CS667 Lecture 8: Path Tracing and Photon Mapping I 19 February 2004

Andy Scukanec Lecturer: Steve Marschner

1 Path Tracing

So far, all of the algorithms we have discussed have been able to handle certain cases of light transport, but
not others. The types of paths that each algorithm could handle can be thought of being represented as
some number of diffuse and specular bounces that the light goes through between its source and the eye (or
camera if you prefer). This can be represented as a regular expression: L (S | D)* E.

’ Path Type \ Algorithm ‘
LD?S*E Ray tracing
L D* S*E Radiosity with Final Gather
LD*E Radiosity without Final Gather
LD+ S*E Path Tracing
L[(S| D)* D D]? D* S* E | Bidirectional Path Tracing

e Ray tracing can follow rays along an infinite number of specular bounces from the eye, then
assumes that light interacts diffusely with the surface.

e Pure radiosity assumes everything is diffuse, and as a result can only handle paths that have
diffuse bounces.

e Radiosity with a final gather allows any number of diffuse bounces to be followed by any
number of specular bounces in going from the source to the eye.

e Path Tracing has issues with some particularly difficult to find paths: essentially it cannot
usefully handle specular to diffuse transport paths.

e Bidirectional tracing tries to alleviate these problems by splitting the path into a prefix and
a suffix. This allows important paths to be found in more cases.

As a reminder, we were able to formulate the rendering equation by using a rendering operator R. This
operator was itself defined as a function of two linear operators K and G:

R=(I-KG)'

We arrived at this definition by simplifying the following equation for radiance transport:

L. = L°+KGL,
L. = I-KG)'L?
L. = RIL?

By expanding R using the infinite series expansion, we can approximate the true operator using a sum of
integrals, one for each power of KG.

R I-KG) ' =1+KG + (KG)*...
WO RLY) = (WO LY + (W° KGL?) + (W°, (KG)* LY +

[e [f wef gomos | /H wef 10 [500+

This of course can be used directly in simulating probabilistic radiance transport. We pick a point in each
domain, evaluate the transport along that path, and use that as an estimate of the integral. There is an
analogy here to Markov Chains. The original path tracer blindly walked from the eye through the scene.
Most path tracers do a direct illumination calculation at each bounce and use the above method to estimate
indirect illumination effects. Bi-directional path tracers trace a path from the light and from the eye and
join up each pair of segments. Still, there are some paths that are particularly pathological (ie — water in a
pool, or the table underneath a wine glass, L S* D S* E).

2 Photon Mapping

Photon mapping provides a way to handle many of the paths that are difficult for path tracing, but introduce
bias. The photon mapping solution is to first propogate rays from the light source and deposit ‘photons’
at hit points. During a second rendering pass, the indirect lighting can then be calculated at a point by
estimating the photon density within some area near the point of interest.

There are some design issues to be considered - should the photons play russian roulette along their paths
to determine whether to continue to propogate or not? Should the power of the photon be adjusted at each
bounce? There are two basic ways to handle photon mapping:

1. At each diffuse bounce, play russian roulette to determine if you continue to propogate or not. This
russian roulette probability is proportional to the directional-hemispherical reflectance of the BRDF
the photon just hit. If the photon is not absorbed, do another bounce. In either case, deposit a photon.

2. At each diffuse bounce, deposit a photon with the current power. Then attenuate the power by the
BRDF at that point and continue. Stop when the power is lower than some e.

Note that in both options, specular bounces are handled without any depositing of photons or termination
of the bounce.

This technique will handle paths of the form L (S | D)* D+ S* E. Adding in a ray tracing solution (similar
to the final gather performed for radiosity) would allow paths of the form L S* E as well.

Photon data to be stored, and the size:

| Data Stored \ Size |
Position (in R?) 4 bytes * 3 = 12
Incident Direction (spherical) 1 byte * 2 = 2
Power (in RGBe format) 1 byte * 4 =4
2 flag bytes 1 byte *2 =2

| Total \ 20 |

There can be problems in the photon mapping algorithm if the implementation does not consider what
happens at corners and back sides of geometry. The second problem is easily solved by storing directions of
the photon, and not counting its contribution if its 180° out.

The corner problem, illustrated by the picture below, is difficult to solve without remeshing the floor surface
so that photons can’t “bleed” across the wall (which is acting like a blocker).

(i\

radmg of mtluence
of photon

2.1 Estimating Power using Photon Density

The problem of estimating power across a surface from nearby photons is really just a sampling theory prob-
lem. Given nearby evaluations of some function, we want to reconstruct our best guess as to what the function
was at some point which is not necessarily a direct sample of the function. We can weight contributions us-
ing box or cone filters, or something more sophisticated like a gaussian, but its all really just sampling theory.

We want to obtain something like a weighted density estimation. We can divide the photons into bins to get
a histogram of sorts, but this isn’t really what we want.

We could average out the number of photons ‘near’ our point x. This gives us a simple formula for computing

the density of the photons ...
1 # of photons in A

where N is the total number of photons. This is an estimate of the probability of a photon that started at
the source winds up in the area A around a particular point. We could also come up with something a little
bit more generic ...

Px) = 5 3 hlx =)

and put the restraint on A that it must integrate to 1. The first equation then is just a special form of the sec-
ond. The second equation allows us to weight photons arbitrarily (presumably higher as they get closer to x).

Finally, we have our estimate of irradiance, given the photon density, which can be converted to an estimate
of radiance:

B0 = #569)
= Nzhﬂx—xﬂ)
- Zq;hux—xib
Le(x) = ifr()@ih(lxml)

Note: x in the equations above is actually a 3D vector, meaning that there has to be some way of storing
and retrieving arbitrary 3 dimensional points. A KD-Tree or some other acceleration structure works great
for this sort of application.

Note: The ®; is for the weighted photon version, where the weight of each photon is attenuated at each
bounce. For unweighted photons, each accounts for the power % where @ is the total power of the source.
For variable weight, we generalize this to a power ®; per photon; in the unweighted case ®; = % for all .

