CHARMS: A Simple Framework for Adaptive Simulation SIGGRAPH 2002

Eitan Grinspun
Caltech

Petr Krysl UCSD

Peter Schröder
Caltech

Presented by Jose Guerra

Outline

- Background
- Motivation (Element vs. Basis Refinement)
- Implementation
 - Definitions
 - Data Structures
 - Algorithms
- Example Applications
- Conclusion

Adaptive Solvers

- Focus computational resources
- Improve scalability
- Improve accuracy
- Generally difficult to implement

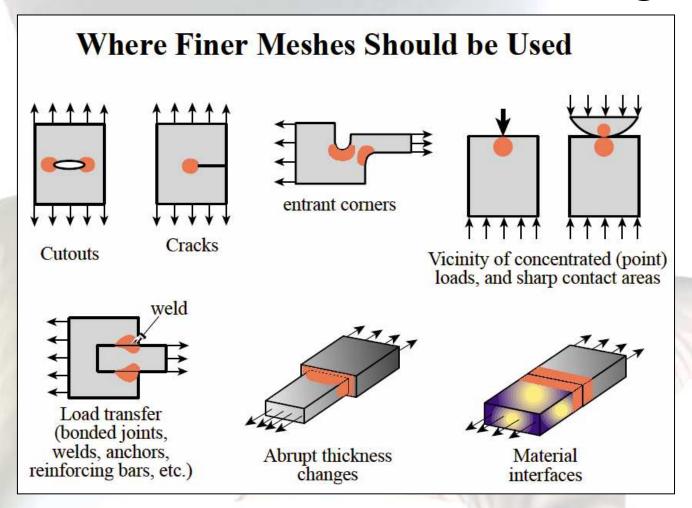
Finite Difference Method

- Approximate the solution domain by a discrete grid of uniformly spaced nodes
- System of algebraic equations with references to adjacent nodes
- Adaptive discretization is generally very difficult

Finite Element Method

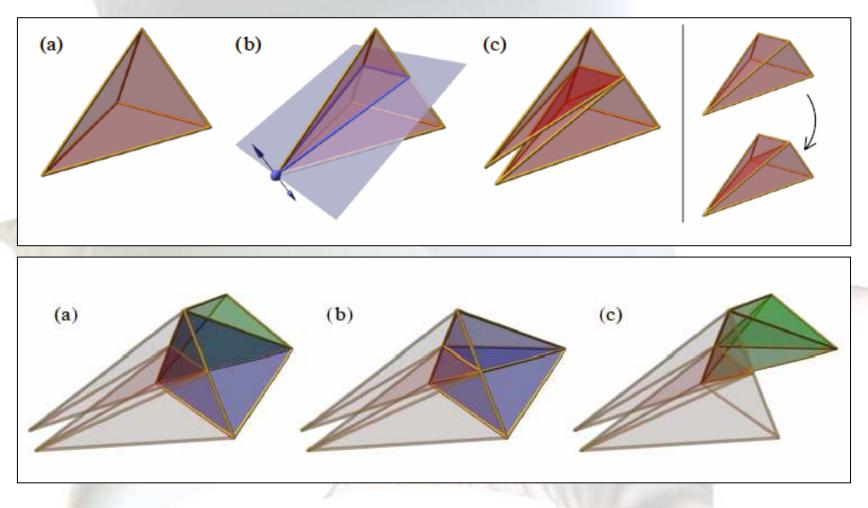
- More robust, accurate and with more mathematical background
- Discretize the solution domain by a number of uniform or non-uniform finite elements connected by nodes
- An interpolation function is used to approximate the change of the dependent variable

Finite Element Modeling



[http://titan.colorado.edu/courses.d/IFEM.d]

Finite Element Refinement



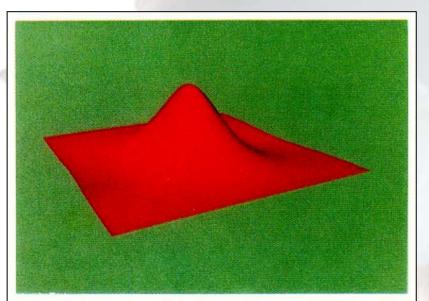
[O'Brien and Hodgins, SIGGRAPH 99]

