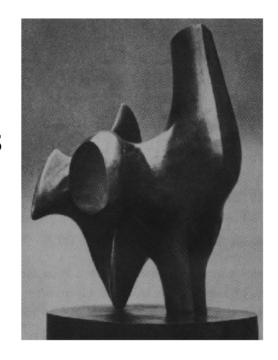


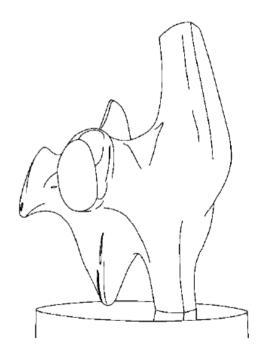
CS 664 Lecture 6 Edge and Corner Detection, Gaussian Filtering

Prof. Dan Huttenlocher Fall 2003

Edge Detection

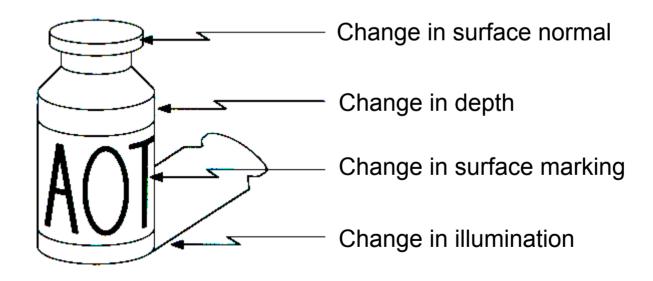
- Convert a gray or color image into set of curves
 - Represented as binary image
- Capture properties of shapes





Several Causes of Edges

- Sudden changes in various properties of scene can lead to intensity edges
 - Scene changes result in changes of image brightness/color



Detecting Edges

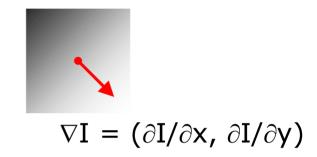
- Seek sudden changes in intensity
 - Various derivatives of image
- Idealized continuous image I(x,y)
- Gradient (first derivative), vector valued
 ∇I = (∂I/∂x, ∂I/∂y)
- Squared gradient magnitude $\|\nabla I\|^2 = (\partial I/\partial x)^2 + (\partial I/\partial y)^2$
 - Avoid computing square root
- Laplacian (second derivative) $\nabla^2 I = \partial^2 I / \partial x^2 + \partial^2 I / \partial y^2$

The Gradient

Direction of most rapid change

$$\nabla I = (\partial I/\partial x, 0)$$

$$\nabla I = (0, \partial I/\partial y)$$



- Gradient direction is atan(∂I/∂y,∂I/∂x)
 - Normal to edge
- Strength of edge given by grad magnitude
 - Often use squared magnitude to avoid computing square roots

Finite Differences

- Images are digitized
 - Idealized continuous underlying function I(x,y) realized as discrete values on a grid I[u,v]
- Approximations to derivatives (1D)

```
dF/dx \approx F[u+1] - F[u]

d^2F/dx^2 \approx F[u-1] - 2F[u] + F[u+1]
```

```
      1
      0
      1
      0
      11
      11
      0
      1

      -1
      1
      -1
      10
      1
      0
      -11
      1
      0
      dF: edge at extremum
```

Second derivative symmetric about edge

Discrete Gradient

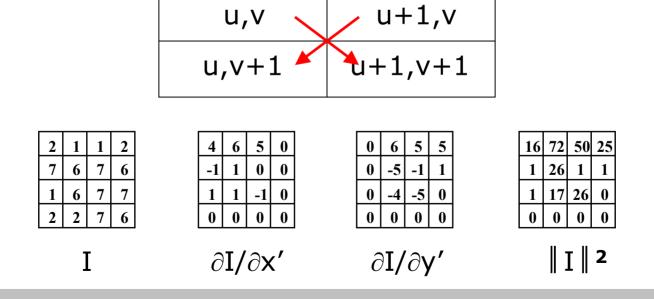
- Partial derivatives are estimated at boundaries between adjacent pixels
 - E.g., pixel and next one in x,y directions
- Yields estimates at different points in each direction if use x,y directions

