Image processing

Today

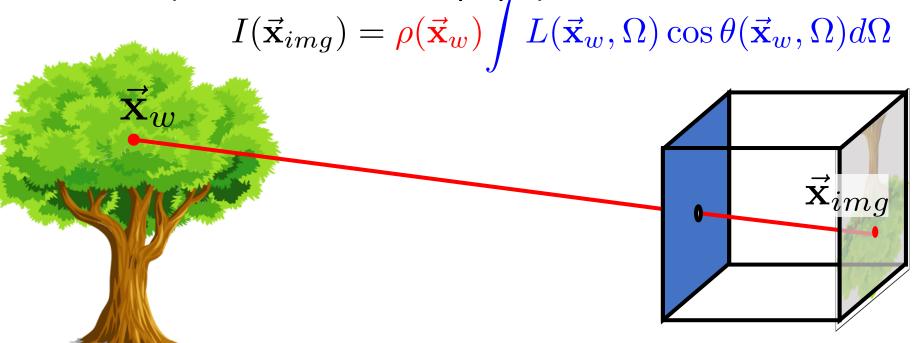
Consequences of image formation

- Some basic primitives needed for computer vision problems
 - Convolution
 - Edge detection
 - Image resizing
- Convolution as a basic operation
- Image pyramids as a basic structure

Recap

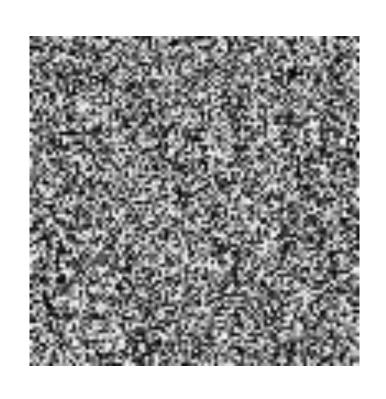
• Geometry: $\vec{\mathbf{x}}_{img} = K \begin{bmatrix} R & \mathbf{t} \end{bmatrix} \vec{\mathbf{x}}_w$

Color (Lambertian assumption):

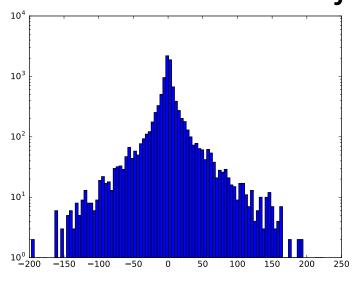


Consequences of image formation

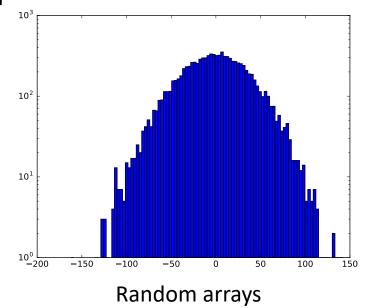
- Nearby objects appear larger
- Parallel lines and planes converge
- Information lost: distance from camera
- Pixel color depends on light intensity, light direction and surface normal and paint on object
- So objects in images
 - can appear in many different sizes and many positions
 - can have very different color



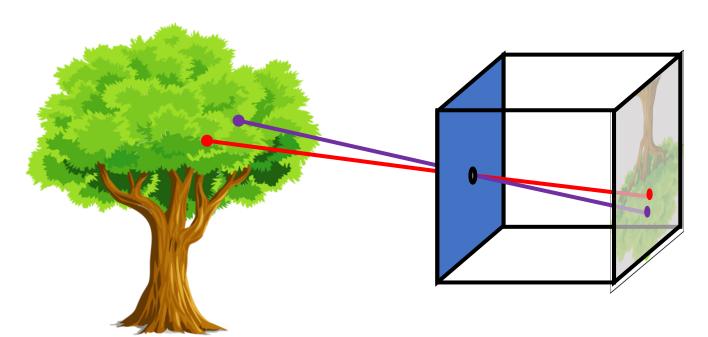
Log histogram of differences between adjacent pixels



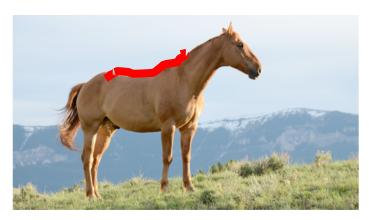
Natural images



- Why?
- Nearby pixels in pinhole camera lead to nearby rays
- Nearby rays mostly fall on the same object
- Objects have mostly smooth surfaces and mostly uniform color
- Lighting is mostly uniform



- Nearby pixels that are not similar tend to have different depth, surface normal, paint or lighting
- Idea: Abrupt changes in color can delineate objects, be a clue to shape, or be distinctive marks



Depth discontinuities

Changes in albedo

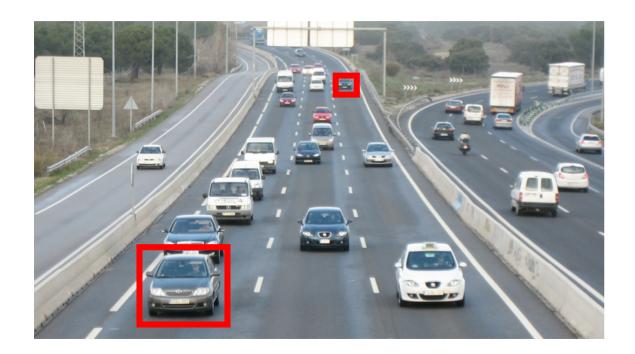
Normal discontinuities

Key primitive: edge detection

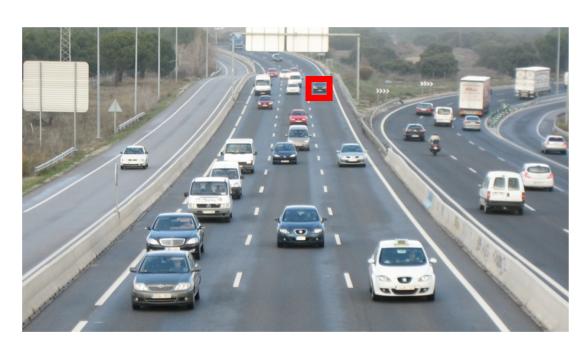
Consequence 2: Farther away objects appear smaller

Consequence 2: Farther away objects appear smaller

• Idea: search for objects over multiple scales



Key primitive: Image resizing



Some primitives

- Edge detection: identifying where pixels change color
 - Cue to object boundary
 - Cue to shape
 - More resilient to lighting than pixel color
- Image resizing: downsizing or upscaling images
 - Allows searching over scales
- Image processing: Operations that take images as input and produce images as output

Prelude: Image denoising

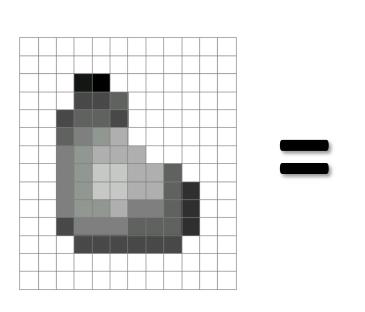
Why would images have noise?

- Sensor noise
 - Sensors count photons: noise in count
- Dead pixels
- Old photographs

• ...

What is an image?

