Image resizing

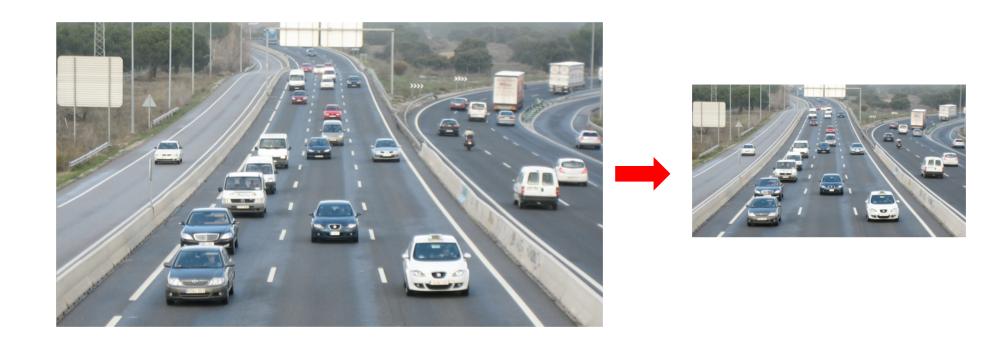
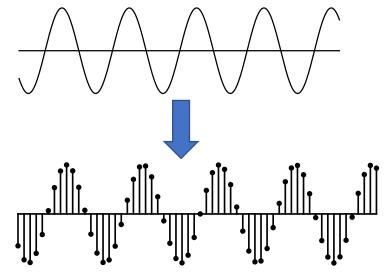


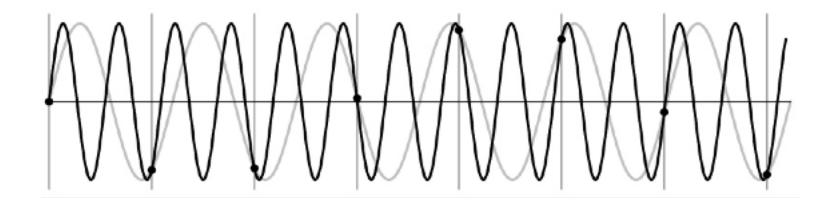
Image resizing

What is a (digital) image?

- True image is a function from R² to R
- Digital image is a sample from it
- 1D example:



Undersampling

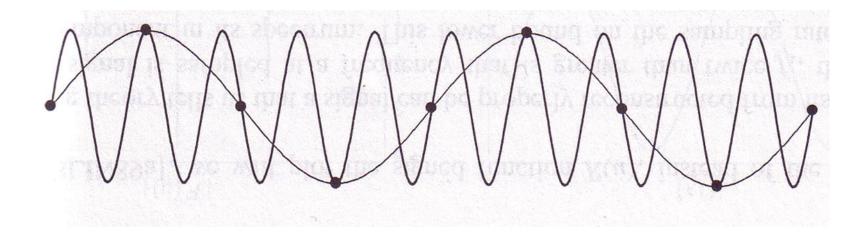


Undersampling

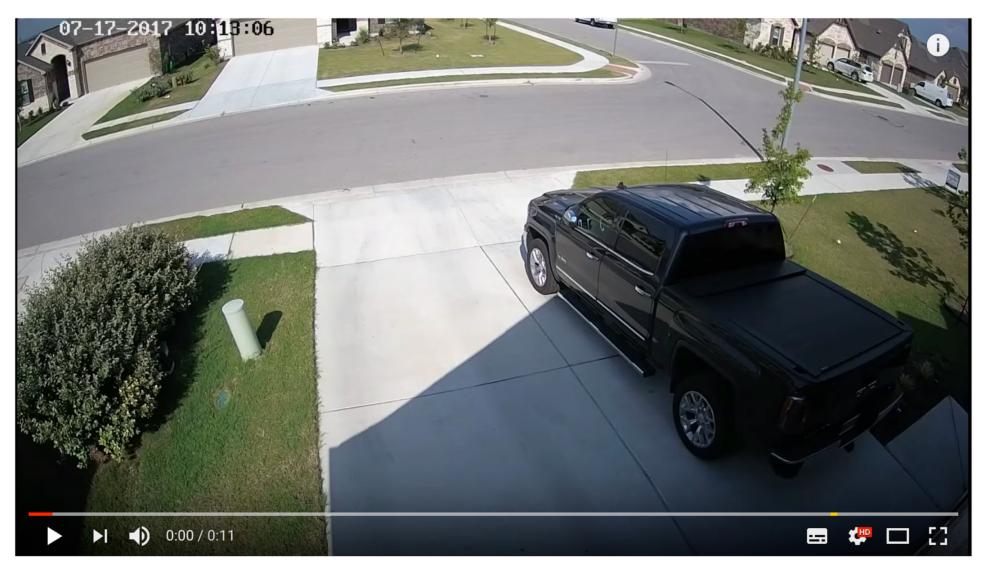
- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - also was always indistinguishable from higher frequencies
 - aliasing: signals "traveling in disguise" as other frequencies

Aliasing

 When sampling is not adequate, impossible to distinguish between low and high frequency signal



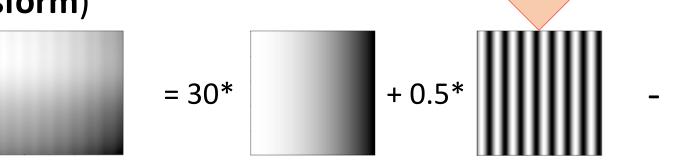
Aliasing in time



Beyond sines and cosines

• Images are not sines and cosines

But they can be written as a sum
 Transform)

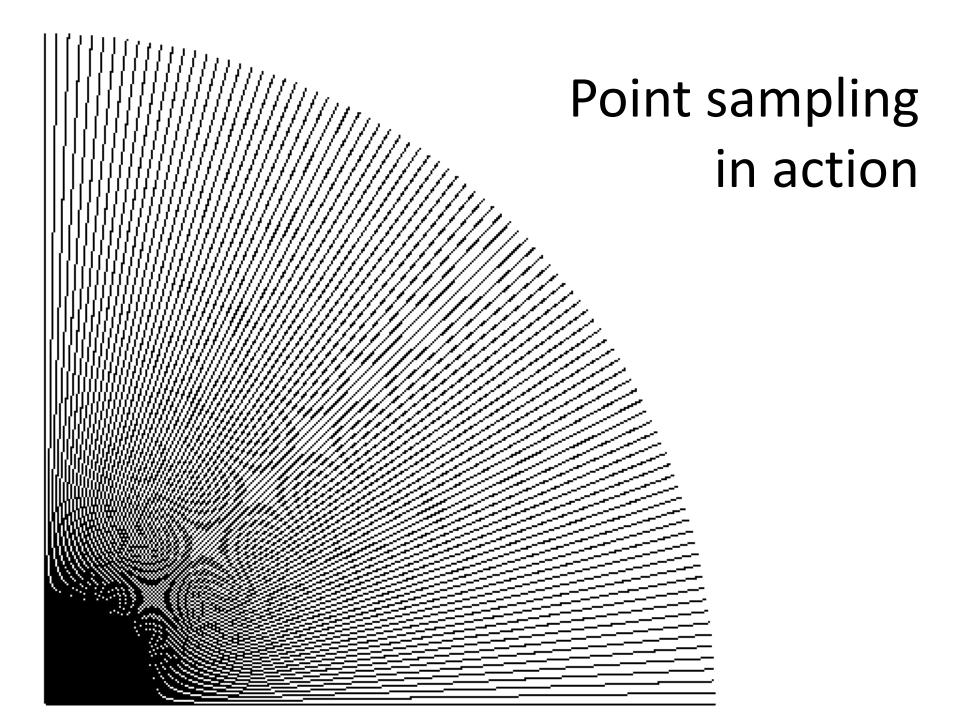


High frequency

components

sines (Fourier





Aliasing

- High frequency components when downsampled *masquerade* as low frequency components
- Key step: remove high frequency components. But how?