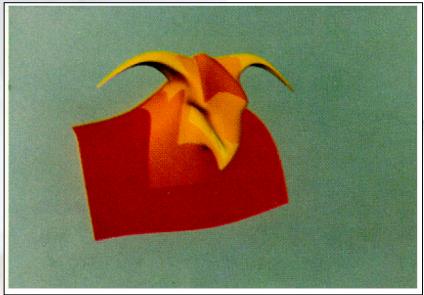
Previous Mesh Refinement Algorithms

- Split elements in isolation
 - Leads to incompatibility
- Element type dependant
- Lack of a general approach
- Implementation complexity

Previous Mesh Refinement Algorithms

Usage of hierarchical splines in an FE solver





[Forsey and Bartels, SIGGRAPH 88]

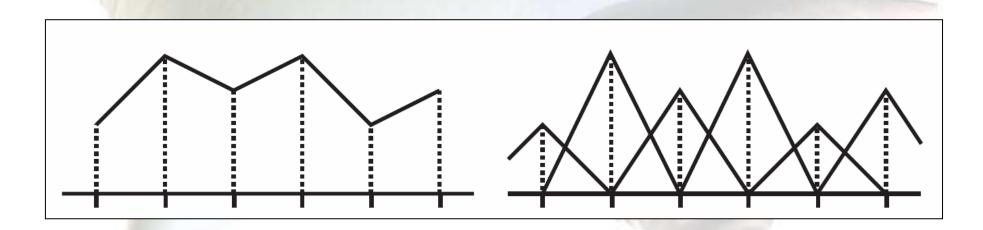
C.H.A.R.M.S.

- Conforming, Hierarchical, Adaptive Refinement Methods
- Basic principle: Refine basis functions, not elements
- Independent of:
 - Domain dimension (2D and 3D)
 - Element type (triangle, quad, tetrahedron, etc)
 - Basis function order
- Simple algorithms for refinement and unrefinement

Outline

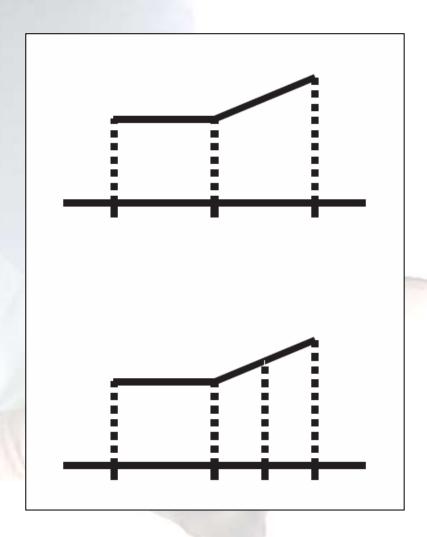
- Background
- Motivation (Element vs. Basis Refinement)
- Implementation
 - Definitions
 - Data Structures
 - Algorithms
- Example Applications
- Conclusion

- Piecewise linear approximation in 1D:
 - Finite Element: Linear interpolation between endpoints
 - Basis Function: Linear combination of linear Bspline functions



Element Refinement

- Refinement: Element bisection
- Un-refinement:
 Merge a pair of elements

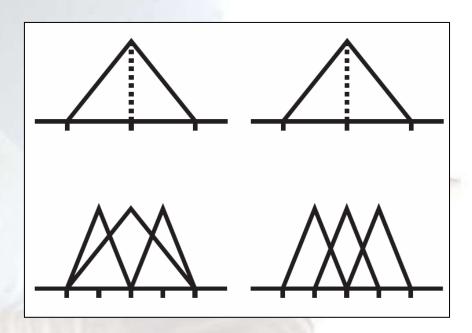


Basis Refinement

- Refinement: Add finer basis functions to reduce error
- Un-refinement: Remove the introduced functions

Basis Refinement

- Hierarchical: Add finer basis function in the middle of an element
- Quasi-hierarchical: Replace a basis function by three finer ones



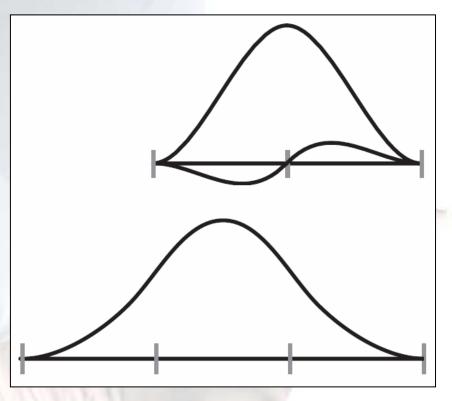
Higher order approximation in 1D:

