Lecture 10: Monte Carlo Rendering

Chapters 4, 5 and 7 in Advanced GI

Fall 2004 Kavita Bala Computer Science Cornell University

Direct paths

- · Different path generators produce different estimators and different error characteristics
- · Direct illumination general algorithm:

```
compute_radiance (point, direction)
      est_rad = 0;
       for (i=0; i<n; i++)
              p = generate_path;
              est_rad += energy_transfer(p) / probability(p);
       est rad = est rad / n;
```

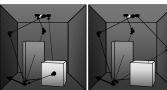
© Kavita Bala, Computer Science, Cornell University

Indirect Illumination

- Paths of length > 1
- · Many different path generators possible
- · Efficiency depends on:
 - BRDFs along the path
 - Visibility function

© Kavita Bala, Computer Science, Cornell University

Indirect paths



return(est rad);

Surface sampling

can be 0

Source shooting - 2 visibility terms;

Receiver gathering

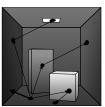
- 1 visibility term

© Kavita Bala, Computer Science, Cornell University

- 1 ray intersection
- 1 visibility term - 1 ray intersection

More variants ...

- · Shoot ray from receiver point, find hit location
- · Shoot ray from hit point, check if on light source



per path:

- 2 ray intersections
- L_e might be zero

C Kavita Bala, Computer Science, Cornell University

Indirect paths

- Same principles apply to paths of length > 2
 - generate multiple surface points
 - generate multiple bounces from light sources and connect to receiver
 - generate multiple bounces from receiver and connect to light sources
- Estimator and noise characteristics change with path generator

Indirect paths

© Kavita Bala, Computer Science, Cornell University

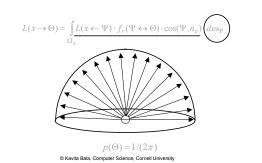
Stochastic Ray Tracing

- · Sample direct term
- Sample hemisphere with random rays for indirect term
- · Optimizations:
 - Stratified sampling
 - Importance sampling
 - Combine multiple probability density functions into a single PDF

© Kavita Bala, Computer Science, Cornell University

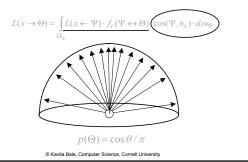
Sampling strategies

· Uniform sampling over the hemisphere



Sampling strategies

· Sampling according to the cosine factor



Sampling strategies

· Sampling according to the BRDF

$$L(x \to \Theta) = \int\limits_{\Omega_x} \underline{L(x \leftarrow \Psi)} \underbrace{f_r(\Psi \leftrightarrow \Theta)} \underbrace{\cos(\Psi, \eta_x)} \cdot d\omega_\Psi$$

$$p(\Theta) \sim f_r(\Theta \leftrightarrow \Psi)$$

$$\bullet \text{ Kavita Bala, Computer Science, Cornell University}$$

Example: sample according to BRDF

• Discrete pdf q_1 , q_2 , q_3 $q_1 + q_2 + q_3 = 1$

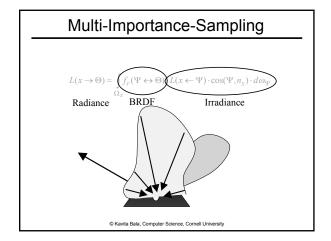
$$\begin{split} L_{\textit{indirect}} &= L_{\textit{diffuse}} + L_{\textit{specular}} \\ & \left\langle L_{\textit{indirect}} \right\rangle = \begin{cases} \frac{L(x \leftarrow \Psi_i) k_d \cos(N, \Psi_i)}{q_1 p_1(\Psi_i)} \mid \xi < q_1 \\ \\ \frac{L(x \leftarrow \Psi_i) k_s \cos^n(R, \Psi_i) \cos(N, \Psi_i)}{q_2 p_2(\Psi_i)} \mid q_1 \leq \xi < q_1 + q_2 \end{cases}$$