Smoothing and image frequencies

- Smoothing makes a pixel more like its neighbors
- Image intensities change more slowly with x and y in smoothed image
- **>** Smoothing *removes high frequencies*

Subsampling images

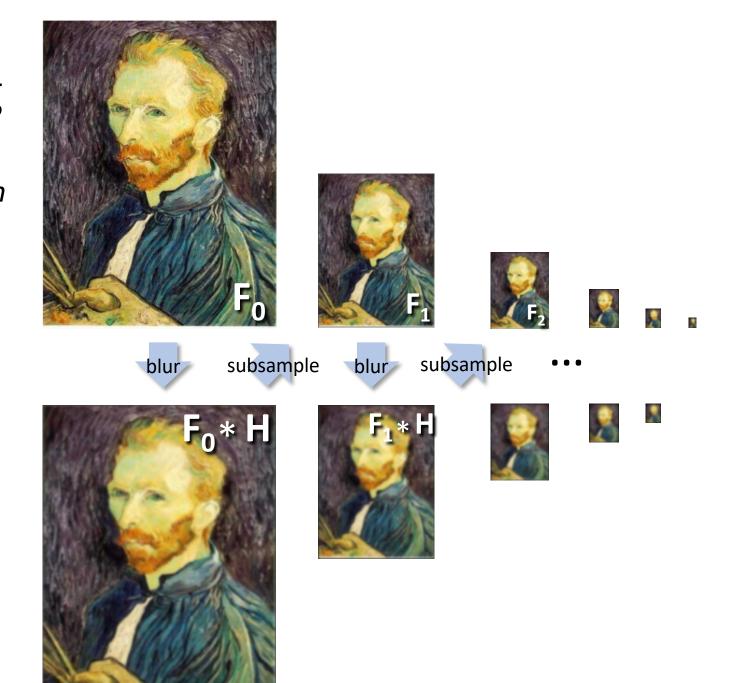
- Step 1: Convolve with Gaussian to eliminate high frequencies
- Step 2: Drop unneeded pixels

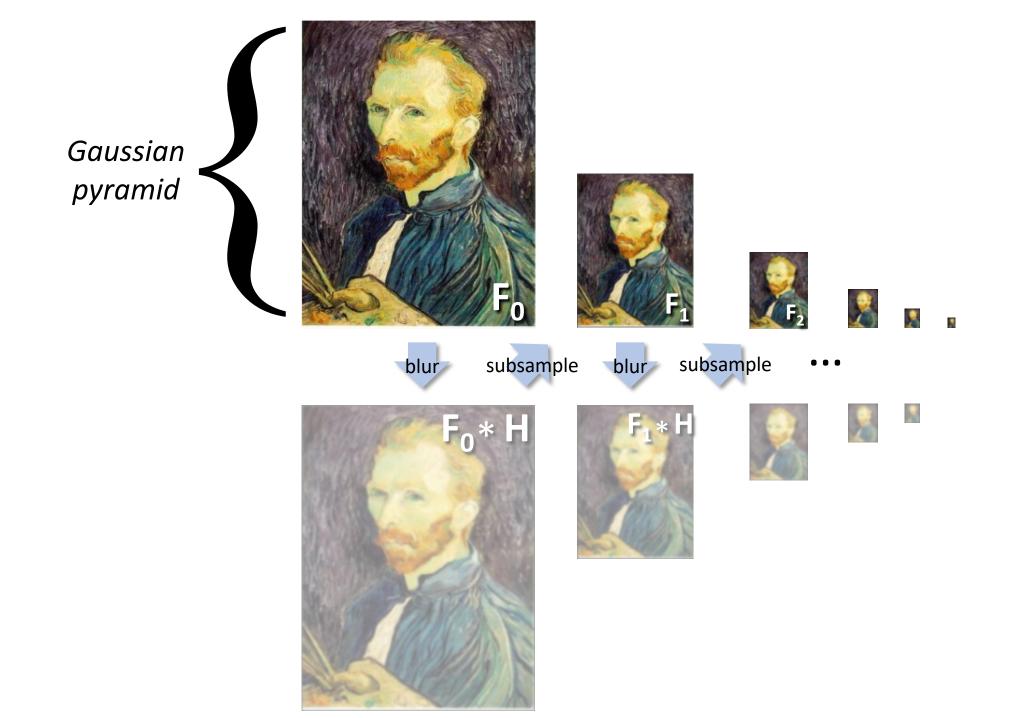
Subsampling without removing high frequencies

Subsampling after removing high frequencies

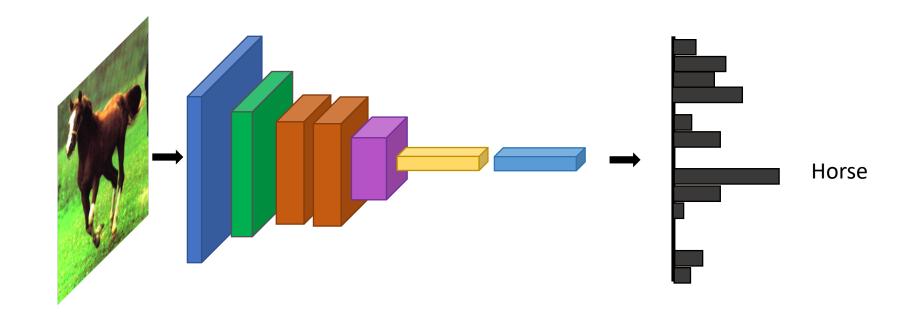
Gaussian pre-filtering

• Solution: filter the image, then subsample





Convolution and subsampling is familiar...

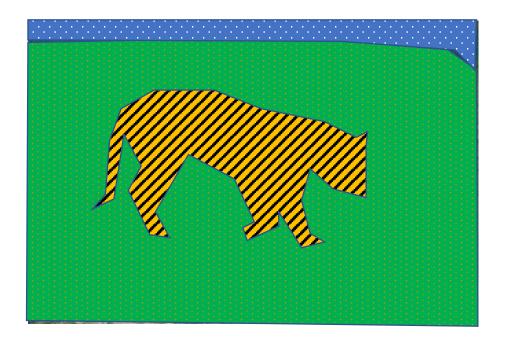


Key take-away

- A versatile tool : convolution
 - Any linear shift-invariant operation is a convolution
 - In particular edge detection, image smoothing
- A versatile structure : pyramids
 - Early layers capture low-level detail, higher layers capture global structure.

Grouping

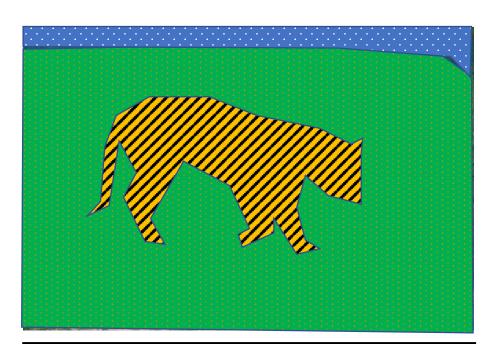
What is grouping?