• Finite Element:

- Hermite cubic splines: Can work on elements in isolation but increases the DOFs of our solution space
- Quadratic B-splines:
 Cannot work on elements in isolation because basis function overlaps more than one element

Basis Function:

Both can be refined



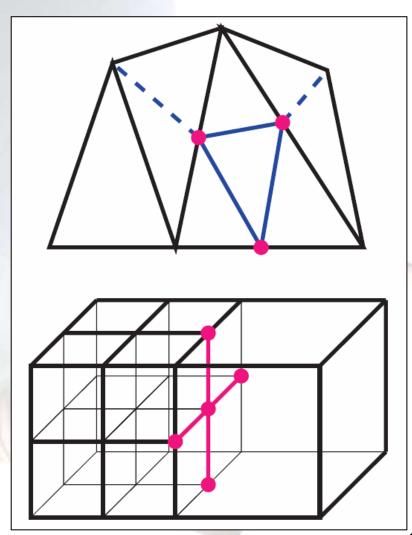
Piecewise linear approximation in **2D**:

Finite Element:

- Quadrisect big triangles
- Leads to T-vertices
- Fix by adding conforming edges

Basis Function:

- Quadrisect globally
- Get nodal basis functions



- Element refinement becomes impossible as the number of dimensions or approximation order is increased
- Basis refinement applies to any refinable function space (Refinable functions: coarser basis can be represented as a linear combination of finer basis functions)

Outline

- Background
- Motivation (Element vs. Basis Refinement)
- Implementation
 - Definitions
 - Data Structures
 - Algorithms
- Example Applications
- Conclusion

One Basic Framework

```
IntegratePDE

1 While t < t_{end}

2 predict: measure error and construct sets \mathcal{B}^+ and \mathcal{B}^-

3 adapt:

4 \mathcal{B} := \mathcal{B} \cup \mathcal{B}^+ \backslash \mathcal{B}^-

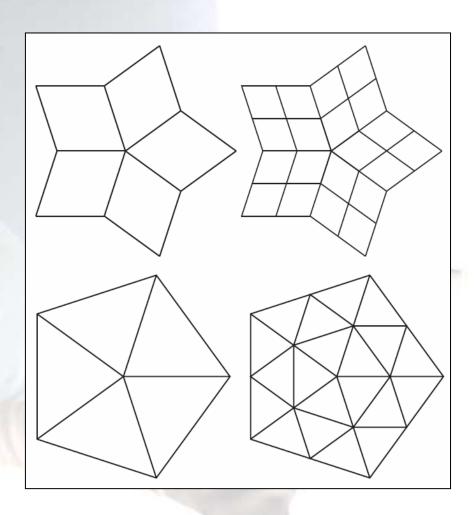
5 maintain basis: remove redundant functions from \mathcal{B}

6 solve: \mathbf{R}_t(\mathbf{u}_t) = \mathbf{0}

7 t := t + \Delta t
```

- Topological entities of a mesh:
 - Vertices, $V = \{ v_i \}$
 - Edges, $E = \{ e_i \}$
 - Faces, $F = \{ f_k \}$
 - Cells, $C = \{c_i\}$
- Mesh: triangle, quad, tetrahedra and hexahedra
- Element: faces or cells

- Coefficients used to associate the mesh with basis functions
- Coefficients may live at any of the topological entities, usually at the vertices
- Topological refinement operator: Splits topological entities to refine a mesh



- Coefficient refinement operator:
 - Computes coefficients for finer mesh
 - Based on coefficients from coarser mesh
 - Linear
 - Finitely supported
- Subdivision scheme: pairing of topological and coefficient refinement operators

- Even coefficients: live on vertices the finer mesh inherits from the coarser mesh
- Odd coefficients: live on newly created vertices

 Refinement relation: a basis function from a coarser level can be written as a linear combination of basis functions from the next finer level

$$\phi_i^{(j)}(x) = \sum_k a_{ik}^{(j+1)} \phi_k^{(j+1)}(x)$$

Children of a basis function:

$$\mathcal{C}(\phi_i^{(j)}) = \{\phi_k^{(j+1)} | a_{ik}^{(j+1)} \neq 0\}$$

Parents of a basis function:

$$\mathcal{C}^{\star}(\phi_i^{(j)}) = \{\phi_k^{(j-1)} | \phi_i^{(j)} \in \mathcal{C}(\phi_k^{(j-1)}) \}$$