• A grid (matrix) of intensity values: 1 color or 3 colors



١	255 / 2 561	255 255	255 2 56	74 _2 5\$	74 125 6	74 18 5	74 2 55	74 5 55	74 2 55	255 /25 5	255 +25 9	255 255
	255	255	74	127	127	127	95	95	95	47	255	255
	255	255	127	145	145	175	127	127	95	47	255	255
	255	255	127	145	200	200	175	175	95	47	255	255
	255	255	127	145	200	200	175	175	95	255	255	255
	255	255	127	145	175	175	175	255	255	255	255	255
	255	255	96	127	145	175	255	255	255	255	255	255
	255	255	75	95	95	75	255	255	255	255	255	255
	255	255	255	75	75	75	255	255	255	255	255	255
	255	255	255	20	0	255	255	255	255	255	255	255
	255	255	255	255	255	255	255	255	255	255	255	255
	255	255	255	255	255	255	255	255	255	255	255	255

An assumption about noise

- Let us assume noise at a pixel is
 - independent of other pixels
 - distributed according to a Gaussian distribution
 - i.e., low noise values are more likely than high noise values
 - "grainy images"

Noise reduction

- Nearby pixels are likely to belong to same object
 - thus likely to have similar color
- Replace each pixel by average of neighbors

0	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0
0	0	10	20	20	20	10	40	0	0
0	10	20	30	0	20	10	0	0	0
0	10	0	30	40	30	20	10	0	0
0	10	20	30	40	30	20	10	0	0
0	10	20	10	40	30	20	10	0	0
0	10	20	30	30	20	10	0	0	0
0	0	10	20	20	0	10	0	20	0
0	0	0	10	10	10	0	0	0	0

$$(0 + 0 + 0 + 10 + 40 + 0 + 10 + 0 + 0)/9 = 6.66$$

0	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0
0	0	10	20	20	20	10	40	0	0
0	10	20	30	0	20	10	0	0	0
0	10	0	30	40	30	20	10	0	0
0	10	20	30	40	30	20	10	0	0
0	10	20	10	40	30	20	10	0	0
0	10	20	30	30	20	10	0	0	0
0	0	10	20	20	0	10	0	20	0
0	0	0	10	10	10	0	0	0	0

$$(0+0+0+0+0+10+0+0+0+0+0+20+10+40+0+0+20+10+0+0+0+30+20+10+0+0+0)/25 = 6.8$$

0	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0
0	0	10	20	20	20	10	40	0	0
0	10	20	30	0	20	10	0	0	0
0	10	0	30	40	30	20	10	0	0
0	10	20	30	40	30	20	10	0	0
0	10	20	10	40	30	20	10	0	0
0	10	20	30	30	20	10	0	0	0
0	0	10	20	20	0	10	0	20	0
0	0	0	10	10	10	0	0	0	0

$$(0+0+0+0+0+0+0+0+10)/9 = 1.11$$

0	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0
0	0	10	20	20	20	10	40	0	0
0	10	20	30	0	20	10	0	0	0
0	10	0	30	40	30	20	10	0	0
0	10	20	30	40	30	20	10	0	0
0	10	20	10	40	30	20	10	0	0
0	10	20	30	30	20	10	0	0	0
0	0	10	20	20	0	10	0	20	0
0	0	0	10	10	10	0	0	0	0

$$(0+0+0+0+0+10+0+10+20)/9 = 4.44$$

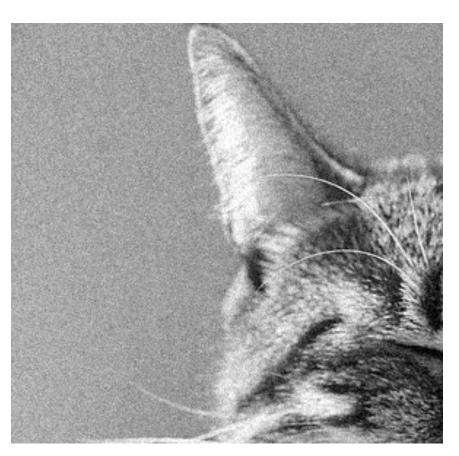
0	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0
0	0	10	20	20	20	10	40	0	0
0	10	20	30	0	20	10	0	0	0
0	10	0	30	40	30	20	10	0	0
0	10	20	30	40	30	20	10	0	0
0	10	20	10	40	30	20	10	0	0
0	10	20	30	30	20	10	0	0	0
0	0	10	20	20	0	10	0	20	0
0	0	0	10	10	10	0	0	0	0

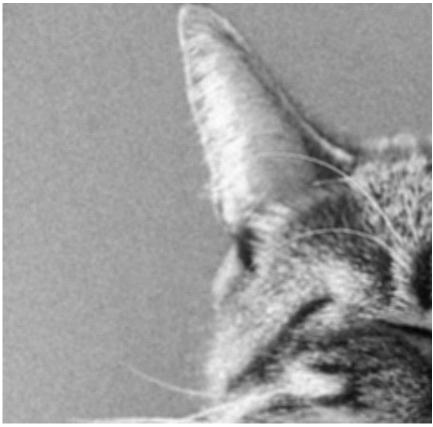
$$(0+0+0+0+10+10+10+20+20)/9 = 7.77$$

0	0	0	0	0	0	0	0	0	0
0	0	0	10	10	10	0	0	0	0
0	0	10	20	20	20	10	40	0	0
0	10	20	30	0	20	10	0	0	0
0	10	0	30	40	30	20	10	0	0
0	10	20	30	40	30	20	10	0	0
0	10	20	10	40	30	20	10	0	0
0	10	20	30	30	20	10	0	0	0
0	0	10	20	20	0	10	0	20	0
0	0	0	10	10	10	0	0	0	0

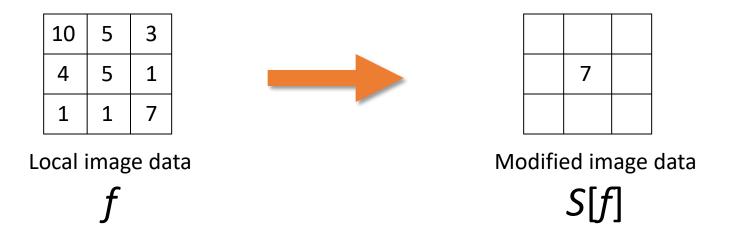
0	0	0	0	0	0	0	0	0	0
0	1	4	8	10	8	9	6	4	0
0	4	11	13	16	11	12	7	4	0
0	6	14	19	23	19	18	10	6	0
0	8	18	23	28	23	17	8	2	0
0	8	16	26	31	30	20	10	3	0
0	10	18	27	29	27	17	8	2	0
0	8	14	22	22	20	11	8	3	0
0	4	11	17	17	12	6	4	2	0
0	0	0	0	0	0	0	0	0	0

