CS667 Lecture 12: Volume Rendering Equation 3 March 2004

Adam Arbree Lecturer: Steve Marschner

1 The Scattering Equation

Last class, we derived the scattering equation:

(w-V)L(z,w) + o(z) L(z,w) = e(z,w) + Us(x)/ p(r,w,w")L(z,w") dw’ (1)
S2
This equation is an integro-differential and is not easy to evaluate. However, if we restrict the solution of
the equation, as in Figure 1, to find only the radiance at a point, x, in a particular direction, wg. Then
the equation only depends on the points along the ray that connects x to some point y = ¥ (z, —wg) with
emittance, L., and where ¥(x,w) is the ray casting function!. In this domain, the equation can be solved
as an ordinary differential equation.

Figure 1: Restrict the solution of the scattering equation to a
simpler domain, the ray between x and y.

2 Derivation of the Volume Rendering Equation

First, we must parameterize = as the distance ¢ from a point y in direction wp. Since the direction of the ray
is fixed, wg, the important functions in the scattering equation are reduced to smaller functions of .

x(t) = y—+wgot
L(t) = L(z(t),wo)
Lt,w') = L(z(t),w)
or(t) = oe(2(t))
€(t) = e(x(t),wo)
os(t) = os(xz(t))
p(t,w) p(a(t), wo,w’)

1 (z,w) is a function that returns the first visible object from x in direction w.



The scattering equation can then be written as:
L(t) + oo L(E) = e(t) + os (1) / Pt ) L(t, o) du’ @)
52
Even though the right hand side of (2) still contains an integral, it’s a definite integral over the sphere and
only has a dependence on ¢ and not w’ and more importantly, it does not depend on L(t), i.e. L(t,wp) only

makes and infinitesimal (measure 0) contribution to the integral. For simplicity, we can replace the entire
right hand side of (2) with a single function of ¢.

o(t) = €(t) + o5 (1) /S (1) L)
Finally, letting y(¢) = L(t) and p(t) = o+(t) and dropping the function parameters, (2) becomes simply:
v +py=q 3)
2.1 Only Absorbtion: ¢ =0

If the medium neither emits nor scatters light, ¢ = 0, and (3) reduces to the homogeneous equation:

y +py=0

The solution in the homogeneous case is relatively simple:

y+py = 0
y
— = D
Yy
y/
/—dt = —/pdt
Y
Iny+c = —/pdt
y = Ce Jrdt

Replacing the many variable substitutions that have been done, this final equation? becomes:
L(z,w) = Cebs 7™
From the boundary conditions, L(y,w) = L.(y,w) and this defines the constant C.
L(y,w) = Cebs 7O — 0 = € = L (y,w)
The final homogeneous solution becomes:

L(z,w) = Le(y, w)efs 70 & .

The interpretation of this equation is that the radiance is the same as would be seen in the absence of
the medium, L.(y,w), but attenuated by the absorbtion that occurs between the surface point, y, and the
observation point, x.

2The term ﬁj o¢(t) dt in this equation is shorthand for the integral of o¢(¢) on the straight line path from the point y to the

point x, or more precisely, fg‘m7y|| ot(y + wt) dt



2.2 Absorbtion and Scattering

To solve the complete version of (3), we will find functions p and g so that the original equation can be
rewritten as

(hy)' =g
By expanding the above:

(ny)" =
py' + 'y =

/

9
9
y+ty = 2
p p

And equating these coefficients with those of (3) and some calculus:

= p=elrd

= g=pqg=qel?®

With these coefficients in hand, we can solve:

(ny) = g
wy = /gdt+C
[gdt+C
y JgaTt
7!
_ Jgdt+C
7!

With the substitution of the original values and a change of variable names to preserve the correct evaluation
of the nested integrals, this becomes:

Jgdt+C
w
fot q(x)e Jo p) de’ qo 4
oS p(a) da’

t
/ g(2)e I3 P A [T G da’ gy | o I pG) da
0

<

—~
~

~

t
y(t) = / q(x)e_ffp(x') da’ da?+Ce_fJP($') !
0

Finally, the original substitutions can be replaced and the boundary conditions can be used to set C' (As in
the homogeneous case, C equals the light emitted from y in w).



e / e (dxl) T Us(x,>/ p(@ ' w)L(z', W) dw/) dz’
y 5
+ Le (y7 w)e_ f: oi(z’) da’ (5)

However this form is not very intuitive. Lets define a attenuation function that describes the loss of light
due to both absorbtion and scattering from a point y to a point x:

a(z,y) = o 2 oul e

With this function and some rearragement of (5), we get the final form of the Volume Rendering Equation:

L(z,w) = /1’ a(z, 2 )e(z’) dz’ + /y a(z, 2" )os(z") /52 p(r', W w)L(2" W) dw' d2’ + a(z,y)Le(y,w)  (6)

The three terms of (6) each represent a different contribution to the final rediance. The first term is the
radiance emitted from the field that reaches z in direction w. The second term represents the radiance
scattered from the field towards z. Finally, the third term represents the emitted radiance from the surface
at y that reaches x. All terms are attentuated dependent on their distance from x. A much closer analog to
the orignal rendering equation can be seen with a few more renamings. Let:

Bw) = [ alos)e) ' + alay)Lely.o)
y
K(z,7' ,w,0') = a(z,2)os(z")p(z', w)
Then rewrite (6) as:
L(z,w) = E(z,w) —l—/ K(z,2 ,w,w)L(z',w'") dw' dz’; (7)
y 452

In this final form, the analogy to the original rendering equation becomes clear. The radiance at a point x
in direction w equals the sum of E, the radiance emitted from x in w, plus the integral of radiance over all
other points and directions that contribute to the radiance at x in w scaled by some transfer function K.