Sampling strategies

 Sampling according to the BRDF times the cosine

$$L(x \to \Theta) = \int_{\Omega_x} L(x \leftarrow \Psi) \underbrace{f_r(\Psi \leftrightarrow \Theta) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}}_{\Omega_x}$$

$$p(\Theta) \sim f_r(\Theta \leftrightarrow \Psi) \cos \theta$$

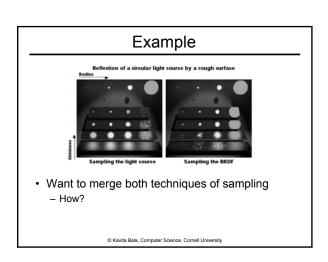


Importance Sampling

© Kavita Bala, Computer Science, Cornell University

- Say we want to sample according to cosine term, BRDF,
- How do we blend the different sampling algorithms together?

© Kavita Bala, Computer Science, Cornell Universit



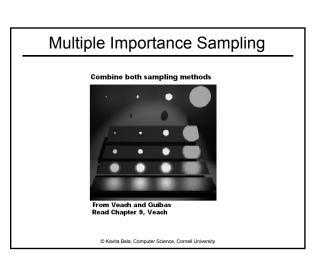
Balance Heuristic

- Two sampling techniques: jth sample
 - $-X_{1,j}$ with pdf $p_1(x)$, $X_{2,j}$ with pdf $p_2(x)$
 - Estimator Y_i for jth sample

$$Y_{1,j} = \frac{f(X_{1,j})}{p_1(X_{1,j})} \qquad Y_{2,j} = \frac{f(X_{2,j})}{p_2(X_{2,j})}$$

$$Y_j = w_1 Y_{1,j} + w_2 Y_{2,j}$$

$$w_1(x) = \frac{p_1(x)}{p_1(x) + p_2(x)} \qquad w_2(x) = \frac{p_2(x)}{p_1(x) + p_2(x)}$$



Efficiency

 $Efficiency \propto \frac{1}{Variance \bullet Cost}$

- Some techniques:
 - Importance sampling
 - Sampling patterns
 - Stratified, Quasi-Monte Carlo
 - Many others

© Kavita Bala, Computer Science, Cornell University

General GI algorithm

- · Design path generators
- Path generators determine efficiency of global illumination algorithm
- Black boxes
 - evaluate brdf, L_e
 - ray intersection
 - visibility evaluation

© Kavita Bala, Computer Science, Cornell University

Other Rendering Techniques

- · Bidirectional Path Tracing
- · Metropolis
- Biased Techniques
 - Irradiance caching
 - Photon Mapping

© Kavita Bala, Computer Science, Cornell University

Stochastic ray tracing: limitations

Generate a path from the eye to the light source

© Kavita Bala, Computer Science, Cornell University

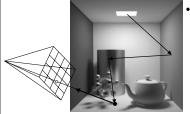
When does it not work?

Scenes in which indirect lighting dominates

© Kavita Bala, Computer Science, Cornell University

Bidirectional Path Tracing

• So ... we can generate paths starting from the light sources!



 Shoot ray to camera to see what pixels get contributions

Bidirectional Path Tracing

· Or paths generated from both camera and source at the same time ...!

Connect endpoints to compute final contribution

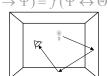
Complex path generators

- · Bidirectional ray tracing
 - shoot a path from light source
 - shoot a path from receiver
 - connect end points

Why? BRDF - Reciprocity

 Direction in which path is generated, is not important: Reciprocity

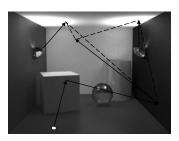
$$f(\Psi \to \Theta) = f(\Theta \to \Psi) = f(\Psi \leftrightarrow \Theta)$$



- Algorithms:
 - trace rays from the eye to the light source
 - trace rays from light source to eye
 - any combination of the above

© Kavita Bala, Computer Science, Cornell University

Bidirectional path tracing



© Kavita Bala, Computer Science, Cornell University

Bidirectional ray tracing

- Parameters
 - eye path length = 0: shooting from source
 - light path length = 0: gathering at receiver
- · When useful?
 - Light sources difficult to reach
 - Specific brdf evaluations (e.g., caustics)

© Kavita Bala, Computer Science, Cornell University

Classic ray tracing?