Noise reduction using mean filtering



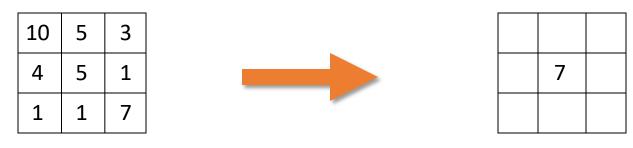


Replace pixel by mean of neighborhood

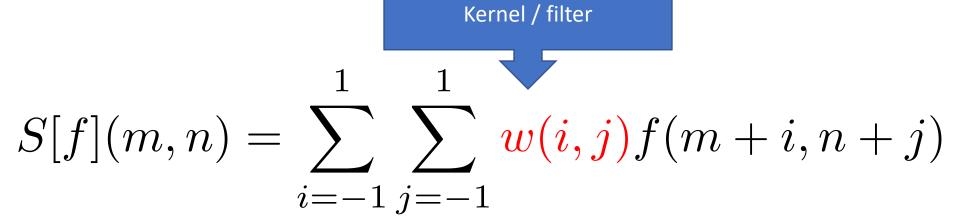


$$S[f](m,n) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} f(m+i,n+j)/9$$

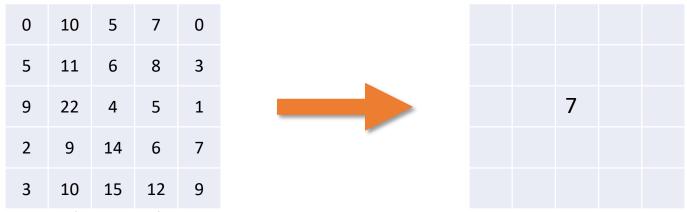
A more general version



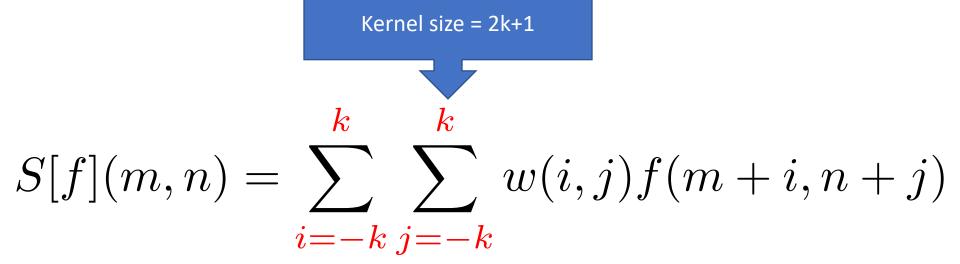
Local image data



A more general version



Local image data



A more general version

$$S[f](m,n) = \sum_{i=-k}^{\kappa} \sum_{j=-k}^{\kappa} w(i,j) f(m+i,n+j)$$

- $w(i,j) = 1/(2k+1)^2$ for mean filter
- If w(i,j) >=0 and sum to 1, weighted mean
- But w(i,j) can be arbitrary real numbers!

Convolution and cross-correlation

Cross correlation

$$S[f] = w \otimes f$$

$$S[f](m,n) = \sum_{k} \sum_{w(i,j)} w(i,j)f(m+i,n+j)$$

• Convolution i=-k j=-k

$$S[f] = w * f$$

$$S[f](m,n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i,j) f(m-i,n-j)$$

Cross-correlation

1	2	3				
4	5	6				
7	8	9				
W						

Т	2	3	
4	5	6	
7	8	9	
	f		•

$$1*1 + 2*2 + 3*3 + 4*4 + 5*5 + 6*6 + 7*7 + 8*8 + 9*9$$

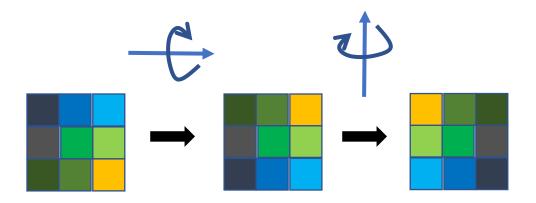
Convolution

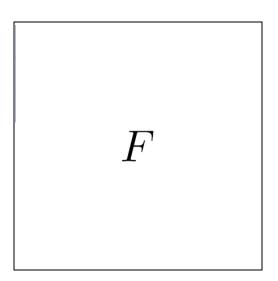
1	2	3			
4	5	6			
7	8	9			
W					

1	2	3
4	5	6
7	8	9
	f	

1*9 + 2*8 + 3*7 + 4*6 + 5*5 + 6*4 + 7*3 + 8*2 + 9*1

Convolution





Properties: Linearity

$$(w \otimes f)(m,n) = \sum_{i=-k}^{n} \sum_{j=-k}^{n} w(i,j)f(m+i,n+j)$$

$$f' = af + bg$$
$$w \otimes f' = a(w \otimes f) + b(w \otimes g)$$

Properties: Linearity

$$(w \otimes f)(m,n) = \sum_{i=-k}^{n} \sum_{j=-k}^{n} w(i,j)f(m+i,n+j)$$

 $w' = aw + bv$

$$w' \otimes f = a(w \otimes f) + b(v \otimes f)$$

Properties: Shift invariance

$$(w \otimes f)(m,n) = \sum_{i=-k} \sum_{j=-k} w(i,j)f(m+i,n+j)$$

$$f'(m,n) = f(m-m_0, n-n_0)$$

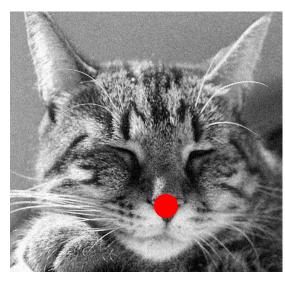
f

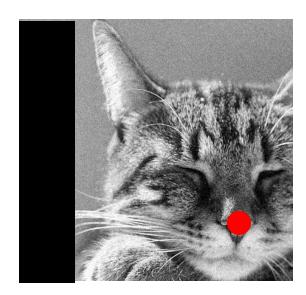
Shift invariance

$$(w \otimes f)(m,n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i,j)f(m+i,n+j)$$
 $f'(m,n) = f(m-m_0,n-n_0)$
 $(w \otimes f')(m,n) = \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i,j)f'(m+i,n+j)$
 $= \sum_{i=-k}^{k} \sum_{j=-k}^{k} w(i,j)f(m+i-m_0,n+j-n_0)$
 $= (w \otimes f)(m-m_0,n-n_0)$

Shift invariance $f'(m,n)=f(m-m_0,n-n_0)$ $(w\otimes f')(m,n)=(w\otimes f)(m-m_0,n-n_0)$

- Shift, then convolve = convolve, then shift
- Output of convolution does not depend on where the pixel is

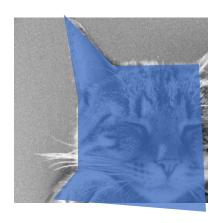




f

Why is convolution important?

Shift invariance is a crucial property



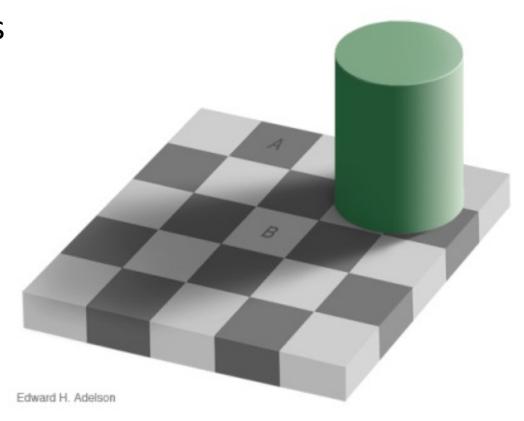
Why is convolution important?