2	1	2	3
1	d	7	2
1	>	1	2
2	1	2	3

- Generally use 45° directions to solve this
 - Magnitude fine, but gradient orientation needs to be rotated to correspond to axes

Estimating Discrete Gradient

- Gradient at u,v with 45° axes
 - Down-right: $\partial I/\partial x' \approx I[u+1,v+1]-I[u,v]$
 - Down-left: $\partial I/\partial y' \approx I[u,v+1]-I[u+1,v]$
- Handle image border, e.g., no change



Discrete Laplacian

Laplacian at u,v

$$\partial^2 I/\partial x^2 = I[u-1,v]-2I[u,v]+I[u+1,v]$$

 $\partial^2 I/\partial y^2 = I[u,v-1]-2I[u,v]+I[u,v+1]$
 $\nabla^2 I$ is sum of directional second derivatives:
 $I[u-1,v]+I[u+1,v]+I[u,v-1]+I[u,v+1]-4I[u,v]$

- Can view as 3x3 mask or stencil
 - Value at u,v given by sum of product with I
- Grid yields poor rotational symmetry
 - Weighted sum of two masks

	1	
1	-4	1
	1	

1		1
	-4	
1		1

1	4	1
4	-20	4
1	4	1

Local Edge Detectors

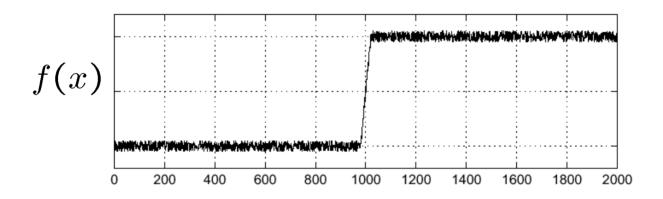
- Historically several local edge operators based on derivatives
 - Simple local weighting over small set of pixels
- For example Sobel operator
 - Derivatives in x and y
 - Weighted sum
 - 3x3 mask for symmetry
 - Today can do better with larger masks, fast algorithms, faster computers

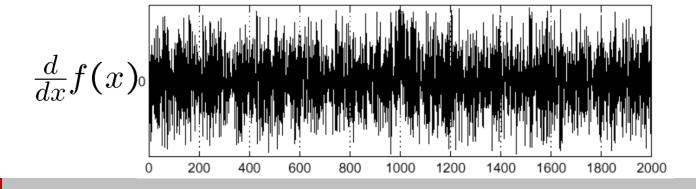
-1	1
-2	2
-1	1

1	2	1
-1	-2	-1

Problems With Local Detectors

 1D example illustrates effect of noise (variation) on local measures





Regions of Support

- Desirable to have edge detectors that operate over interval or region
- Low pass filtering of an image
 - Combining certain neighboring pixel values to produce "less variable" image
 - Often referred to as "smoothing" or as "blurring" the image
- Simple idea: mean filter average values over w by h neighborhood

$$M[u,v] = (1/wh) \Sigma_i \Sigma_j F[u+i-(w-1)/2, v+j-(h-1)/2]$$

3x3 Mean Filter Example

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

?	?	?	?	?	?	?	?	?	?
?	0	10	20	30	30	30	20	10	?
?	0	20	40	60	60	60	40	20	?
?	0	30	60	90	90	90	60	30	?
?	0	30	50	80	80	90	60	30	?
?	0	30	50	80	80	90	60	30	?
?	0	20	30	50	50	60	40	20	?
?	10	20	30	30	30	30	20	10	?
?	10	10	10	0	0	0	0	0	?
?	?	?	?	?	?	?	?	?	?

$$M[u,v] = (1/9) \sum_{i} \sum_{j} F[u+i-1, v+j-1]$$

Border Pixels

- As usual with image operations the border cases need to be handled somehow
 - Produce smaller image by summing only when entire w by h window fits inside image
 - Sum only value inside image but produce full size image
 - In effect summing zeroes outside image
 - Assume value outside image some non-zero value
 - E.g., reflected copy of the image
- No right answer, reflection often least bad

Weighted Average Filter

• Sum of product with weights H $G[u,v] = \sum_{i} \sum_{i} H[i,j]F[u+i-(w-1)/2, v+j-(h-1)/2]$