- Shoot shadow-rays (direct illumination)
- · Shoot perfect specular rays only for indirect
- Ignores many paths
 - Does not solve the rendering equation

Other Rendering Techniques

- · Metropolis
- Biased Techniques
 - Irradiance caching
 - Photon Mapping

© Kavita Bala, Computer Science, Cornell Universit

Metropolis

- Based on Metropolis Sampling (1950s)
- · Introduced by Veach and Guibas to CG
- Deals with hard to find light paths
 - Robust
- · Hairy math, but it works
 - Not that easy to implement

C Kavita Bala, Computer Science, Cornell University

Metropolis

- · Generate paths
- Once a valid path is found, mutate it to generate new valid paths
- · Advantages:
 - Path re-use
 - Local exploration
 - Insight: found hard-to-find light distribution, mutate to find other such paths

© Kavita Bala, Computer Science, Cornell University

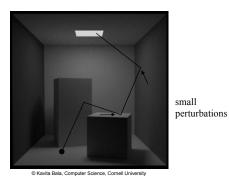
Metropolis O Kavita Bala, Computer Science, Cornell University

Metropolis

valid path

© Kavita Bala, Computer Science, Cornell University

Metropolis



Metropolis

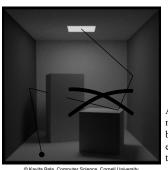
small perturbations

Metropolis

mutations

© Kavita Bala, Computer Science, Cornell University

Metropolis



Accept mutations based on energy transport

Metropolis

© Kavita Bala, Computer Science, Cornell University

Metropolis

- Advantages
 - Robust
 - Good for hard to find light paths
- · Disadvantages
 - Slow
 - Tricky to implement and get right

© Kavita Bala, Computer Science, Cornell University

Unbiased vs. Consistent

- Unbiased
 - No systematic error
 - $-E[I_{estimator}] = I$
 - Better results with larger N
- · Consistent
 - Converges to correct result with more samples
 - $\, \text{E}[\text{I}_{\text{estimator}}] = \text{I} + \epsilon \, \, \, \text{where} \, \, \text{lim}_{\text{N} \, \rightarrow \infty} \, \epsilon = 0$

Biased Methods

- · MC problems
 - Too noisy/slow
 - Noise is objectionable
- Biased methods: store information (caching)
 - Better type of noise: blurring
 - Greg Ward's Radiance
 - Photon Mapping
 - Density Estimation

© Kavita Bala, Computer Science, Cornell University

Irradiance Caching

- · Introduced by Greg Ward 1988
- Implemented in RADIANCE
 - Public-domain software
- · Exploits smoothness of irradiance
 - Cache and interpolate irradiance estimates

Kavita Bala, Computer Science, Cornell University

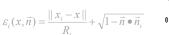
Irradiance Caching Approach

- Irradiance E(x) estimated using MC
- · Cache irradiance when possible
- · Store in octree for fast access
- When do we use this cache of irradiance values?

© Kavita Bala, Computer Science, Cornell University

Smoothness Measure

- · When new sample requested
 - Query octree for samples near location
 - Check ε at x, x_i is a nearby sample



- Weight samples inversely proportional to ε_i

$$E(x, \vec{n}) = \frac{\sum_{i, w_i > 1/a} w_i(x, \vec{n}) E_i(x_i)}{\sum_{i, w_i > 1/a} w_i(x, \vec{n})}$$

- Otherwise, compute new sample

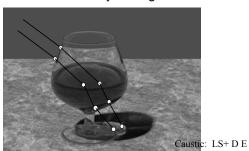
© Kavita Bala, Computer Science, Cornell University