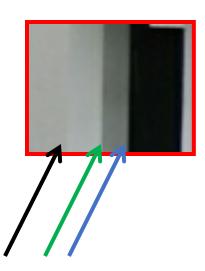
- We *like* linearity
 - Linear functions behave predictably when input changes
 - Lots of theory just easier with linear functions
- All linear shift-invariant systems can be expressed as a convolution

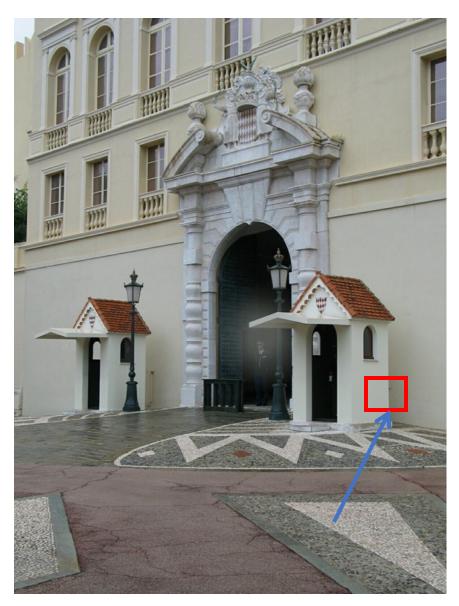
Edges

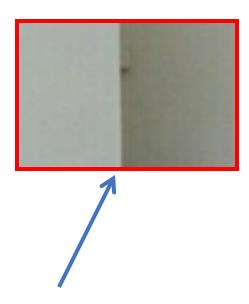
 Edges are curves in the image, across which the brightness changes "a lot"

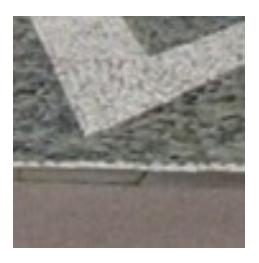
Corners/Junctions





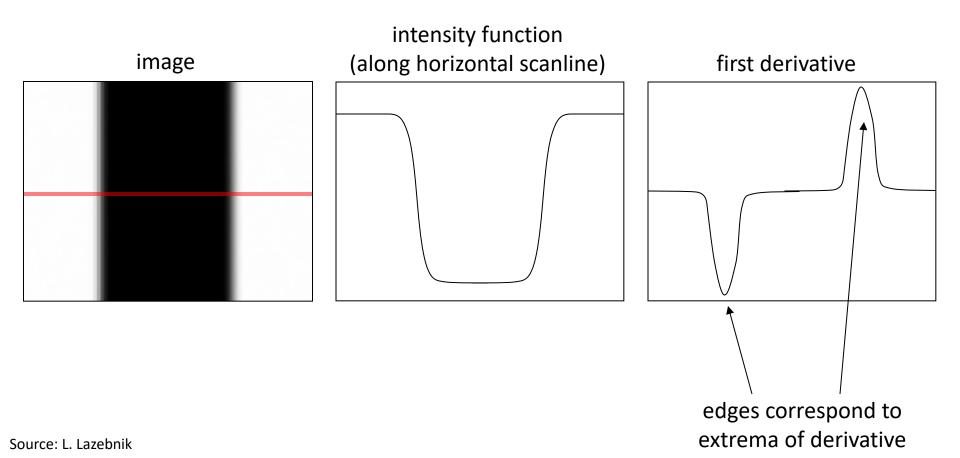




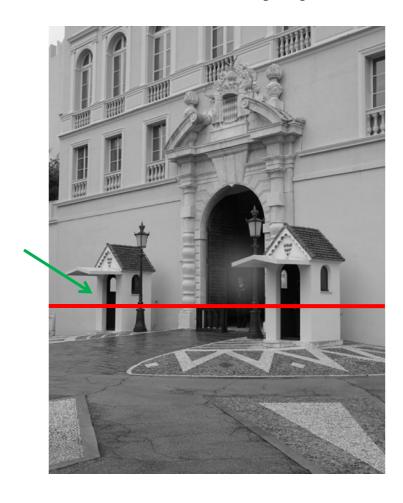


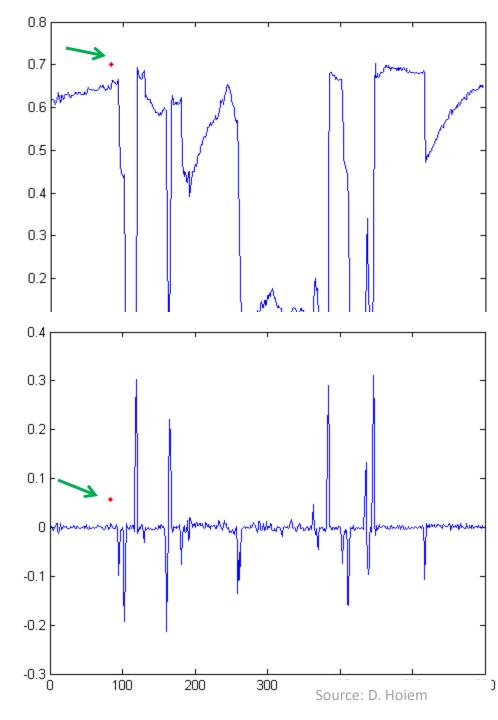
Characterizing edges

• An edge is a place of *rapid change* in the image intensity function



Intensity profile





Derivatives and convolution

Differentiation is linear

$$\frac{\partial (af(x) + bg(x))}{\partial x} = a \frac{\partial f(x)}{\partial x} + b \frac{\partial g(x)}{\partial x}$$

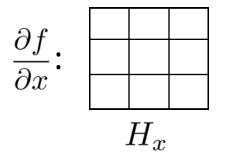
- Differentiation is *shift-invariant*
 - Derivative of shifted signal is shifted derivative
- Hence, differentiation can be represented as convolution!

Image derivatives

- How can we differentiate a digital image F[x,y]?
 - Option 1: reconstruct a continuous image, f, then compute the derivative
 - Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a linear filter?



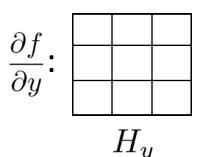


Image gradient

• The gradient of an image: $\nabla f = \left| \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right|$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The *edge strength* is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

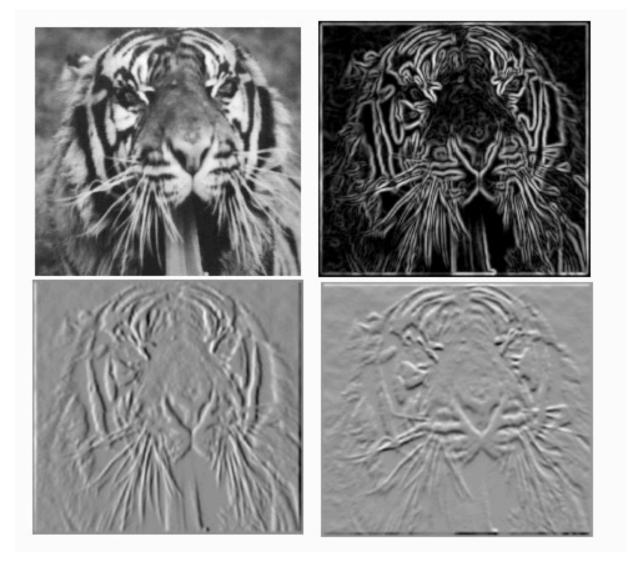
The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?