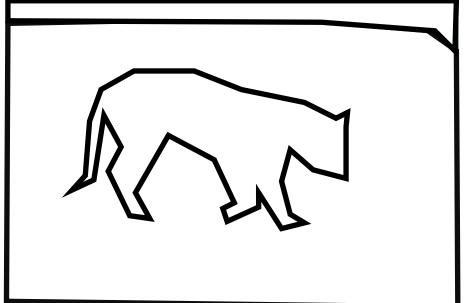


Why grouping?

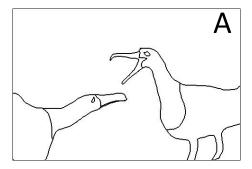
- Pixels property of sensor, not world
- Reasoning at object level (might) make things easy:
 - objects at consistent depth
 - objects can be recognized
 - objects move as one

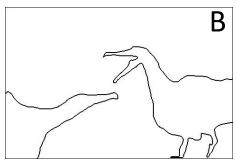
Regions ← → Boundaries

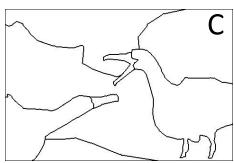




Is grouping well-defined?

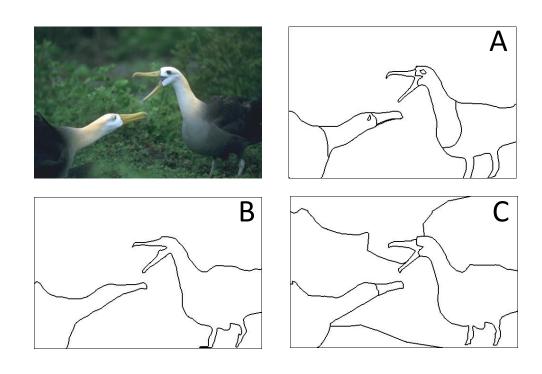


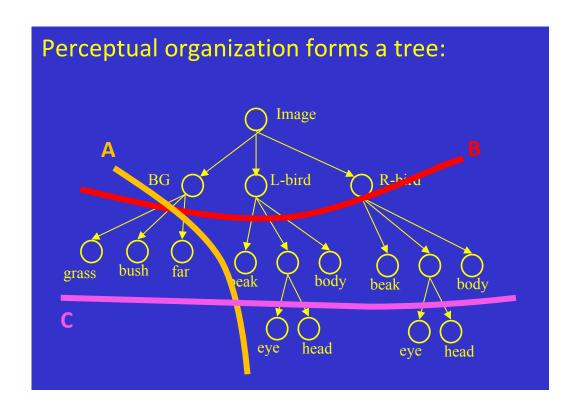




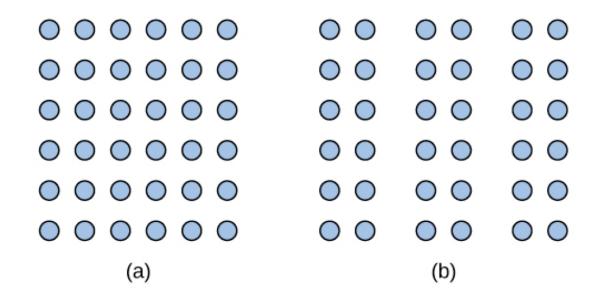
- Depends on purpose
 - Object parts
 - Background segmentation

Is grouping well-defined?

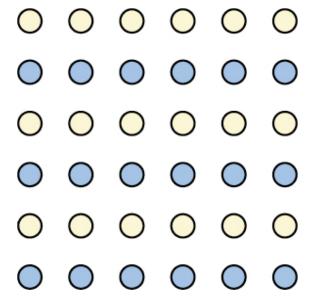




- Gestalt principles
- Principle of proximity



- Gestalt principles
- Principle of *similarity*



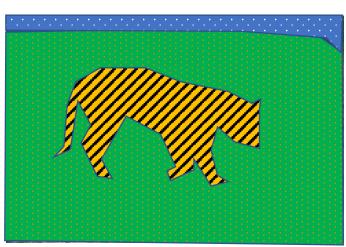
- Gestalt principles
- Principle of *continuity* and *closure*

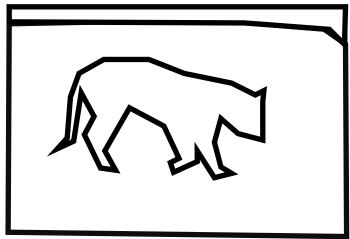
- Gestalt principles
- Principle of *common fate*

Gestalt principles in the context of images

- Principle of proximity: nearby pixels are part of the same object
- Principle of similarity: similar pixels are part of the same object
 - Look for differences in color, intensity, or texture across the boundary
- Principle of closure and continuity: contours are likely to continue
- High-level knowledge?

Regions ←→ Boundaries





Discussion: Contour Detection and Hierarchical Image Segmentation

Image gradient

• The gradient of an image: $\nabla f = \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right|$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The *edge strength* is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

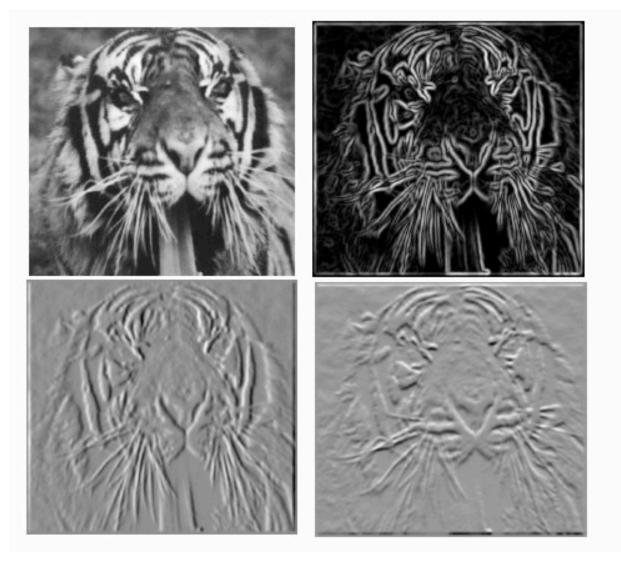
The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?

