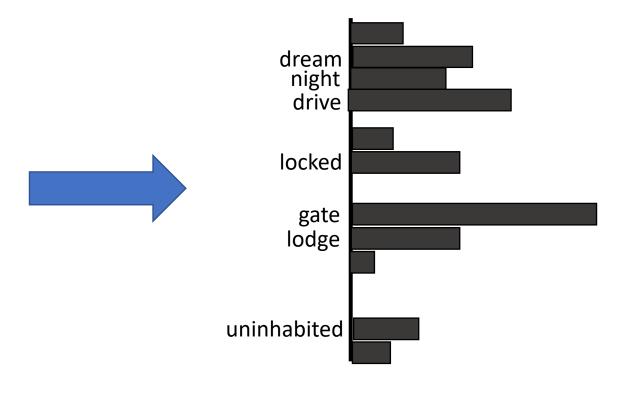


• Idea: want to represent the image as a "bag of object parts"

Bags of words

Last night I dreamt I went to Manderley again.

It seemed to me I stood by the iron gate
leading to the drive, and for a while I could not
enter, for the way was barred to me. There
was a padlock and a chain upon the gate. I
called in my dream to the lodge-keeper, and
had no answer, and peering closer through the
rusted spokes of the gate I saw that the lodge
was uninhabited....



Bags of visual words

What should be visual words?

A visual word is a cluster of image patches that mean the same thing

- Object parts
- Texture patterns
- Idea: collect patches from many different images
- Cluster using k-means

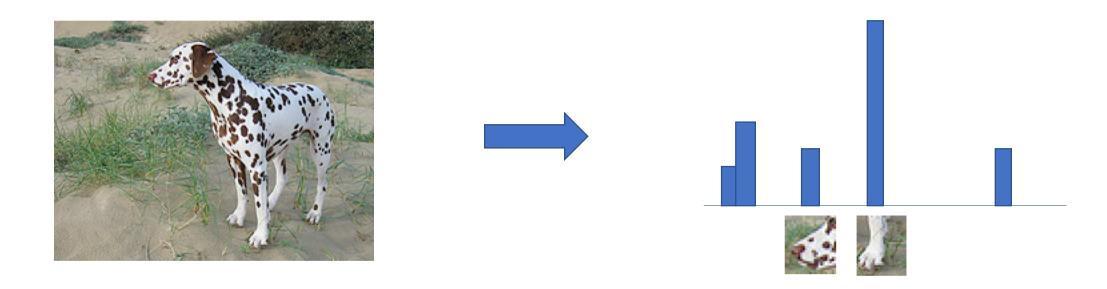
What should be visual words?

Cluster in what space?

- Need invariance to color, small deformations, orientation changes
- Cluster in SIFT space!
- Each cluster = visual word

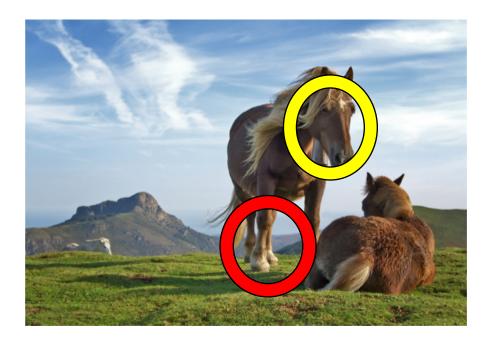
Encoding images as bag of words

- Densely extract image patches from image
- Compute SIFT vector for each patch
- Assign each patch to a visual word
- Compute histogram of occurrence

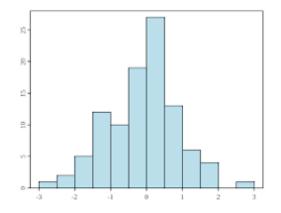


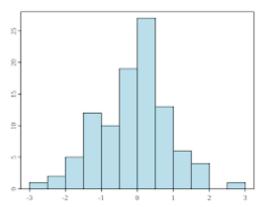
Too much invariance?

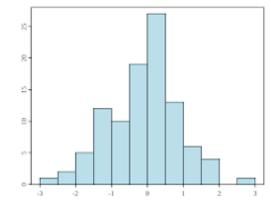
• Object parts appear in somewhat fixed relationships

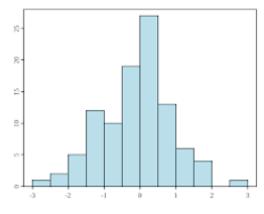


Idea: Spatial pyramids









Discussion