Radiance Examples

Radiance: Example

Photon Map

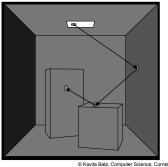
- · Build on irradiance caching
- · Use bidirectional ray tracing



Photon Map

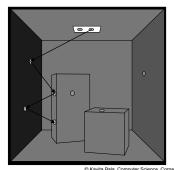
- · 2 passes:
 - shoot "photons" (light-rays) and record any hit-points
 - shoot viewing rays, collect information from stored photons

Pass 1: shoot photons



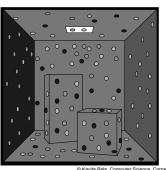
- Light path generated using MC techniques and Russian Roulette
- Store:
 - position
 - incoming direction
 - color

Pass 1: shoot photons



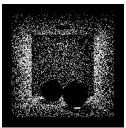
- Light path generated using MC techniques and Russian Roulette
- · Store:
 - position
 - incoming direction
 - color
 - ...

Pass 1: shoot photons

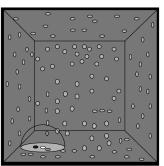


- Light path generated using MC techniques and Russian Roulette
- Store:
 - position
 - incoming direction
 - color

Pass 1: shoot photons



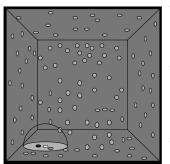
Pass 2: viewing ray (naive)



- Search for N closest photons
- Assume these photons hit the point we're interested in
- Compute average radiance

C Kavita Bala, Computer Science, Cornell University

Pass 2: viewing ray (better)



- Search for N closest photons (+check normal)
- Assume these photons hit the point we're interested in
- Compute average radiance

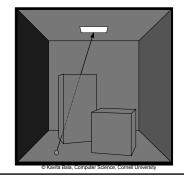
Kavita Bala, Computer Science, Cornell Universit

Efficiency

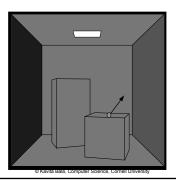
- · Want k nearest photons
 - Use Balanced kd-tree
- Using photon maps as is create noisy images
 - Need EXTREMELY large amount of photons
- Filtering techniques can be used with different type of kernels
- The filtered results often look too blurry !!!

© Kavita Bala, Computer Science, Cornell Universit

Pass 2: Direct Illumination



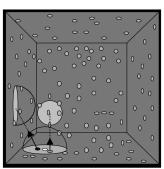
Pass 2: Specular reflections



Pass 2: Caustics

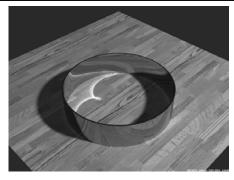
- Direct use of "caustic" maps
 - The "caustic" map is similar to a photon map but treats LS*D path
 - Density of photons in caustic map usually high enough to use as is

Pass 2:Indirect Diffuse

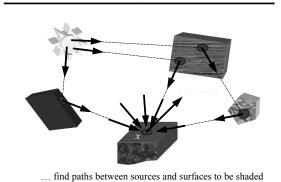


- · Search for N closest photons
- Assume these photons hit the point
- Compute average radiance by importance sampling of hemisphere

Photon Map Results



Summary of MC



MC Advantages

- Convergence rate of $O(\frac{1}{\sqrt{N}})$
- Simple
 - Sampling
 - Point evaluation
 - Can use black boxes
- General
 - Works for high dimensions
 - Deals with discontinuities, crazy functions,...

© Kavita Bala, Computer Science, Cornell University

MC integration - Non-Uniform

© Kavita Bala, Computer Science, Cornell University

 Generate samples according to density function p(x)

$$\langle I \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)}$$

- · Some parts of the integration domain have higher importance
- What is optimal p(x)?