- Natural support set $[S(\varphi_i^{(j)})]$:
 - Minimal set of elements at level j that contain the parametric support of the basis function
- Adjoint [S*(ε/)]:
 - Set of basis whose natural support contain ε/

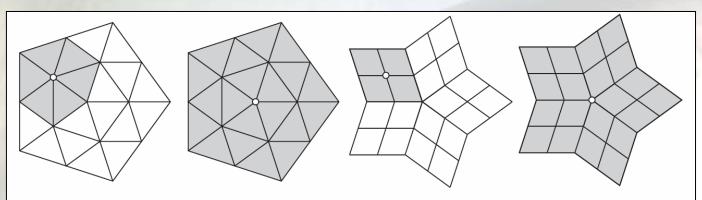


Figure 7: Examples of natural support sets. Left to right: linear splines, Loop basis, bilinear spline, and Catmull-Clark basis.

- Descendants of an element $[D(\varepsilon_i^j)]$:
 - Elements at levels > j which have non-zero intersection with the given element
- Adjoint [D*(ε/)]:
 - Ancestor relation

Data Structures

- Set of active basis functions: B
- Set of active integration elements: ε
- Set of active functions that overlap an element:
 - Same level: $B^{s}(\varepsilon)$
 - Ancestor levels: $B^a(\varepsilon)$

Data Structures

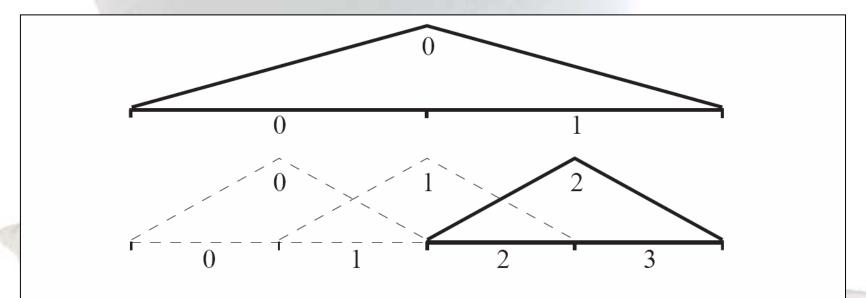


Figure 8: Illustrative example of the data structures. Shown in bold are a pair of active basis functions on mesh levels 0 and 1. The associated data structures are: $\mathcal{B} = \{\phi_0^{(0)}, \phi_2^{(1)}\}, \mathcal{E} = \{\varepsilon_0^0, \varepsilon_2^1, \varepsilon_3^1\}, \mathcal{E} = \{\varepsilon_0^0, \varepsilon_$

 Compute the stiffness matrix (for the FE solver) by iterating over active elements and computing local interactions

```
\begin{array}{|c|c|c|} \hline \textbf{ComputeStiffness}(\mathcal{E}) \\ \textbf{1} & \textbf{ForEach } \varepsilon \in \mathcal{E} \textbf{ do} \\ \textbf{2} & \textbf{ForEach } \phi \in B^s(\varepsilon) \textbf{ do} \\ \textbf{3} & k_{\phi\phi} += \textbf{Integrate}(\phi,\phi,\varepsilon) \\ \textbf{4} & \textbf{ForEach } \psi \in B^s(\varepsilon) \setminus \{\phi\} \textbf{ do} \\ \textbf{5} & k_{\phi\psi} += \textbf{Integrate}(\phi,\psi,\varepsilon) \\ \textbf{6} & k_{\psi\phi} += \textbf{Integrate}(\psi,\phi,\varepsilon) \\ \textbf{7} & \textbf{ForEach } \psi \in B^a(\varepsilon) \textbf{ do} \\ \textbf{8} & k_{\phi\psi} += \textbf{Integrate}(\phi,\psi,\varepsilon) \\ \textbf{9} & k_{\psi\phi} += \textbf{Integrate}(\psi,\phi,\varepsilon) \\ \end{matrix}
```