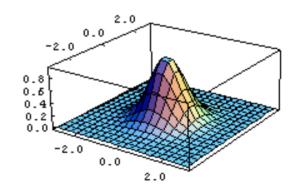
- Mean filter simply has H[I,j]=1/wh
 - Uniform weighting
- Note that entries of H should sum to 1
 - Otherwise performs overall scaling of the image
 - Consider 3x3 mask of 1's instead of 1/9's
- When averaging generally give central pixel most weight

Gaussian Filter

Gaussian in two-dimensions

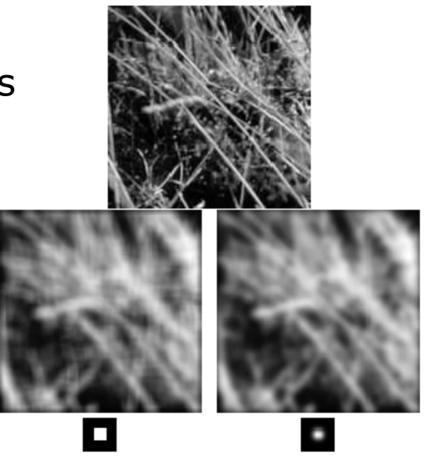
$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$

- Weights center more
- Falls off smoothly
- Integrates to 1
- Larger σ produces more equal weights (blurs more)
- Normal distribution



Gaussian Versus Mean Filter

- Mean filter blurs but sharp changes remain as well
 - "Blocky"
- Gaussian not blocky looking
- Same area masks
 - But Gaussian small at borders



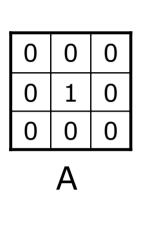
Cross Correlation

 The weighted summation operation is called the cross correlation

$$G[u,v] = \Sigma_i \Sigma_j H[i,j]F[u+i-(w-1)/2, v+j-(h-1)/2]$$

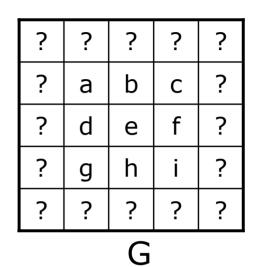
- Written as G = H⊗F
 - Notation not consistent, sometimes written as $G = H \star F$, but we will use that for convolution
- Powerful operation
 - Every element of output G results from sum of product of two inputs H and F
 - Elements of output differ in shift of inputs H,F
 - Not that easy to grasp at first

Cross Correlation Examples



0	0	0	0	0
0	а	b	С	0
0	d	υ	f	0
0	g	h		0
0	0	0	0	0

В



а	b	С
d	Φ	f
g	h	ï

 \otimes

0	0	0	0	0
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
0	0	0	0	0

? ? ? ? ? ? i h g ? ? f e d ? ? c b a ? ? ? ? ? ?

A

G

Convolution

 Closely related operation that "flips" indices of H and F

$$G[u,v] = \Sigma_i \Sigma_j H[i,j]F[u-i+(w-1)/2, v-j+(h-1)/2]$$

- Written as $G = H \times F$
 - Again, notation not always consistent
- Note ★ and ⊗ same when H or F symmetric
 - I.e., unchanged when "flipped"
- Convolution has nice properties
 - Commutative: A*B=B*A
 - Associative: A*(B*C)=(A*B)*C
 - Distributive: A*(B+C)=(A*B)+(A*C)

Convolution Examples

	_		0	0	0	0	0		?	?	?	?	?
0 0 0	0	_	0	а	b	С	0		?	а	b	С	?
	0	*	0	d	е	f	0		?	d	е	f	?
	0		0	g	h	i	0		?	g	h	i	?
Α			0	0	0	0	0		?	?	?	?	?
		•			В			'			G		
	_		0	0	0	0	0		?	?	?	?	?
	С		0	0	0	0	0		?	? a	? b	? C	?
d e	C f	*									_		
d e s		*	0	0	0	0	0		?	а	b	С	?
d e		*	0	0	0	0	0		?	a d	b e	C f	?