Source: Steve Seitz

Image gradient



Source: L. Lazebnik

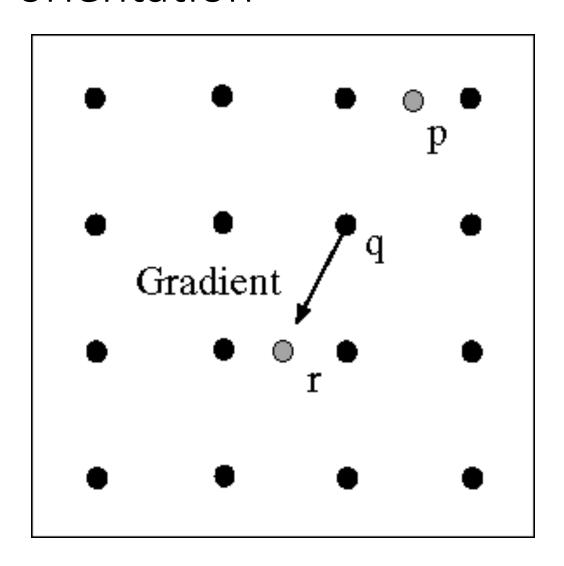
Gradient magnitude and orientation

Orientation is undefined at pixels with 0 gradient

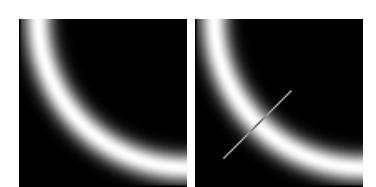
Magnitude

Orientation theta = numpy.arctan2(gy, gx)

Non-maximum suppression for each orientation

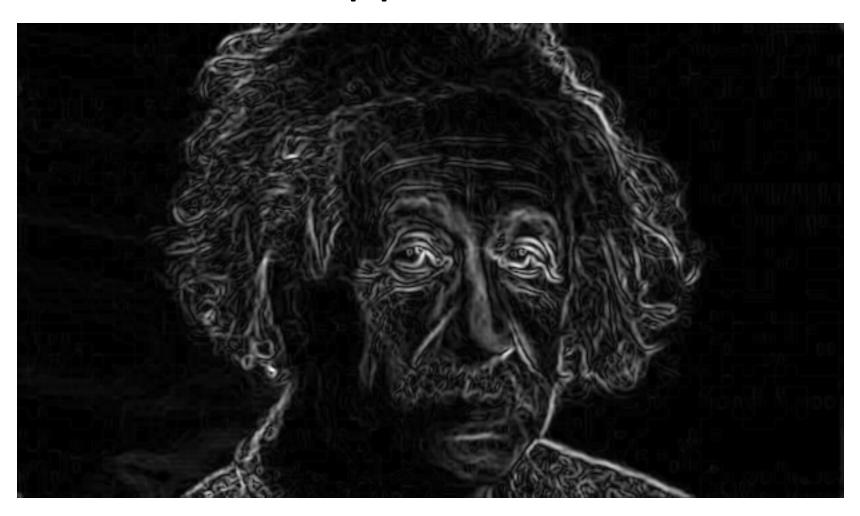


At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.



Source: D. Forsyth

Before Non-max Suppression



After Non-max Suppression

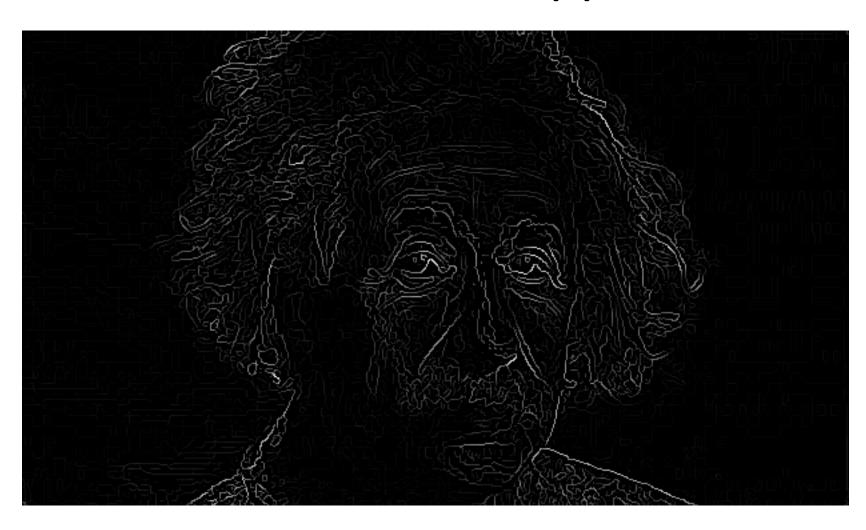


Image gradients are not enough

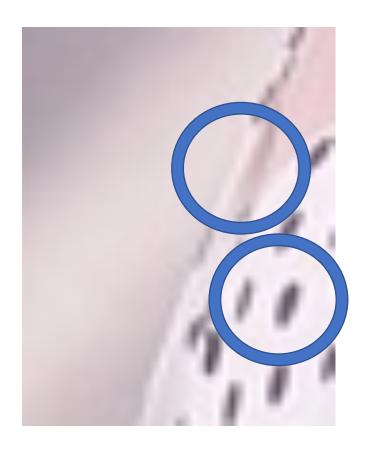
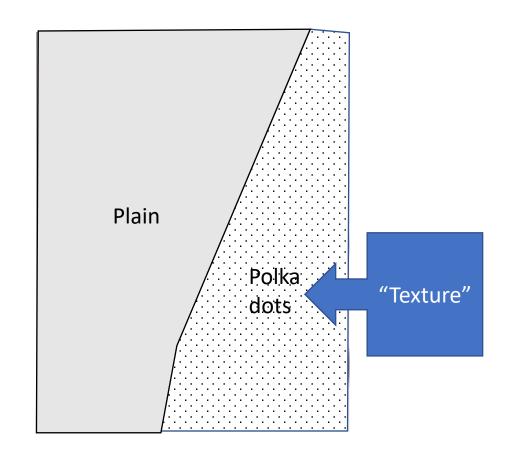
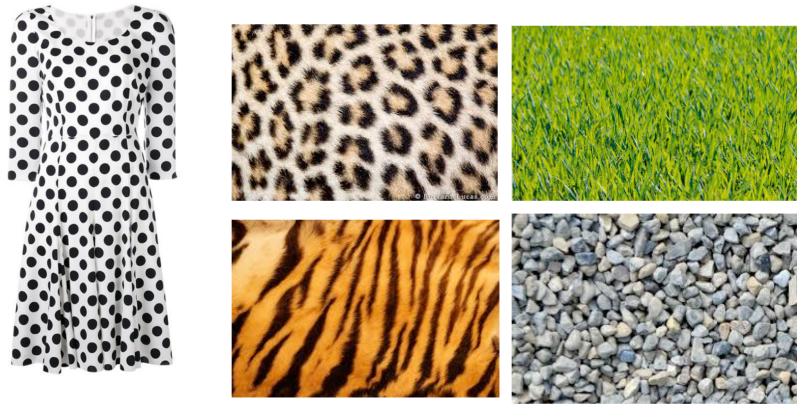
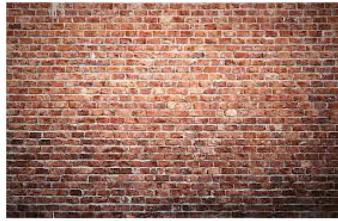


Image gradients are not enough



What is texture?



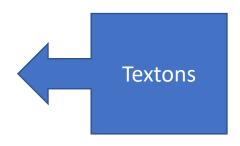


Same thing repeated over and over

What is texture?