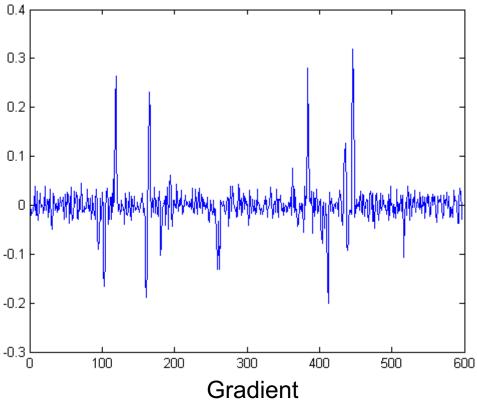
Source: Steve Seitz

Image gradient

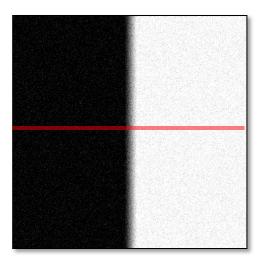


Source: L. Lazebnik

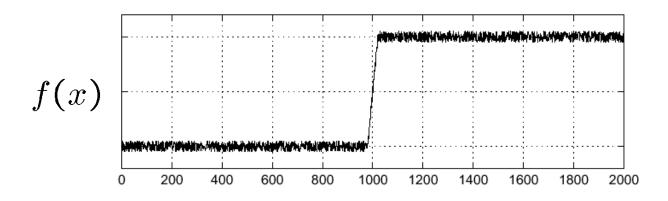
With a little Gaussian noise

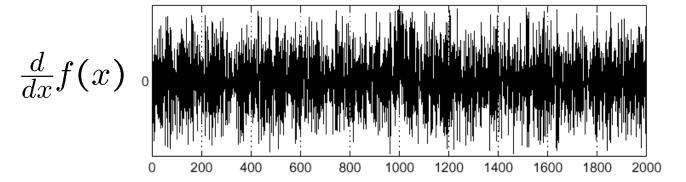


Effects of noise



Noisy input image





Where is the edge?

Source: S. Seitz

Solution: smooth first



To find edges, look for peaks in $\frac{d}{dx}(f*h)$

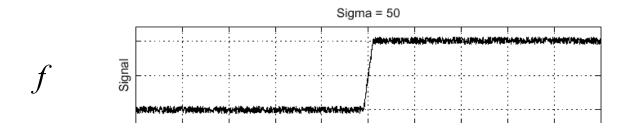
Source: S. Seitz

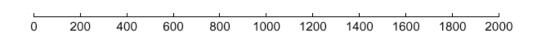
Associative property of convolution

- Differentiation is a convolution
- Convolution is associative:

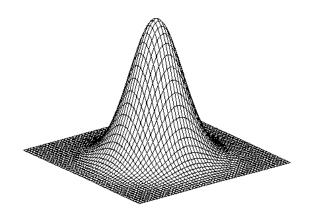
$$\frac{d}{dx}(f*h) = f*\frac{d}{dx}h$$

This saves us one operation:



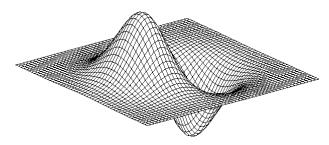


2D edge detection filters



Gaussian

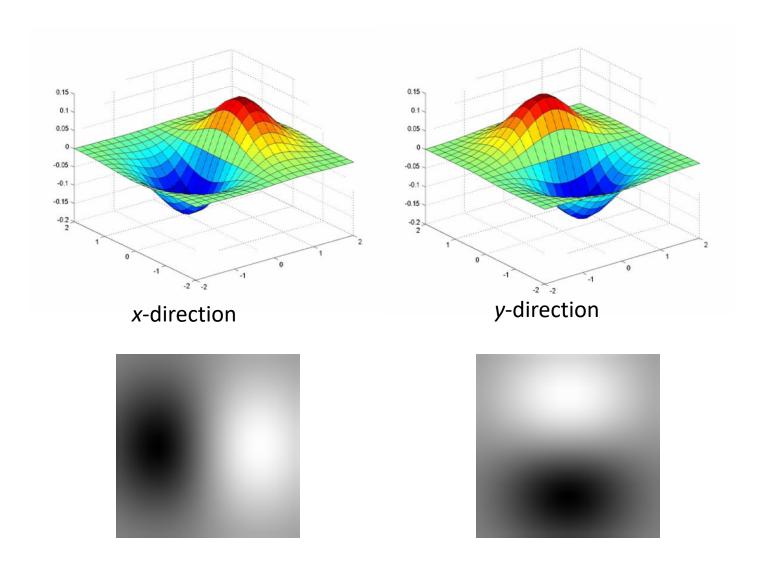
$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$



derivative of Gaussian (x)

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

Derivative of Gaussian filter



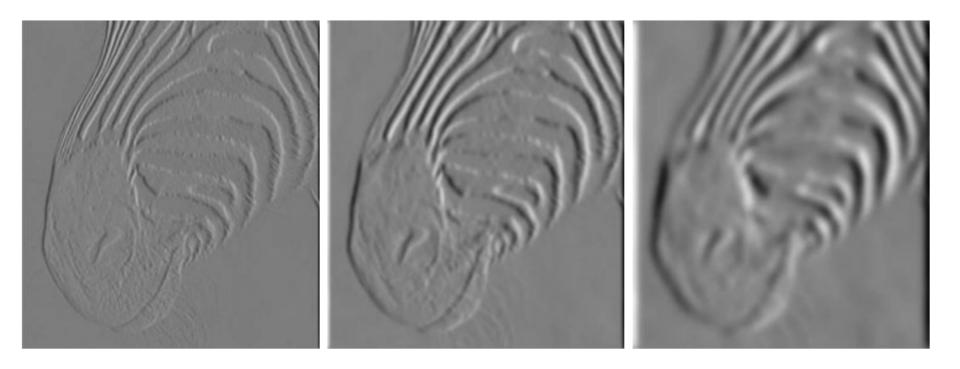


FIGURE 5.3: The scale (i.e., σ) of the Gaussian used in a derivative of Gaussian filter has significant effects on the results. The three images show estimates of the derivative in the x direction of an image of the head of a zebra obtained using a derivative of Gaussian filter with σ one pixel, three pixels, and seven pixels (left to right). Note how images at a finer scale show some hair, the animal's whiskers disappear at a medium scale, and the fine stripes at the top of the muzzle disappear at the coarser scale.