Identity for Convolution

- Unit impulse: one at origin, zero elsewhere
- Suggests why simple averaging produces "blocky" results
 - Consider a=b=... =i=K

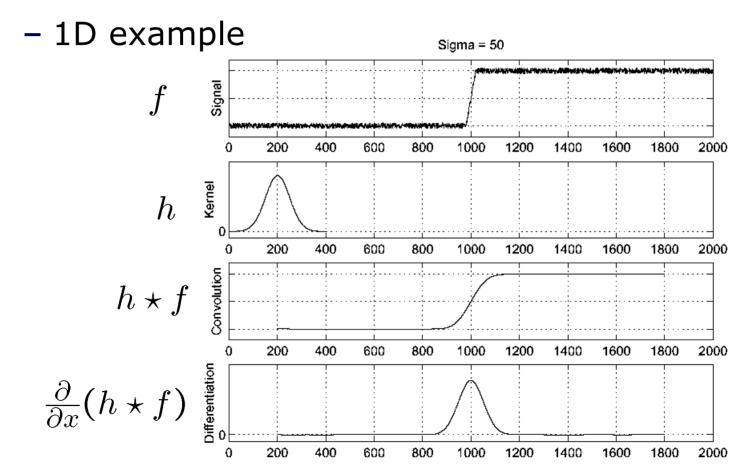
а	b	С
d	υ	f
g	h	i

0	0	0	0	0
0	0	0	0	0
0	0	1	0	0
0	0	0	0	0
0	0	0	0	0

٠٠	٠٠	٠.	٠-	٠٠
٠٠	а	Ь	U	٠٠
?	d	ω	f	٠:
?	g	h	i	?
?	?	?	?	?

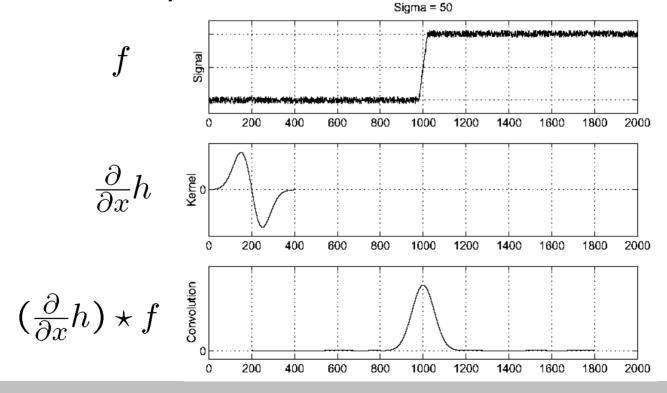
Back to Edges: Derivatives

Smooth and then take derivative



Derivatives and Convolutions

- Another useful identity for convolution is d/dx(A*B)= (d/dx A)*B = A*(d/dx B)
 - Use to skip one step in edge detection



Derivatives Using Convolution

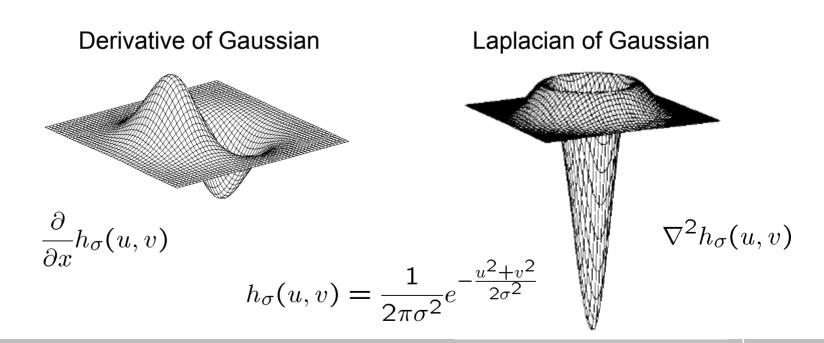
- When smoothing all weights of mask h are positive
 - Sum to 1
 - Maximum weight at center of mask
- Weights do not have to all be positive
 - Negative weights compute differences (derivatives)
 - E.g., Laplacian $h = \begin{bmatrix} 4 & 20 & 4 \\ 1 & 4 & 1 \end{bmatrix}$
 - $-h \star f = \nabla^2 f$
- Symmetry of h also gives us h★f=h⊗f
 - True for many masks; makes people sloppy