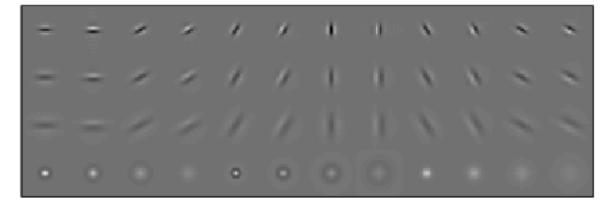
Julesz's texton theory

- What is texture?
- Distributions of some elements
 - Elongated blobs of specific orientations, widths, lengths
 - Terminators (ends of line segments)
 - Crossings of line segments



- Define a "vocabulary" of textons
- Describe texture by a distribution of different textons

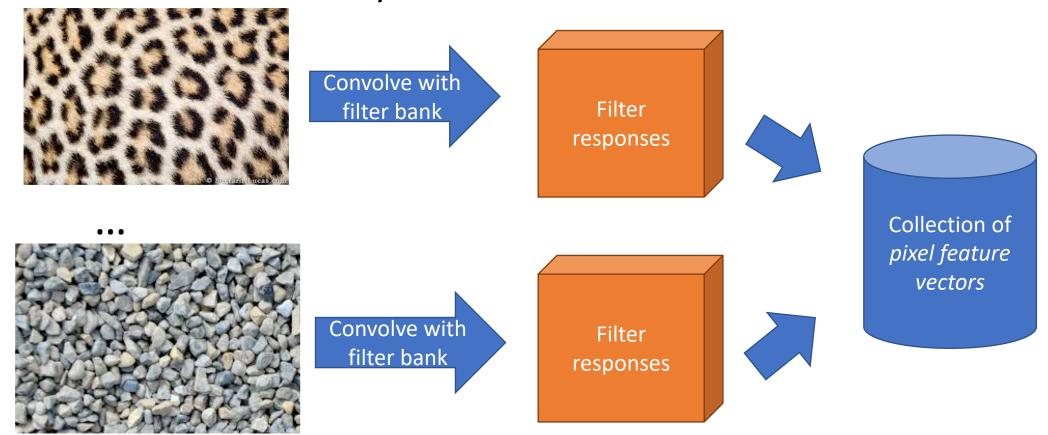
- Define a "vocabulary" of textons
- Describe texture by a distribution of different textons



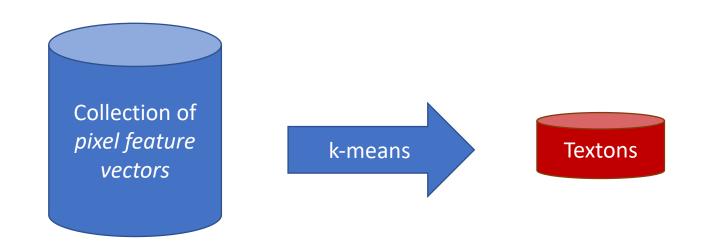
Convolve with filter bank

Filter responses

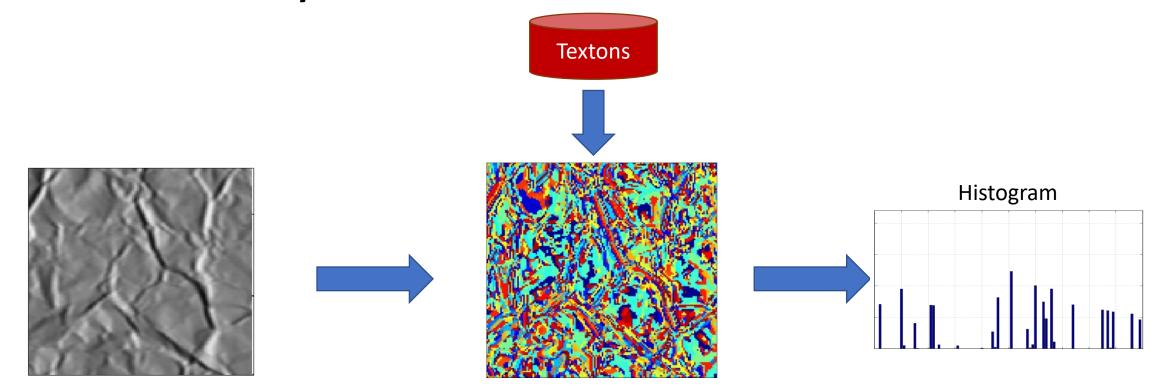
- Define a "vocabulary" of textons
- Describe texture by a distribution of different textons



- Define a "vocabulary" of textons
- Describe texture by a distribution of different textons

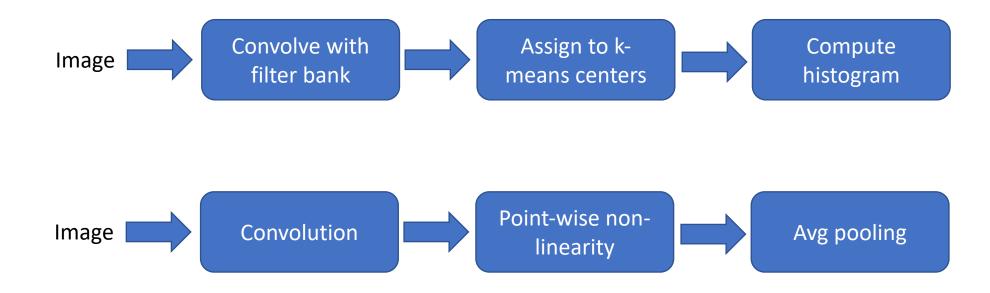


- Define a "vocabulary" of textons
- Describe texture by a distribution of different textons



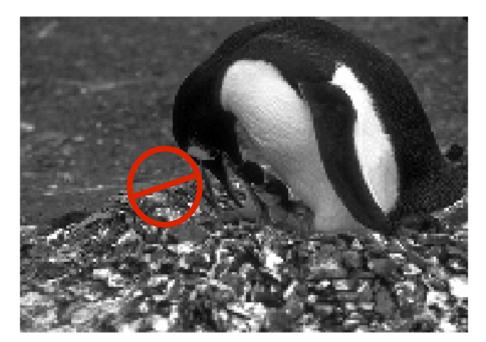
Leung, Thomas, and Jitendra Malik. "Representing and recognizing the visual appearance of materials using three-dimensional textons." *International journal of computer vision* 43.1 (2001): 29-44.

Textons in computer vision



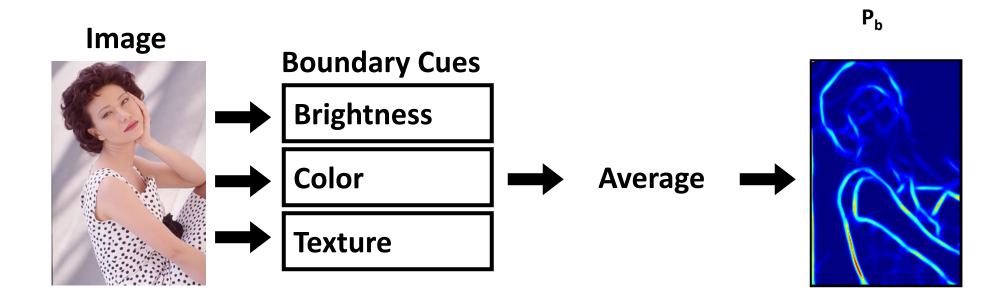
Detecting texture boundaries

- Problem: gradient captures change from pixel to pixel
- But texture property of region



Martin, David R., Charless C. Fowlkes, and Jitendra Malik. "Learning to detect natural image boundaries using local brightness, color, and texture cues." *TPAMI* (2004).