Two Dimensional Gaussian

Anisotropic:
$$G_{\sigma_x,\sigma_y}(x,y) = \frac{1}{2\pi\sigma_x\sigma_y}e^{-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right)}$$

Isotropic:
$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2}e^{-\frac{r^2}{2\sigma^2}}$$

Oriented Gaussian First and Second Derivatives

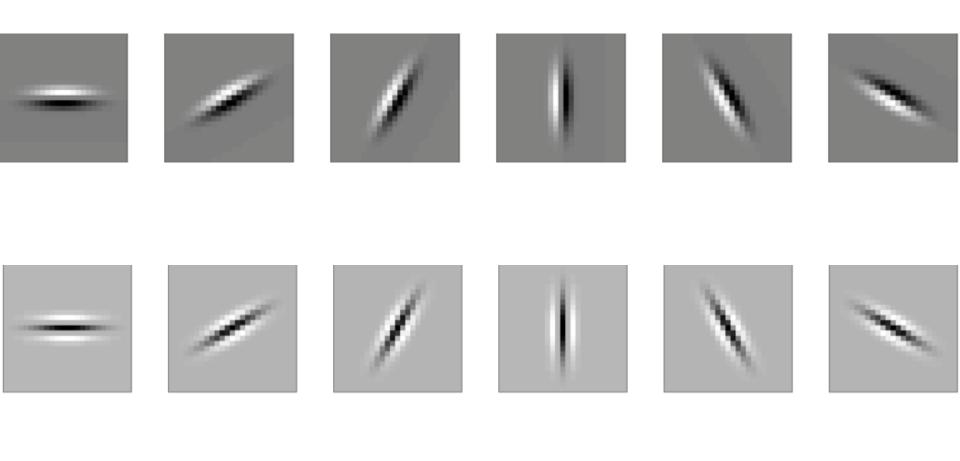


Image resizing

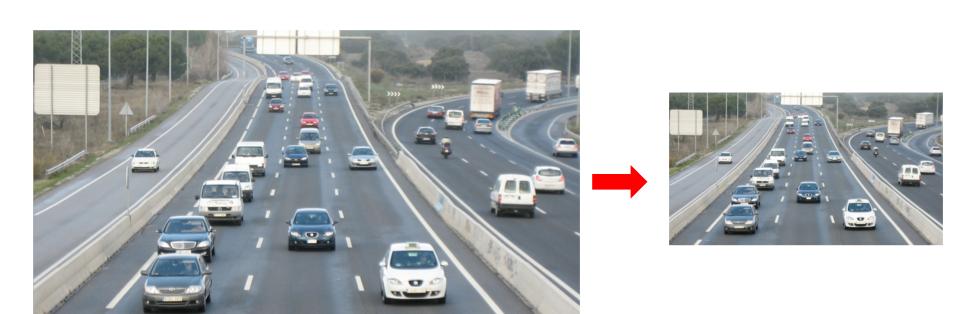
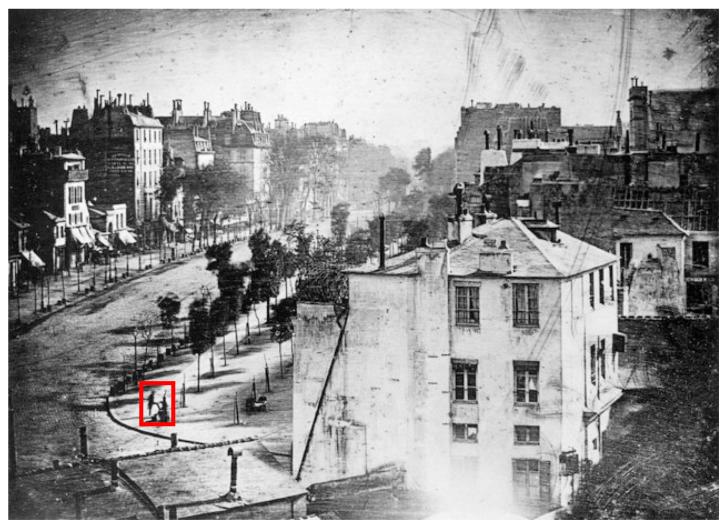


Image resizing

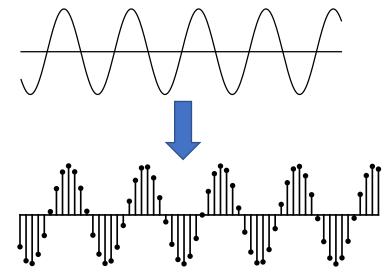
Let's enhance!



Louis Daguerre, 1838

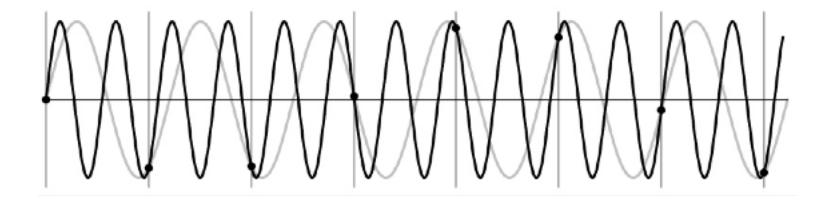
What is a (digital) image?

- True image is a function from R² to R
- Digital image is a sample from it
- 1D example:



 To enhance, we need to recover the original signal and sample again

Undersampling

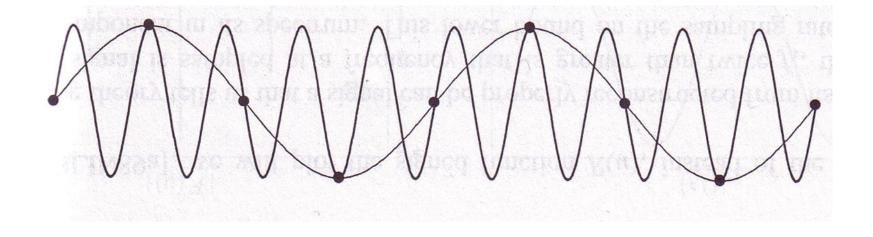


Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
 - unsurprising result: information is lost
 - surprising result: indistinguishable from lower frequency
 - also was always indistinguishable from higher frequencies
 - aliasing: signals "traveling in disguise" as other frequencies

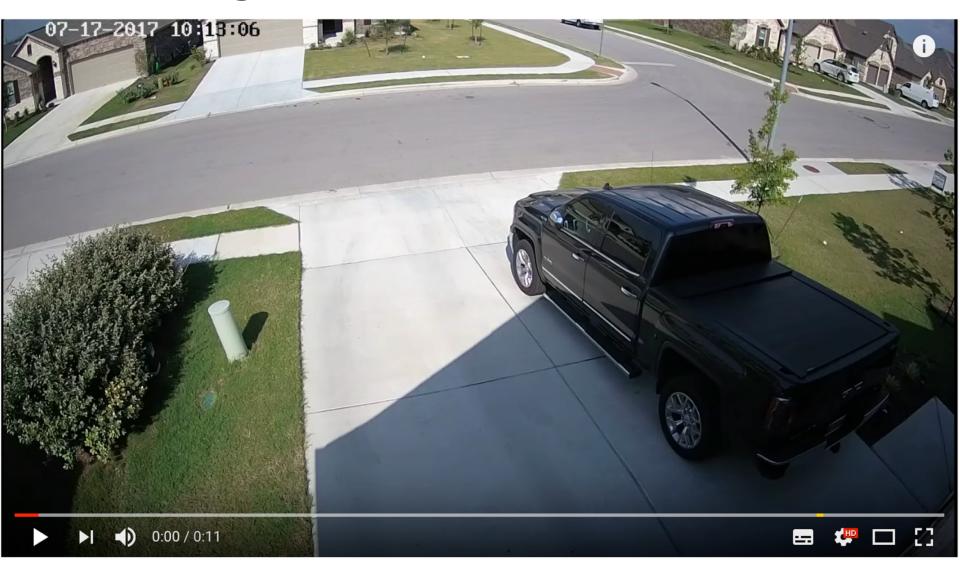
Aliasing

 When sampling is not adequate, impossible to distinguish between low and high frequency signal