Linear Operators

- Linear shift invariant (LSI) system
 - Given a "black box" h: f → h → g
 - Linearity: $af_1+bf_2 \rightarrow |h| \rightarrow ag_1+bg_2$
 - Shift invariance: f(x-u) → h → g(x-u)
- Convolution with arbitrary h equivalent to these properties
 - Beyond this course to show it
- Linearity is "simple to understand" but real world not always linear
 - E.g., saturation effects

Area of Support for 2D Operators

- Directional first derivatives and second derivative (Laplacian) of Gaussian
 - Sigma controls scale, larger yields fewer edges



Gradient Magnitude

Also use smoothed image

$$\|\nabla(\mathbf{I} + \mathbf{h}_{\sigma})\| = ((\partial(\mathbf{I} + \mathbf{h}_{\sigma})/\partial \mathbf{x})^2 + (\partial(\mathbf{I} + \mathbf{h}_{\sigma})/\partial \mathbf{y})^2)^{-5}$$

Edge Detection by Subtraction

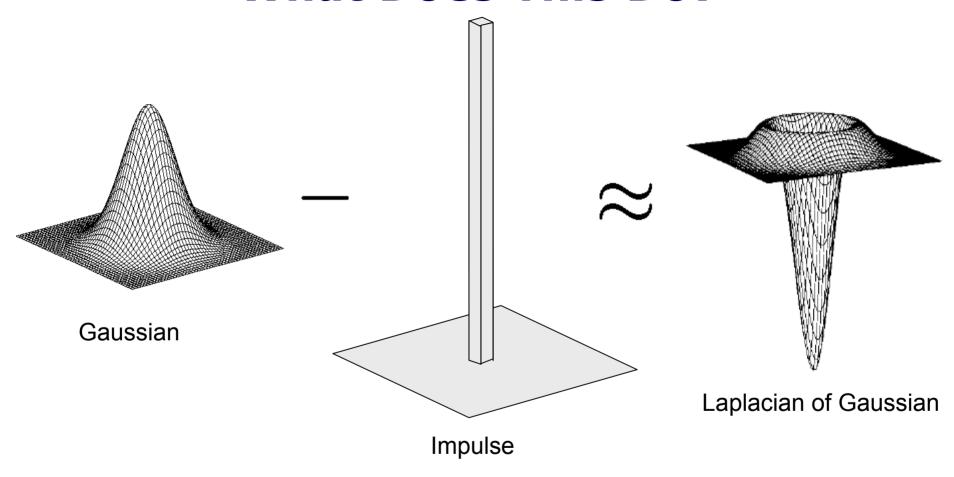
Difference of image and smoothed version

Original

Smoothed

Difference (brightened)

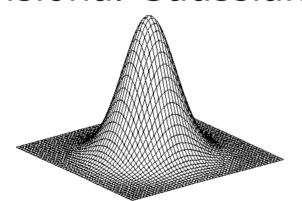
What Does This Do?



• More generally $(I \star h_{\sigma 1}) - (I \star h_{\sigma 2}) \approx \nabla^2 I (I \star h_{\sigma 3})$

Efficient Gaussian Smoothing

- The 2D Gaussian is decomposable into separate 1D convolutions in x and y
- First note that product of two onedimensional Gaussians



$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$

$$\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-1}{2}\left(\frac{x^2}{\sigma^2}\right)}\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-1}{2}\left(\frac{y^2}{\sigma^2}\right)}$$

- Can view as product of two 1d vectors
 - Column vector times row vector each with values of 1d (sampled) Gaussian

Expressing as 1D Convolutions

- Use unit impulse as a notational trick
 - Continuous case: $\delta(x) = \infty$ when x is 0, else 0
 - Discrete case: $\delta[x] = 1$ when x is 0, else 0
 - $-f \star \delta = f$
- $h_{\sigma} = h_{\sigma x} + h_{\sigma y}$

$$\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-1}{2}\left(\frac{x^2}{\sigma^2}\right)}\delta(y)$$

$$\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-1}{2}\left(\frac{y^2}{\sigma^2}\right)}\delta(x)$$

- $h_{\sigma} \star I = (h_{\sigma x} \star h_{\sigma y}) \star I = h_{\sigma x} \star (h_{\sigma y} \star I)$
 - Two 1D convolutions, don't sum the zeroes!