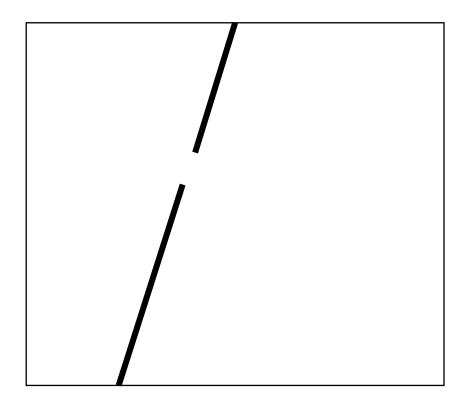
Cue combination



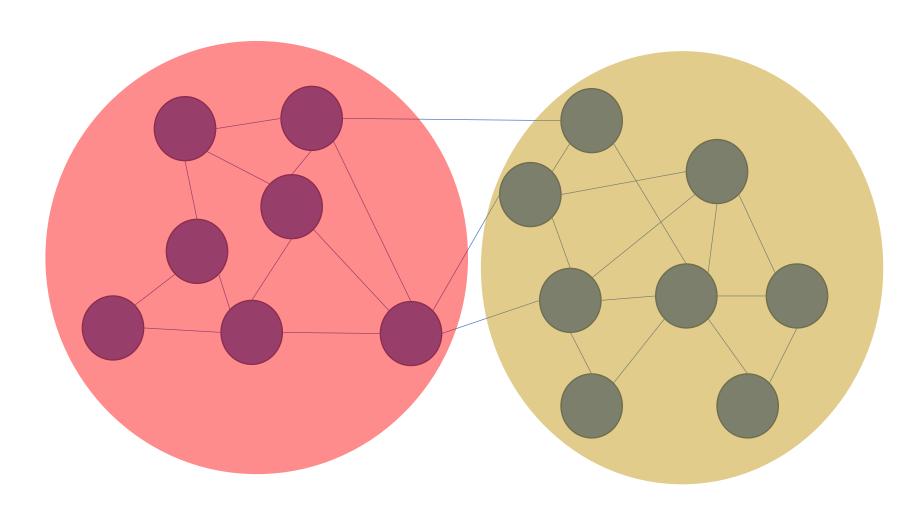
Martin, David R., Charless C. Fowlkes, and Jitendra Malik. "Learning to detect natural image boundaries using local brightness, color, and texture cues." *TPAMI* (2004).

Local computation not enough

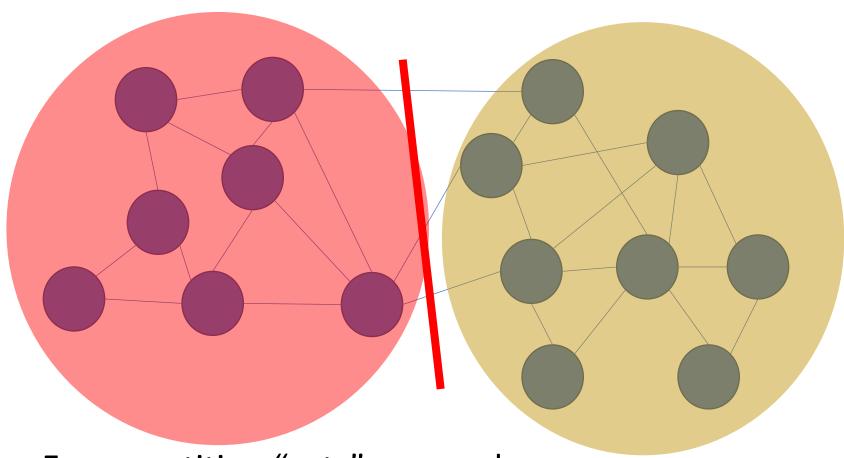
"Globalisation"



Segmentation is graph partitioning

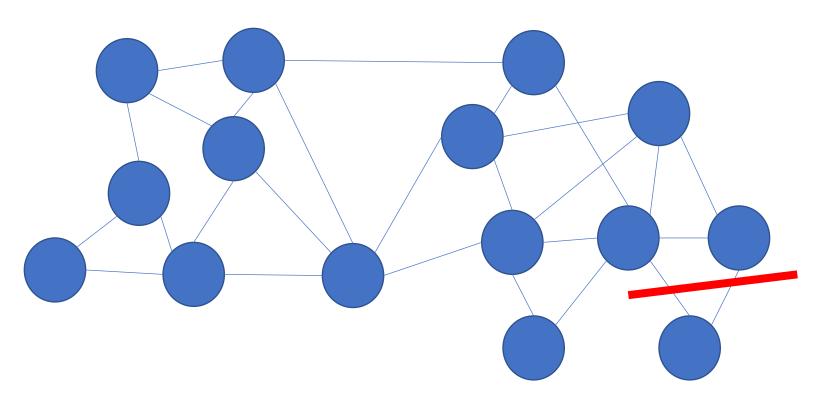


Segmentation is graph partitioning



- Every partition "cuts" some edges
- Idea: minimize total weight of edges cut!

Criterion: Min-cut?

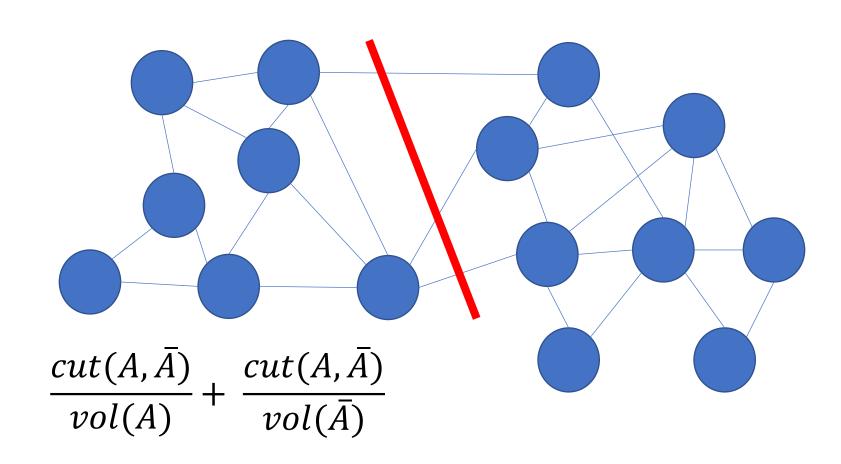


- Min-cut carves out small isolated parts of the graph
- In image segmentation: individual pixels

Normalized cuts

- "Cut" = total weight of cut edges
- Small cut means the groups don't "like" each other
- But need to normalize w.r.t how much they like themselves
- "Volume" of a subgraph = total weight of edges within the subgraph