 Over the solution process, basis functions are activated and deactivated

```
\begin{array}{lll} \mathbf{Activate}(\phi) \\ 1 & \mathcal{B} \ \cup = \ \{\phi\} \\ 2 & \mathbf{ForEach} \ \varepsilon \in \mathcal{S}(\phi) \ \mathbf{do} \\ 3 & B^s(\varepsilon) \ \cup = \ \{\phi\} \\ 4 & // \ \text{upon activation initialize ancestor list} \\ 5 & \mathbf{If} \ \varepsilon \notin \mathcal{E} \ \mathbf{then} \ B^a(\varepsilon) \ \cup = \ \mathbf{Ancestor}(\varepsilon) \ ; \ \mathcal{E} \ \cup = \ \{\varepsilon\} \ \mathbf{fI} \\ 6 & // \ \text{add to ancestor lists of active descendants} \\ 7 & \mathbf{ForEach} \ \gamma \in (\mathcal{D}(\varepsilon) \cap \mathcal{E}) \ \mathbf{do} \ B^a(\gamma) \ \cup = \ \{\phi\} \\ \\ \mathbf{Ancestor}(\varepsilon) \\ 1 & \rho := \emptyset \\ 2 & \mathbf{ForEach} \ \gamma \in \mathcal{D}^*(\varepsilon) \cap \mathcal{E} \ \mathbf{do} \\ 3 & \rho \ \cup = \ B^s(\gamma) \cup B^a(\gamma) \\ 4 & \mathbf{return} \ \rho \\ \end{array}
```

```
\begin{array}{lll} \textbf{Deactivate}(\phi) \\ \textbf{1} & \mathcal{B} \setminus = \{\phi\} \\ \textbf{2} & \textbf{ForEach } \varepsilon \in \mathcal{S}(\phi) \textbf{ do} \\ \textbf{3} & B^s(\varepsilon) \setminus = \{\phi\} \\ \textbf{4} & \textit{// deactivate element?} \\ \textbf{5} & \textbf{If } B^s(\varepsilon) = \emptyset \textbf{ then } \mathcal{E} \setminus = \{\varepsilon\} \\ \textbf{6} & \textit{// update ancestor lists of active descendants} \\ \textbf{7} & \textbf{ForEach } \gamma \in \mathcal{D}(\varepsilon) \cap \mathcal{E} \textbf{ do } B^a(\gamma) \setminus = \{\phi\} \end{array}
```

Assuming we have an appropriate error estimator we can have adaptive solver strategies on top of activate

```
HierarchicalRefine(\phi)
```

- 1 For Each $\psi \in \mathcal{C}(\phi)$ do
- If $\psi \notin \mathcal{B} \wedge \text{Odd}(\psi)$ then Activate (ψ) ; $u_{\psi} := 0$ fI

HierarchicalUnrefine(ϕ)

- 1 ForEach $\psi \in \mathcal{C}(\phi)$ do
- 2 If $\psi \notin \mathcal{B} \wedge \mathrm{Odd}(\psi)$ then Deactivate(ψ)

QuasiHierarchicalRefine(ϕ)

- 1 **Deactivate**(ϕ)
- 2 ForEach $\psi \in \mathcal{C}(\phi)$ do
- If $\psi \notin \mathcal{B}$ then Activate (ψ) ; $u_{\psi} := 0$ fI
- $u_{\psi} += a_{\phi,\psi} u_{\phi}$

QuasiHierarchicalUnrefine (ϕ)

- 1 **Activate**(ϕ); initialize u_{ϕ}
- 2 For Each $\psi \in \mathcal{C}(\phi)$ do
- If $\psi \notin \mathcal{B}$ then Deactivate(ψ)

- Things to add to complete a simulator:
 - Standard solvers for the resulting algebraic systems
 - Appropriate error estimators
 - A numerical integration routine

Outline

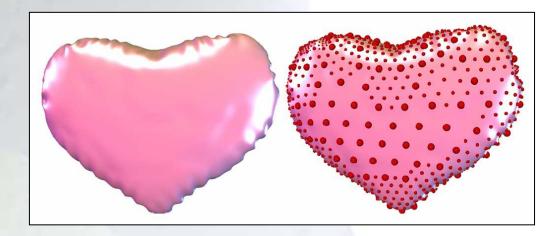
- Background
- Motivation (Element vs. Basis Refinement)
- Implementation
 - Definitions
 - Data Structures
 - Algorithms
- Example Applications
- Conclusion