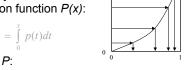
$$p(x) \approx f(x) / \int f(x) dx$$

© Kavita Bala, Computer Science, Cornell University

Non-Uniform Samples

- · 1) Choose a normalized probability density function p(x)
- 2) Integrate to get a probability distribution function P(x):

• 3) Invert P:



Note this is similar to going from y axis to x in discrete case!

How to compute?

 $L(x\rightarrow\Theta) = ?$

Check for $L_e(x\rightarrow \Theta)$

Now add $L_r(x \rightarrow \Theta) =$

 $\int f_r(\Psi \leftrightarrow \Theta) \cdot L(x \leftarrow \Psi) \cdot \cos(\Psi, n_x) \cdot d\omega_{\Psi}$

C Kavita Bala, Computer Science, Cornell University

How to compute? Recursion ...

- Recursion
- Each additional bounce adds one more level of indirect light

- · Handles ALL light transport
- · "Stochastic Ray Tracing"

© Kavita Bala, Computer Science, Cornell University

Russian Roulette

- Terminate recursion using Russian roulette
- Pick some 'absorption probability' α
- probability 1- α that ray will bounce
 - estimated radiance becomes L/ $(1-\alpha)$
- E.g. α = 0.9
 - only 1 chance in 10 that ray is reflected
 - estimated radiance of that ray is multiplied by 10
- Intuition
 - instead of shooting 10 rays, we shoot only 1, but count the contribution of this one 10 times

© Kavita Bala, Computer Science, Cornell University

Stochastic Ray Tracing

- · Parameters?
 - -# starting rays per pixel
 - # random rays for each surface point (branching factor)
- Branching factor = 1: path tracing

© Kavita Bala, Computer Science, Cornell Universit

Higher Dimensions

· Stratified grid sampling:

 $\rightarrow N^d$ samples

· N-rooks sampling:

 $\rightarrow N$ samples

© Kavita Bala, Computer Science, Cornell University

Quasi Monte Carlo

- · Converges as fast as stratified sampling
 - Does not require knowledge about how many samples will be used
- Using QMC directions evenly spaced no matter how many samples are used
- Samples properly stratified-> better than pure MC

Next Event Estimation

$$L(x \rightarrow \Theta) = L_e + L_{direct} + L_{indirect}$$

$$=L_e+\int\limits_{\Omega_x} \cdot f_r \cdot \cos + \int\limits_{\Omega_x}$$

 So ... sample direct and indirect with separate MC integration

© Kavita Bala, Computer Science, Cornell University

 $f_{r} \cdot \cos$

Direct paths

- Different path generators produce different estimators and different error characteristics
- · Direct illumination general algorithm:

compute_radiance (point, direction)
 est_rad = 0;
 for (i=0; i<n; i++)
 p = generate_path;
 est_rad += energy_transfer(p) / probability(p);
 est_rad = est_rad /n;
 return(est_rad);</pre>

© Kavita Bala, Computer Science, Cornell University

Stochastic Ray Tracing

- Sample area of light source for direct term
- Sample hemisphere with random rays for indirect term
- · Optimizations:
 - Stratified sampling
 - Importance sampling
 - Combine multiple probability density functions into a single PDF

© Kavita Bala, Computer Science, Cornell University

Balance Heuristic

- Two sampling techniques: jth sample
 - $-X_{1,j}$ with pdf $p_1(x)$, $X_{2,j}$ with pdf $p_2(x)$
 - Estimator Y_i for jth sample

$$\begin{split} Y_{1,j} &= \frac{f(X_{1,j})}{p_1(X_{1,j})} \quad Y_{2,j} = \frac{f(X_{2,j})}{p_2(X_{2,j})} \\ Y_j &= w_1 Y_{1,j} + w_2 Y_{2,j} \\ w_i(x) &= \frac{p_i(x)}{p_1(x) + p_2(x)} \end{split}$$

© Kavita Bala, Computer Science, Cornell University

Other Rendering Techniques

- · Bidirectional Path Tracing
- Metropolis
- · Biased Techniques
 - Irradiance caching
 - Photon Mapping