2D Gaussian as 1D Convolutions

0	0	0	0	0
0	16	16	16	0
0	16	16	16	0
0	16	16	16	0
0	0	0	0	0

0	4	4	4	0
0	12	12	12	0
0	16	16	16	0
0	12	12	12	0
0	4	4	4	0

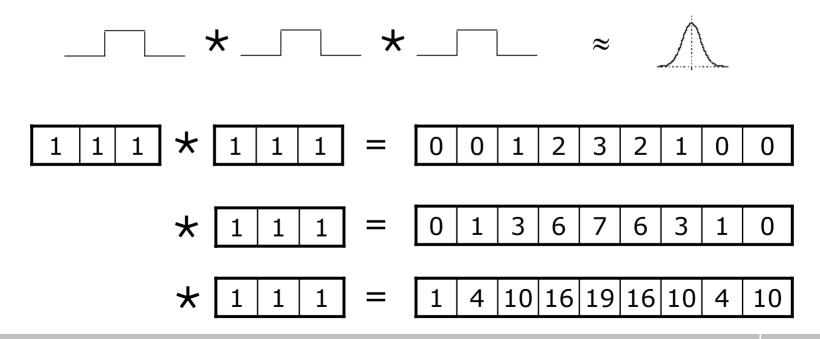
0	0	0	0	0
0	16	16	16	0
0	16	16	16	0
0	16	16	16	0
0	0	0	0	0

1/16	1/8	1/16
1/8	1/4	1/8
1/16	1/8	1/16

1	3	4	3	1
3	9	12	9	3
4	12	16	12	4
3	9	12	9	3
1	3	4	3	1

Fast 1D Gaussian Convolution

- Repeated convolution of box filters approximates a Gaussian
 - Application of central limit theorem, convolution of pdf's tends towards normal distr.



Good Approximation to Gaussian

- Convolution of 4 unit height box filters of different widths yields low error
 - Wells, PAMI Mar 1986
- Simply apply each box filter separately
 - Also separate horizontal and vertical passes
 - Each box filter constant time per pixel
 - Running sum
- For Gaussian of given σ
 - Choose widths w_i such that Σ_i $(w_i^2-1)/12 \approx \sigma^2$
- In practice faster than explicit G_{σ} for $\sigma \approx 2$

What Makes Good Edge Detector

- Goals for an edge detector
 - Minimize probability of multiple detection
 - Two pixels classified as edges corresponding to single underlying edge in image
 - Minimize probability of false detection
 - Minimize distance between reported edge and true edge location
- Canny analyzes in detail 1D step edge
 - Shows that derivative of Gaussian is optimal with respect to above criteria
 - Analysis does not extend easily to 2D

Canny Edge Detector

- Based on gradient magnitude and direction of Gaussian smoothed image
 - Magnitude: $\|\nabla(G_{\sigma} \star I)\|$
 - Direction (unit vector): $\nabla(G_{\sigma}*I)$ / $\|\nabla(G_{\sigma}*I)\|$
- Ridges in gradient magnitude
 - Peaks in direction of gradient (normal to edge) but not along edge
- Hysteresis mechanism for thresholding strong edges
 - Ridge pixel above lo threshold
 - Connected via ridge to pixel above hi threshold

Canny Edge Definition

- Let $(\delta_{\mathsf{x}}, \delta_{\mathsf{y}}) = \nabla(\mathsf{G}_{\mathsf{\sigma}} \star \mathsf{I}) / \| \nabla(\mathsf{G}_{\mathsf{\sigma}} \star \mathsf{I}) \|$
 - Note compute without explicit square root
- Let $m = \|\nabla(G_{\sigma} \star I)\|^2$
- Non-maximum suppression (NMS)
 - $m(x,y) > m(x+\delta_{\mathbf{x}}(x,y),y+\delta_{\mathbf{y}}(x,y))$
 - $m(x,y) \ge m(x-\delta_{\mathbf{x}}(x,y),y-\delta_{\mathbf{y}}(x,y))$
 - Select "ridge points"
- Still leaves many candidate edge pixels
 - E.g., σ =1