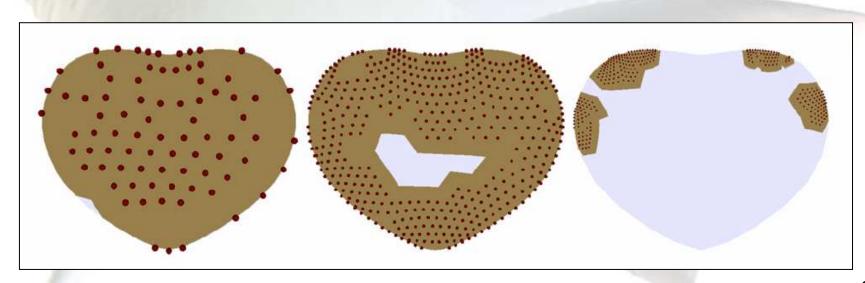
Example Applications

- Application domains:
 - Animation
 - Modeling
 - Engineering
 - Medical simulation/visualization

Example Application: Thin-Shells

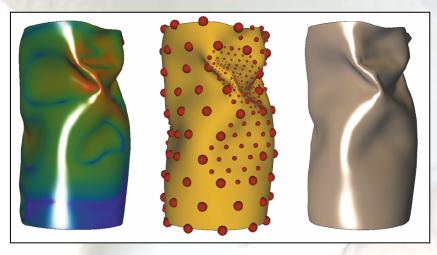
- Inflating balloon
- Poking balloon

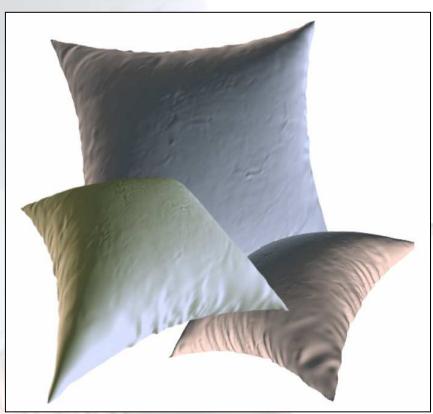




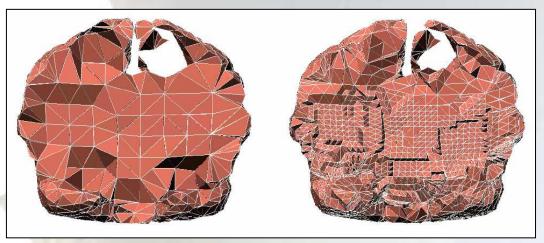
Example Application: Thin-Shells

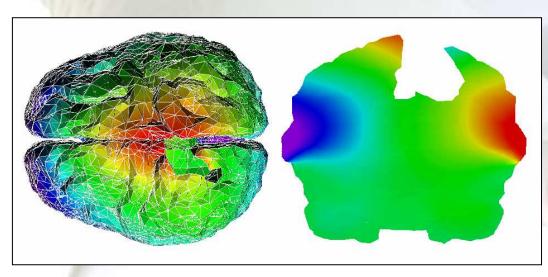
- Pillows
- Crushing cylinder

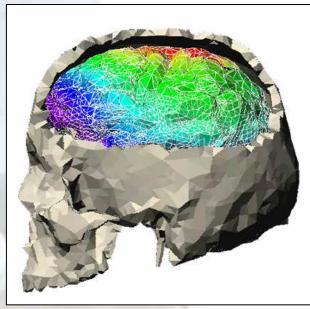




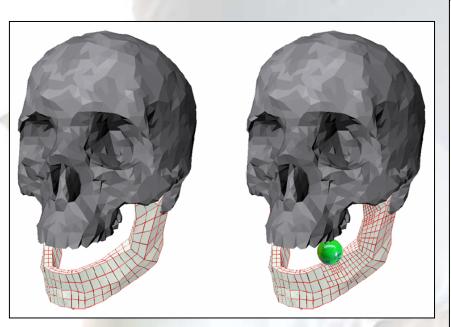
Example Application: Surgery Aid

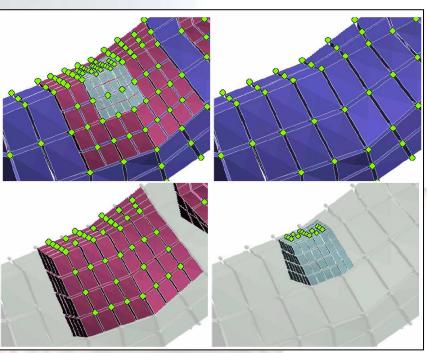






Example Application: Human Jaw





Conclusion

- Simple framework for constructing adaptive solvers for PDEs
- Applications in CG, engineering and biomedical computing
- Uses refinability of basis functions
- Easy implementation
- No element-wise compatibility issues
- Avoids popping in animation during refinement