Aliasing in time

Aliasing in time

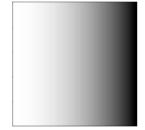


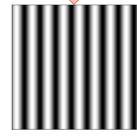
Beyond sines and cosines

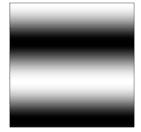
- Images are not sines and
- But they can be written cosines (Fourier Transform)

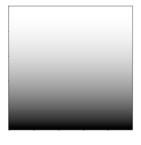
High frequency components

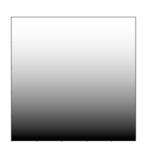
es and

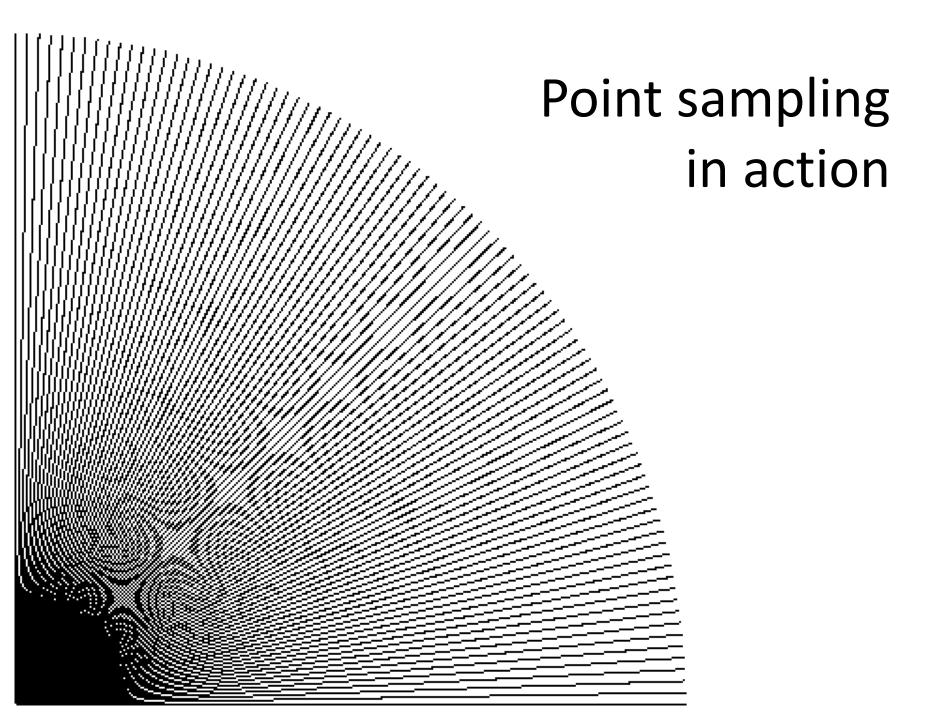












Aliasing

- High frequency components when downsampled masquerade as low frequency components
- Key step: remove high frequency components. But how?

Smoothing and image frequencies

- Smoothing makes a pixel more like its neighbors
- Image intensities change more slowly with x and y in smoothed image
- **>** Smoothing removes high frequencies

Subsampling images

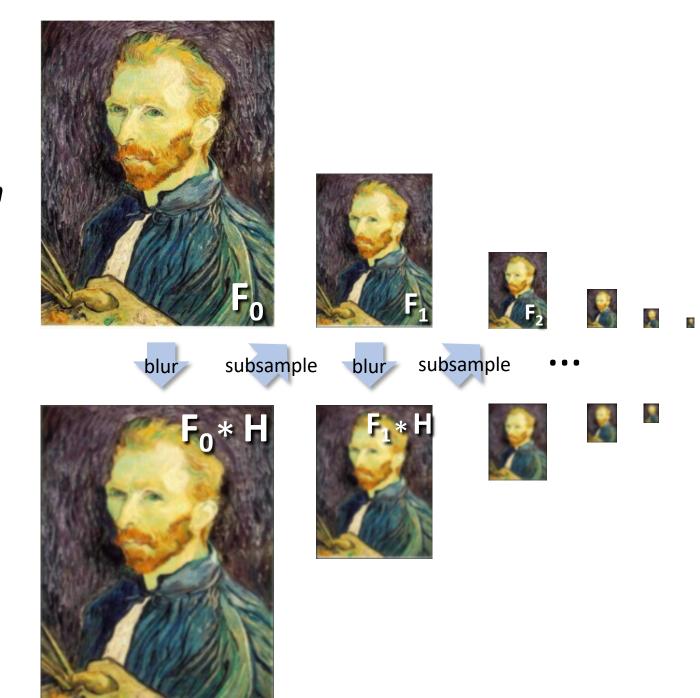
- Step 1: Convolve with Gaussian to eliminate high frequencies
- Step 2: Drop unneeded pixels

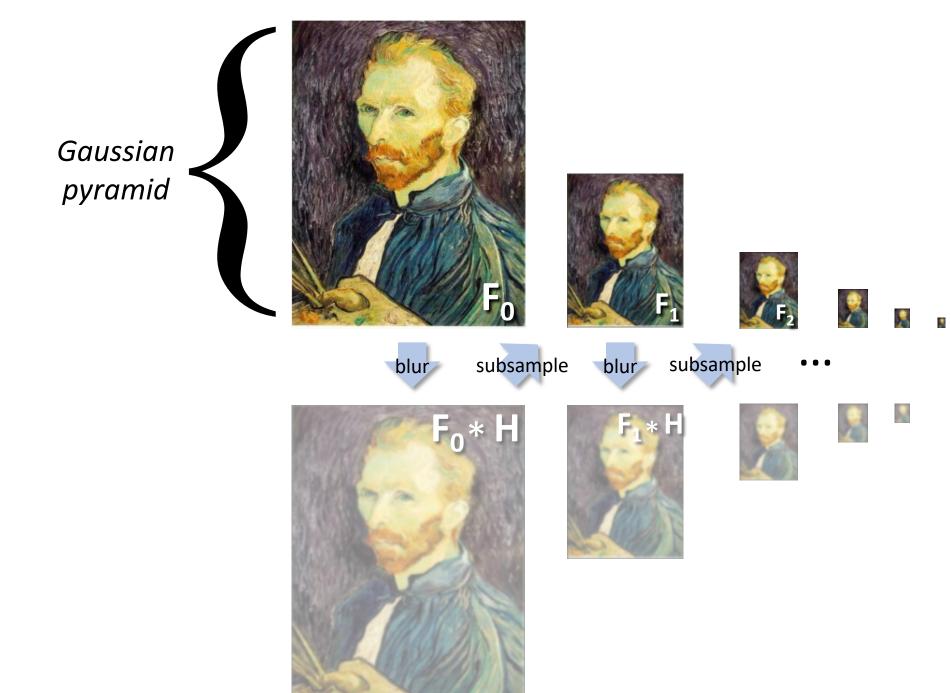
Subsampling without removing high frequencies

Subsampling after removing high frequencies

Gaussian pre-filtering

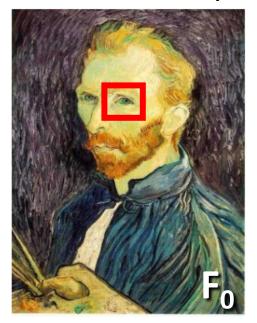
 Solution: filter the image, then subsample





Why Gaussian pyramids?