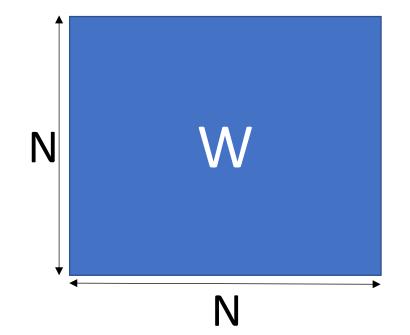
Normalized cut



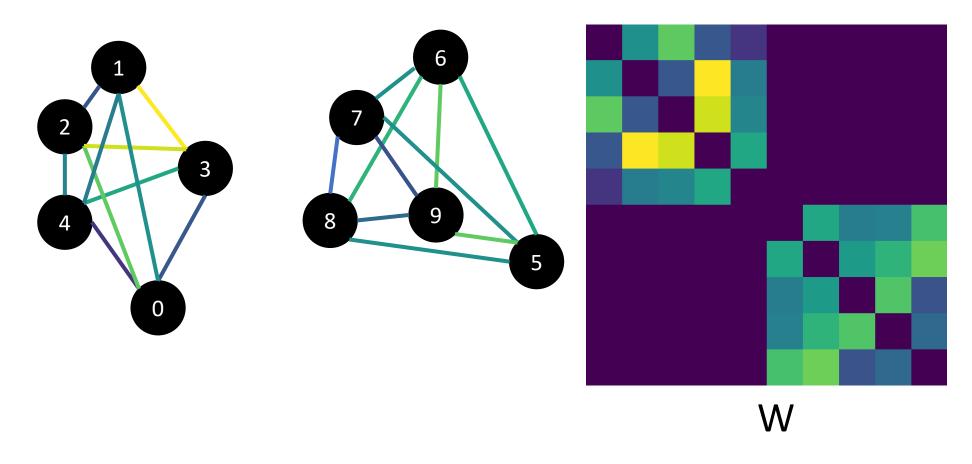
Min-cut vs normalized cut

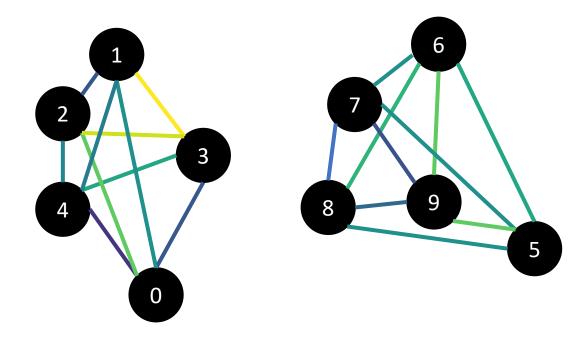
- Both rely on interpreting images as graphs
- By itself, min-cut gives small isolated pixels
 - But can work if we add other constraints
- min-cut can be solved in polynomial time
 - Dual of max-flow
- N-cut is NP-hard
 - But approximations exist!

- w(i,j) = weight between i and j (Affinity matrix)
- d(i) = degree of i = $\sum_{j} w(i, j)$
- D = diagonal matrix with d(i) on diagonal

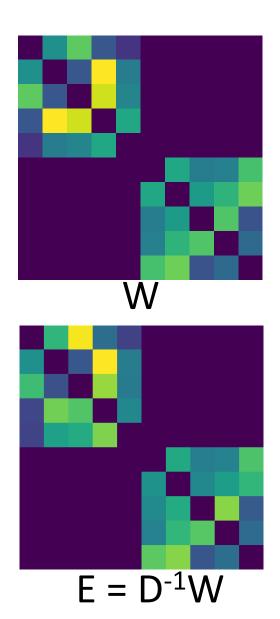




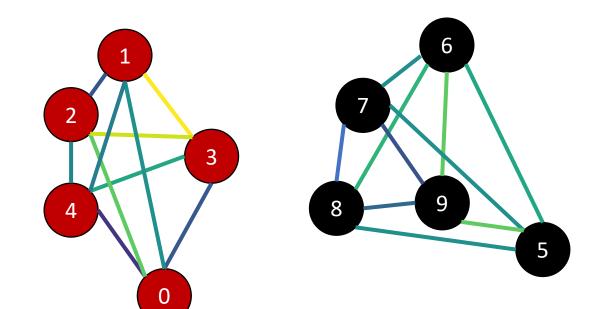




$$E_{ij} = \frac{w_{ij}}{\sum_{k} w_{ik}}$$



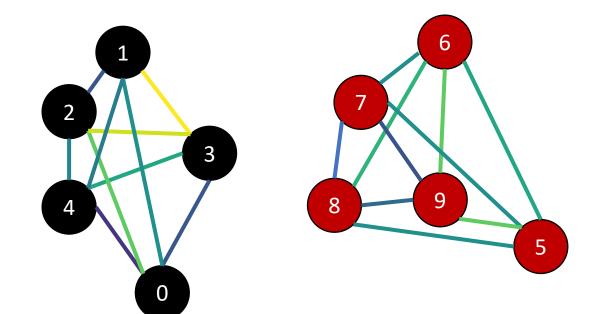
- How do we represent a clustering?
- A label for N nodes
 - 1 if part of cluster A, 0 otherwise
- An N-dimensional vector!



0: 1: 0

 V_1

- How do we represent a clustering?
- A label for N nodes
 - 1 if part of cluster A, 0 otherwise
- An N-dimensional vector!

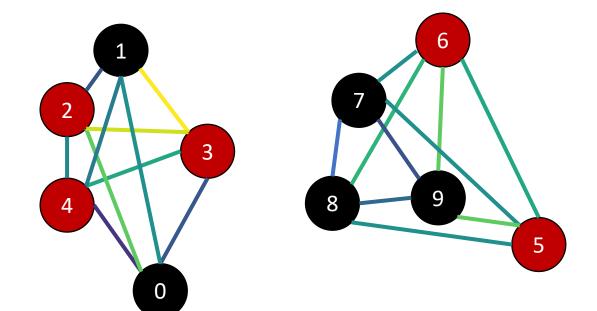


	1	2
0:	1	0
1:	1	0
2:	1	0
3:	1	0
4:	1	0
5:	0	1
6:	0	1
7:	0	1
8:	0	1
9:	0	1

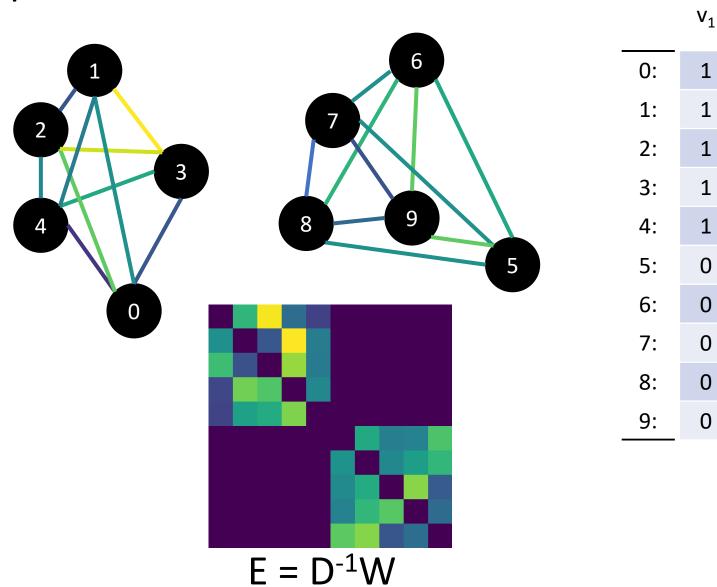
 V_1

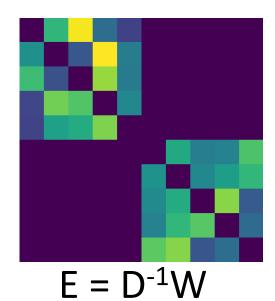
 V_2

- How do we represent a clustering?
- A label for N nodes
 - 1 if part of cluster A, 0 otherwise
- An N-dimensional vector!