Canny Thresholding

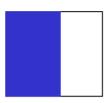
- Two level thresholding of candidate edge pixels (those that survive NMS)
 - Above lo and connected to pixel above hi
- Start by keeping (classifying as edges) all candidates above hi threshold
 - Recursively if pixel above lo threshold and adjacent to an edge pixel keep it
- Perform recursion using bfs/dfs

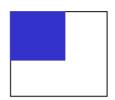


- E.g., σ =1, lo=5, hi=10 and lo=10, hi=20

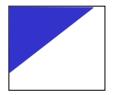
Corners

 Corner characterized by region with intensity change in two different directions





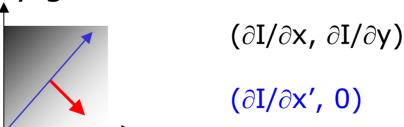
- Use local derivative estimates
 - Gradient oriented in different directions
- Not as simple as looking at gradient (partial derivatives) wrt coordinate frame





Corner Detectors

- Most detectors use local gradient estimate $I_x = \partial I/\partial x$ and $I_y = \partial I/\partial y$
 - Aggregated over rectangular region
- Seek substantial component to gradient in 2 distinct directions
 - Do so by finding coordinate axes normal to primary gradient direction



Also detects textured regions

Best Coordinate Frame

Eigenvectors of scatter matrix

$$C = \begin{pmatrix} \sum I_{x}^{2} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}^{2} \end{pmatrix}$$

- Major axis of points (I_x,I_y) in "gradient plane" one for each pixel in region
- Orthogonal basis that best characterizes major elongation of points
 - Geometric view of eigenvector with largest eigenvalue

Simple Corner Detector

- Smooth image slightly
- Compute derivatives on 45° rotated axis
 - Eigenvectors thus oriented wrt that grid
 - Eigenvalues not affected
- Find eigenvalues λ_1, λ_2 of C ($\lambda_1 < \lambda_2$)
 - If both large then high gradient in multiple directions
 - When λ_1 larger than threshold detect a corner
 - Eigenvalues can be computed in closed form

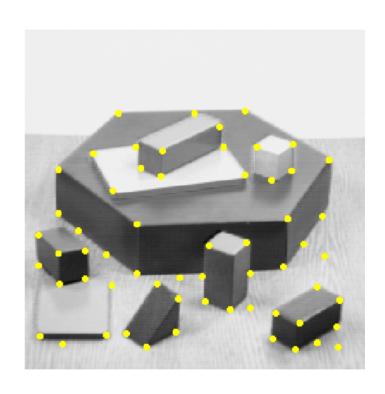
Corner Detectors

- Two most widely used
 - KLT (Kanade-Lucas-Tomasi) and Harris
- Both based on computing eigenvectors of scatter matrix of partial derivatives
 - Over some rectangular region
- Each has means of ensuring corners not too near one another
 - Enforcing distance between "good" regions
- KLT addresses change between image pair
 - Important for tracking corners across time

KLT Corner Detector

- Processing steps
 - 1. Compute I_x I_v locally at each pixel
 - Perhaps smooth image slightly first
 - 2. For each pixel compute C over d by d neighborhood centered around that pixel
 - Use box sum for all additions I_x², I_y², I_xI_y
 - 3. Compute smallest eigenvalue λ_1 of C at each pixel
 - 4. Select pixels above some threshold, in order of decreasing magnitude
 - Omit any pixel that is contained in neighborhood of previously included pixel

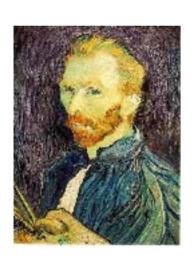
KLT Corner Detector Examples



 KLT corner detection and tracking code available on the Web robotics.stanford.edu/~birch/klt/

Image Sub-Sampling

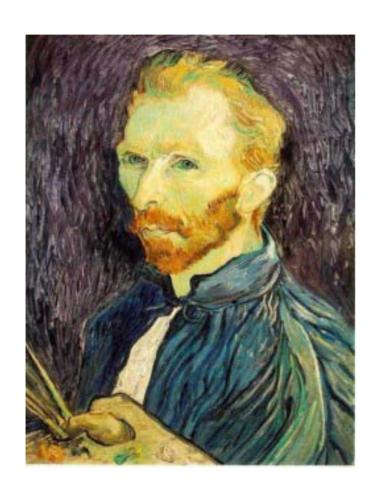
- To halve the resolution of an image seems natural to discard every other row & col
 - However produces poor looking results



