CS664 Computer Vision

8. Matching Binary Images

Dan Huttenlocher
Comparing Binary Feature Maps

- Binary “image” specifying feature locations
 - In x,y or x,y,scale
- Variations will cause maps not to agree precisely when images aligned
- Measures based on proximity rather than exact superposition
Binary Correlation

- Recall cross correlation
 \[C[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v] \]
- For binary images counting number of coincident 1-valued pixels
 - Number of on pixels in AND at offset (i,j)
- SSD (sum squared difference) – XOR
 \[S[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} (H[u, v] - F[i + u, j + v])^2 \]
- Suffer from measuring exact agreement and not proximity
Hausdorff Distance

- Classical definition
 - Directed distance (not symmetric)
 - \(h(A,B) = \max_{a \in A} \min_{b \in B} \| a-b \| \)
 - Distance (symmetry)
 - \(H(A,B) = \max(h(A,B), h(B,A)) \)

- Minimization term simply dist trans of B
 - \(h(A,B) = \max_{a \in A} D_B(a) \)
 - Maximize over selected values of dist trans

- Classical distance not robust, single “bad match” dominates value
Hausdorff Matching

- Best match
 - Minimum fractional Hausdorff distance over given space of transformations

- Good matches
 - Above some fraction (rank) and/or below some distance

- Each point in (quantized) transformation space defines a distance
 - Search over transformation space
 - Efficient branch-and-bound “pruning” to skip transformations that cannot be good
Hausdorff Matching

- Partial (or fractional) Hausdorff distance to address robustness to outliers
 - Rank rather than maximum
 - $h_k(A,B) = \text{kth}_{a \in A} \min_{b \in B} \| a-b \| = \text{kth}_{a \in A} D_B(a)$
 - K-th largest value of D_B at locations given by A
 - Often specify as fraction f rather than rank
 - 0.5, median of distances; 0.75, 75th percentile

1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 12, 14, 15

0.25 0.5 0.75 1.0
Fast Hausdorff Search

- Branch and bound hierarchical search of transformation space
- Consider 2D transformation space of translation in x and y
 - (Fractional) Hausdorff distance cannot change faster than linearly with translation
 - Similar constraints for other transformations
 - Quad-tree decomposition, compute distance for transform at center of each cell
 - If larger than cell half-width, rule out cell
 - Otherwise subdivide cell and consider children
Branch and Bound Illustration

- Guaranteed (or admissible) search heuristic
 - Bound on how good answer could be in unexplored region
 - Cannot miss an answer
 - In worst case won’t rule anything out
- In practice rule out vast majority of transformations
 - Can use even simpler tests than computing distance at cell center
Chamfer Distance

- Sum of closest point distances
 \[\text{Ch}(A,B) = \sum_{a \in A} \min_{b \in B} \| a - b \| \]

- Generally use asymmetric measure but can be symmatrized
 \[\text{CH}(A,B) = \text{Ch}(A,B) + \text{Ch}(B,A) \]

- As for Hausdorff distance minimization term is simply a distance transform

- While intuitively may appear more robust to outliers than max, still quite sensitive
 - Trimming can be useful in practice
Dilation

- The Minkowski sum of two point sets A, B is the result of adding every point of A to every point of B.
 - Note for finite sets, cardinality of result is the product of set cardinalities:
 $F \oplus H = \{ f + g \mid f \in F, g \in G \}$

- For binary images, this is called dilation.
 - As with correlation and convolution, think of asymmetrically as function and kernel or mask.
 - Replace each on pixel of F by mask H:
 - Generally, center pixel of H is on {0, 1}.

Dilation

- Dilation by a disk of radius \(d \) corresponds to level sets of \(L^2 \) distance transform for distances \(\leq d \)
 - Analogously for square of radius \(d \) and \(L\)-infinity norm
 - 3x3 square example (radius 1)
Dilation and Correlation

- Correlation of F with G dilated by a disk of radius d
 - Counts number of on pixels in F at each [i,j] that are within distance d of some on pixel in G
 - Normalize the count by dividing by total number of on pixels in F

- Corresponds to the Hausdorff fraction
 - Fraction within distance d rather than distance for fraction f

\[h_f(A,B) = f_{th} \min_{a \in A} \min_{b \in B} \| a - b \| \]
where \(f_{th} \) quantile
DT Based Matching Measures

- Fractional Hausdorff distance
 - Kth largest value selected from DT

- Chamfer
 - Sum of values selected from DT
 - Suffers from same robustness problems as classical Hausdorff distance
 - Max intuitively worse but sum also bad
 - Robust variants
 - Trimmed: sum the K smallest distances (same as Hausdorff but sum rather than largest of K)
 - Truncated: truncate individual distances before summing
Comparing DT Based Measures

- Monte Carlo experiments with known object location and synthetic clutter
 - Matching edge locations
- Varying percent clutter
 - Probability of edge pixel 2.5-15%
- Varying occlusion
 - Single missing interval, 10-25% of boundary
- Search over location, scale, orientation
ROC Curves

- Probability of false alarm vs. detection
 - 10% and 15% occlusion with 5% clutter
 - Chamfer is lowest, Hausdorff (f=.8) is highest
 - Chamfer truncated distance better than trimmed
Edge Orientation Information

- Match edge orientation as well as location
 - Edge normals or gradient direction
- Increases detection performance and speeds up matching
 - Better able to discriminate object from clutter
 - Better able to eliminate cells in branch and bound search
- Distance in 3D feature space \([p_x, p_y, \alpha p_o]\)
 - \(\alpha\) weights orientation versus location
 - \(k\)th \(\min_{b \in B} \| a-b \| = k\)th \(\min_{a \in A} D_B(a)\)
ROC’s for Oriented Edge Pixels

- Vast improvement for moderate clutter
 - Images with 5% randomly generated contours
 - Good for 20-25% occlusion rather than 2-5%

![ROC curves for Oriented Edges and Location Only](image)
Summary of DT Based Matching

- Fast compared to explicitly considering pairs of model and data features
 - Hierarchical search over transformation space

- Important to use robust distance
 - Straight Chamfer very sensitive to outliers
 - Truncated DT can be computed fast

- No reason to use approximate DT
 - Fast exact method for L_2^2 or truncated L_2^2

- For edge features use orientation too
 - Comparing normals or using multiple edge maps