
1 Bidirectional Path Tracing

The Light Transport equation is a self dual, or a self adjoint, process that
can swap the incoming and outgoing directions and get the same result. This
property is called reciprocity and this symmetric property is a fundamental
point of light transport. We have the equation:

Lr = KGLr + Lo

K is the BRDF or our rendering operator, which is reciprocal. G is the
visibility, which is obviously symmetric. We can think of this equation in
terms of symmetric matrices and we get:

Lr = (1 − KG)−1Lo

Lr = MLo

This means that the equation boils down to one operator that is self-
adjoint.

When we are tracing a ray, we are figuring out values for a pixel. The
value for a pixel vi is computed by integrating the reflected radiance weighted
by a weighting function wi:

vi =
∫ ∫

wi(x,w)Lr(x,w)dAdµ

vi =< wi, Lr >

From before, we saw that Lr = MLo, so we can substitute and get:

vi =< wi,MLo >

vi =< M∗wi, Lo >

We see that the symmetric term can be applied to either side, since it’s
symmetric. We can think of this as all light sources weighted by M or as
shooting light from the viewer through a pixel and weighted by M according
to Lo, the light emitter.

Now we have the tools to take the path tracing algorithm and substitute:

From eye, trace rays proportional to wi. For each intersection,
send ray to light and add the BRDF times emission and then
send ray proportional to BRDF, then recurse.

1



This is good for viewing through glass, but not for the caustics caused by
glass. If we shoot a ray where a caustic would be, we would shoot a ray
to the light source and see that it would be blocked by the glass object or
would hit the light source itself. We wouldn’t be able to figure out the path
that would cause the caustic.

If we took the above statement and substituted Lo for wi and we send
the ray to the eye instead of light, we would get a method that performs
well for caustics, but not for glass:

From light, trace rays proportional to Lo. For each intersection,
send ray to eye and add the BRDF times importance and then
send ray proportional to BRDF, then recurse.

This is because for caustics, we would trace rays from the light that took the
correct paths through the glass object and create caustics. What we want
to do is called splatting. Each pixel that we render has a set of directions
that we want to know the values for. Trace a path from light and see what
rays we want and the pixels they correspond to.

Figure 1: Different Paths

Now we have two methods, one’s good for the LDS+E path and the
other is good at the LS+DE path. Since these two paths are dual, we can
use multiple importance sampling to get the best of both worlds. This is
(almost) bidirectional path tracing.

To get the full bidirectional path tracing algorithm, we generalize this
to allow paths to be generated from both ends at once. Care just needs to
be taken to make sure that more than one bounce is taken from either side.
Once both pathes are are diffuse surfaces, we can then just join them up.

2



Figure 2: Exception Case; Everything in eye view needs at least two bounces
to be illuminated

2 Metropolis Light Transport

The basic idea is that we use a random walk through the distribution that we
want, and with enough random walks, we get what we are looking for. The
system is setup as a Markov Chain, with the probabilities only relying on the
previous state. We have a domain Ω, with a sample sequence (x1, x2, x3, ...)
and transition probability of K(x|y), which it the probability of xi+1 = y
given xi = x. The formal equation:

pi(x) =
∫

K(x|y)pi−1(y)dy

To apply this to ray tracing, we have some path in the scene, and we just
mutate the path. This might seem silly at first, but for scenes where the
only source of light is a door in the room, and no rays directly go into that
room, this method works considerably better than other heuristics. This is
because when it finds a path into the other room, it can hold on to that
path and mutate it and get good samples. For simple scenes, it’s not as fast
as other methods and is obviously harder to implement, since it’s hard to
keep track of all of the mutations.

3



Figure 3: Mutation of Path

4