Filter then Sub-Sample

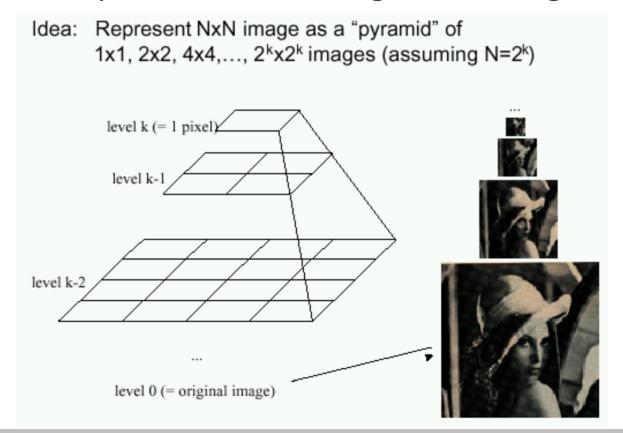
- Phenomenon known as aliasing
 - Need to remove high spatial frequencies
 - Can't be represented accurately at lower resolution
 - E.g., 000111000111000111000
 - Downsample by 2: 00100100100100
 - Downsample by 4: 0100100
 - Downsample by 8: 0010
- Nyquist rate: need at least two samples per period of alternating signal
- Address by smoothing (lowpass filter)

Gaussian Filter and Sub-Sample



Gaussian Pyramid

- Filter and subsample at each level
 - Uses only 1/3 more storage than original



Sampling and Interpolation

- What if scale is not halving of the image
- What if want to upsample not downsample
- More general issue of constructing best samples on one grid given another grid
 - Often referred to as resampling
- If scaling down, first lowpass filter
- In both cases then map from one grid to another
 - Bilinear interpolation (2 by 2)
 - Bicubic interpolation (usually 4 by 4)

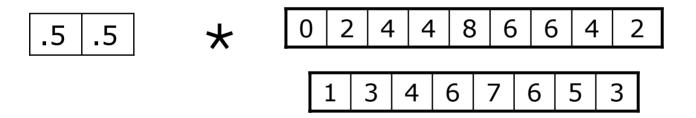
1D Linear Interpolation

- Compute intermediate values by weighted combination of neighboring values
 - Can view as convolution with "hat" on the original grid
 - E.g., equal spacing yields mask | .5 | .5



Linear Interpolation by Convolution

- Implement by convolution with mask based on grid shift
 - If grid shifted to right by amount 0<a<1 then use mask [(1-a) a]
- For example grid shifted halfway between



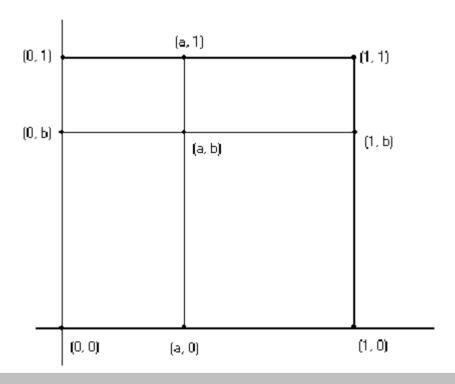
Upsampled

0	1	2	3	4	4	4	6	8	7	6	6	6	5	4	3	2	
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

Bilinear Interpolation

Value at (a,b) based on four neighbors

$$(1 - b) (1 - a) F_{0,0} + (1 - b) a F_{1,0} + b (1 - a) F_{0,1} + b a F_{1,0}$$



Bilinear Interpolation by Convolution

Convolution with two-dimensional function



- Perform two one-dimensional convolutions
 - Separable; simple to verify
 - New grid shifted down and to right by (a,b)
 - Where (as standard) origin of grid in upper left
 - Convolve horizontally with [(1-a) a)] then vertically with [(1-b) b]^T

Comparing Sampling Methods

 Bilinear filter and subsample, Gaussian filter and subsample, straight subsample

- Bicubic works better
 - Can also be implemented as convolution