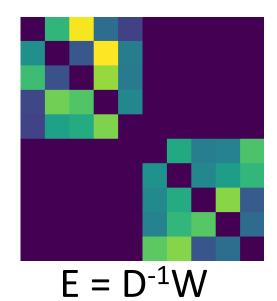
	V_1	V_2	V ₃
0:	1	0	0
1:	1	0	0
2:	1	1	1
3:	1	1	1
4:	1	1	1
5:	0	1	1
6:	0	1	1
7:	0	0	0
8:	0	0	0
9:	0	0	0





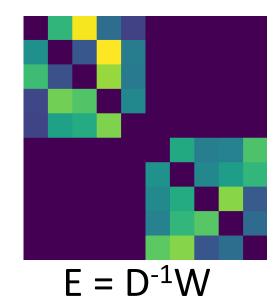
$$E_{ij} = \frac{w_{ij}}{\sum_{k} w_{ik}}$$

	V_1	l	Ev ₁
0:	1		1
1:	1		1
2:	1		1
3:	1		1
4:	1		1
5:	0		0
6:	0		0
7:	0		0
8:	0		0
9:	0		0



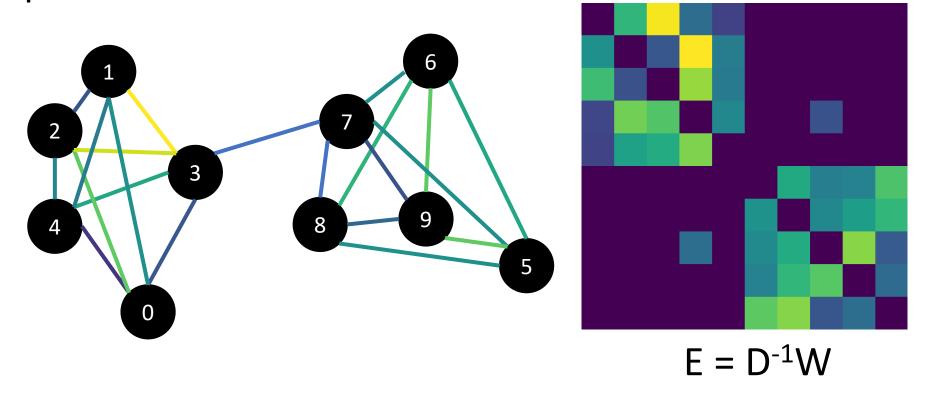
$$E_{ij} = \frac{w_{ij}}{\sum_{k} w_{ik}}$$

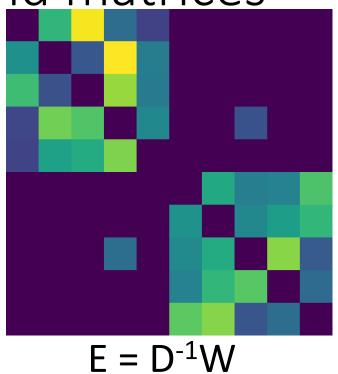
	V_2	Ev ₂
0:	0	0
1:	0	0
2:	0	0
3:	0	0
4:	0	0
5:	1	1
6:	1	1
7:	1	1
8:	1	1
9:	1	1



$$E_{ij} = \frac{w_{ij}}{\sum_{k} w_{ik}}$$

	V_3	Ev ₃
0:	0	0.7
1:	0	0.8
2:	1	0.6
3:	1	0.5
4:	1	0.6
5:	1	0.3
6:	1	0.2
7:	0	0.5
8:	0	0.5
9:	0	0.7





$$E_{ij} = \frac{w_{ij}}{\sum_{k} w_{ik}}$$

	V_1	Ev ₁
0:	1	1
1:	1	1
2:	1	1
3:	1	1
4:	1	1
5:	0	0
6:	0	0
7:	0	0.2
8:	0	0
9:	0	0

$$D^{-1}Wy \approx y$$
 Define z so that $y = D^{-\frac{1}{2}}z$

$$D^{-1}WD^{-\frac{1}{2}}z \approx D^{-\frac{1}{2}}z$$

$$\Rightarrow D^{-\frac{1}{2}}WD^{-\frac{1}{2}}z \approx z$$

$$\Rightarrow (I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}})z \approx 0$$

$$\Rightarrow (I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}})z \approx 0$$
$$\Rightarrow \mathcal{L}z \approx 0$$

$$\mathcal{L} = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$$
 is called the Normalized Graph Laplacian

$$\mathcal{L} = I - D^{-\frac{1}{2}} W D^{-\frac{1}{2}}$$

- We want $\mathcal{L}z pprox 0$
- Trivial solution: all nodes of graph in one cluster, nothing in the other
- To avoid trivial solution, look for the *eigenvector* with the second smallest eigenvalue

$$\mathcal{L}z = \lambda z$$

$$\lambda_1 < \lambda_2 < \dots < \lambda_N$$

• Find z s.t. $\mathcal{L}z=\lambda_2 z$

Normalized cuts

- Approximate solution to normalized cuts
- Construct matrix W and D
- Construct normalized graph laplacian

$$\mathcal{L} = I - D^{-\frac{1}{2}} W D^{-\frac{1}{2}}$$

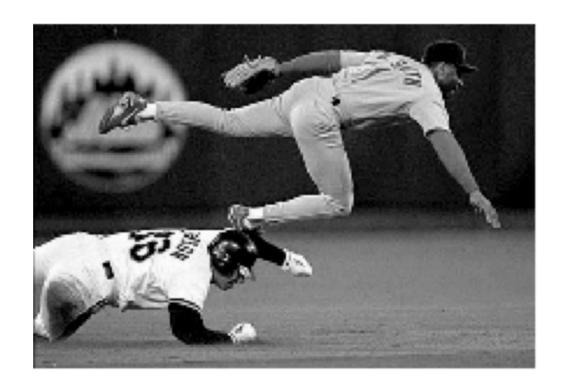
Look for the second smallest eigenvector

$$\mathcal{L}z = \lambda_2 z$$

- $\mathcal{L}z = \lambda_2 z$ Compute $y = D^{-\frac{1}{2}}z$
- Threshold y to get clusters
 - Ideally, sweep threshold to get lowest N-cut value

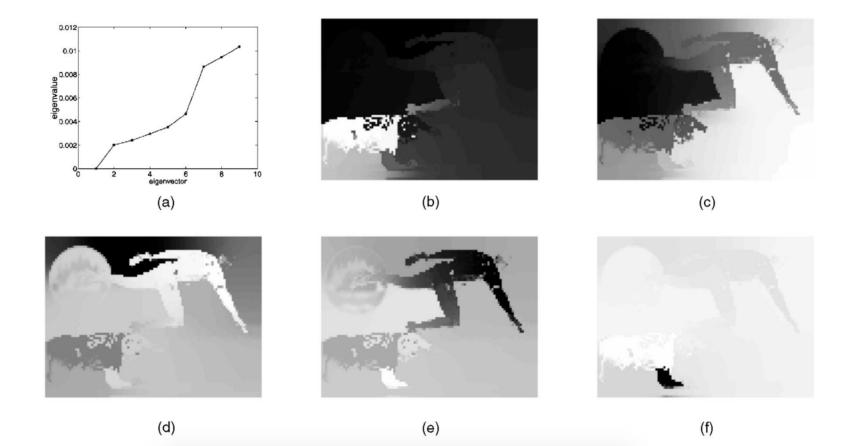
Eigenvectors of images

• The eigenvector has as many components as pixels in the image



Eigenvectors of images

• The eigenvector has as many components as pixels in the image



Another example

3rd eigenvector

4th eigenvector

Eigenvectors of images