- The same neighborhood size captures differentlysized image patches
- Search for multiple sizes of an object using the same template!



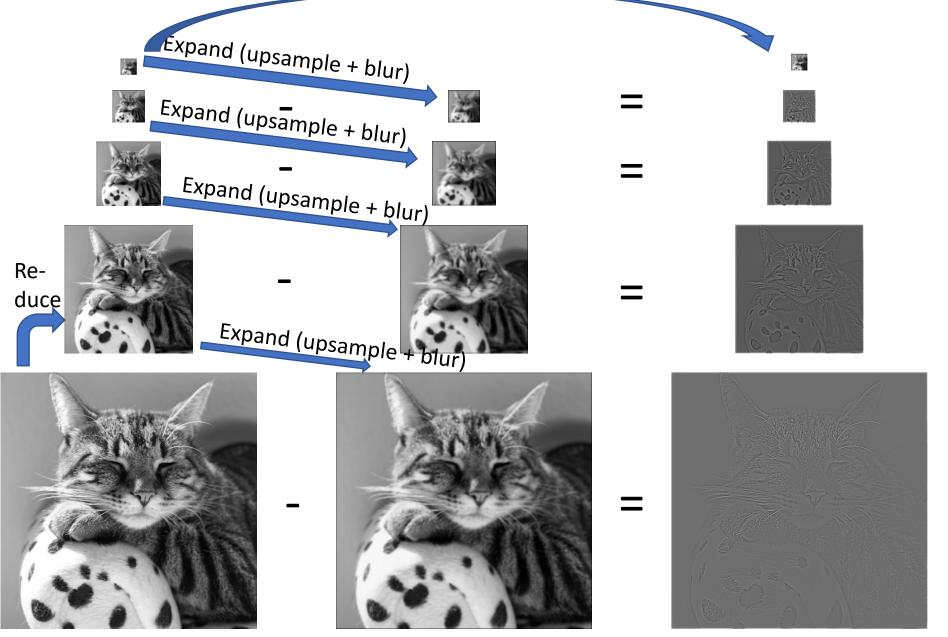
Upsampling images

Step 1: blow up to original size with 0's in between

Upsampling images

Step 2: Convolve with Gaussian to interpolate

Laplacian pyramid



Laplacian pyramid

$$L_4 = G_4 =$$

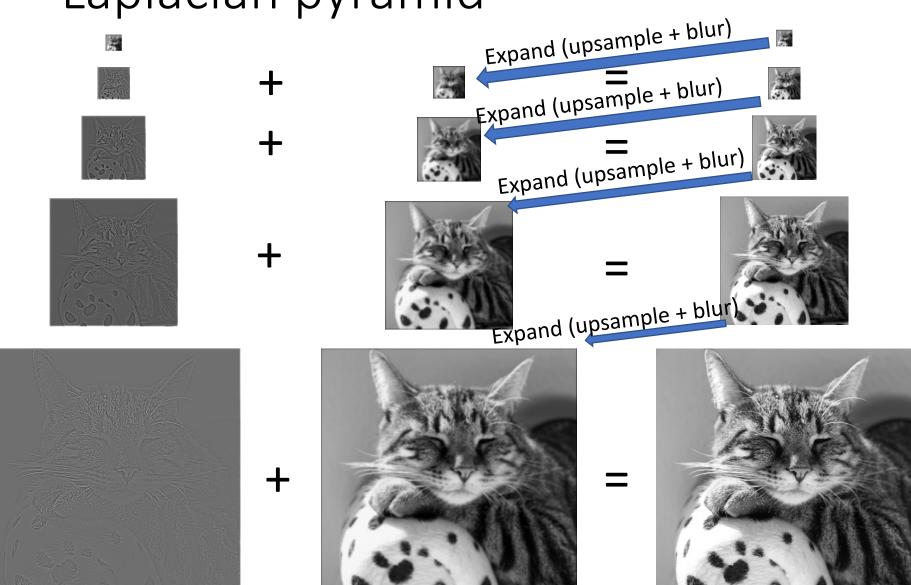
$$L_3 = G_3 - \operatorname{expand}(G_4) =$$

$$L_2 = G_2 - \operatorname{expand}(G_3) =$$

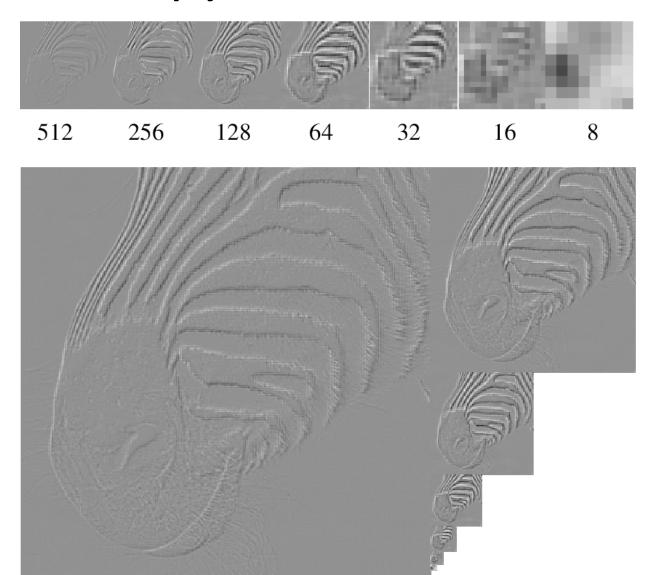
$$L_1 = G_1 - \operatorname{expand}(G_2) =$$

$$L_0 = G_0 - \operatorname{expand}(G_1) =$$

Reconstructing the image from a Laplacian pyramid

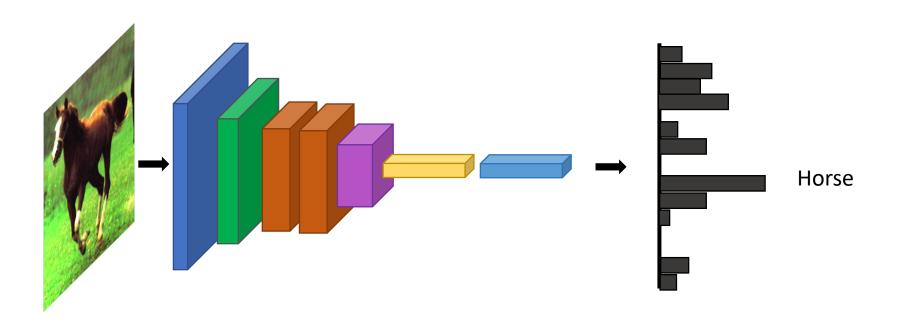


Laplacian pyramid



Source: Forsyth

Convolution and subsampling is familiar...



Key take-away

- A versatile tool: convolution
 - Any linear shift-invariant operation is a convolution
 - In particular edge detection, image smoothing
- A versatile structure : pyramids
 - Early layers capture low-level detail, higher layers capture global structure.