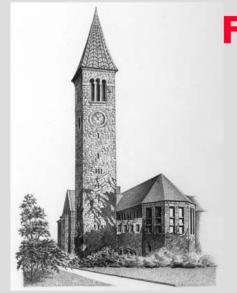


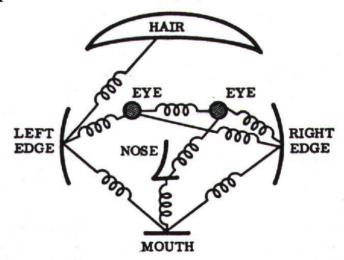
CS 664 Lecture 4 Flexible Template Matching



Prof. Dan Huttenlocher Fall 2003

Flexible Template Matching

- Pictorial structures
 - Parts connected by springs and appearance models for each part
 - Used for human bodies, faces
 - Fischler&Elschlager, 1973 considerable recent work

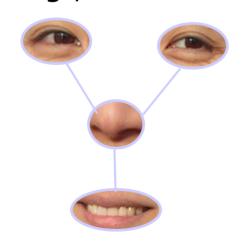


Formal Definition of Model

- Set of parts V={v₁, ..., v_n}
- Configuration L=(I₁, ..., I_n)
 - Specifying locations of the parts
- Appearance parameters $A=(a_1, ..., a_n)$
 - Model for each part
- Edge e_{ii}, (v_i,v_i) ∈ E for connected parts
 - Explicit dependency between part locations I_i, I_j
- Connection parameters C={c_{ij} | e_{ij} ∈ E}
 - Spring parameters for each pair of connected parts

Flexible Template Algorithms

- Difficulty depends on structure of graph
 - Which parts are connected (E) and how (C)
- General case exponential time
 - Consider special case in which parts translate with respect to common origin
 - E.g., useful for faces



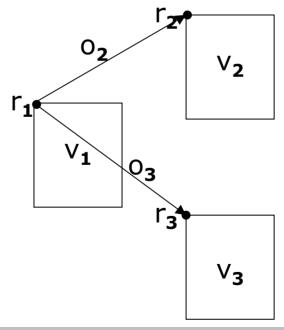
- Parts V= {v₁, ... v_n}
- Distinguished central part v₁
- Spring c_{i1} connecting v_i to v₁
- Quadratic cost for spring

Efficient Algorithm for Central Part

- Location L=(I₁, ..., I_n) specifies where each part positioned in image
- Best location min_L $(\Sigma_i m_i(l_i) + d_i(l_i,l_1))$
 - Part cost m_i(l_i)
 - Measures degree of mismatch of appearance a_i when part v_i placed at location l_i
 - Deformation cost d_i(l_i,l₁)
 - Spring cost c_{i1} of part v_i measured with respect to central part v₁
 - E.g., quadratic or truncated quadratic function
 - Note deformation cost zero for part v₁ (wrt self)

Central Part Model

- Spring cost c_{ij}: i=1, ideal location of l_j wrt l₁
 - Translation o_i=r_i-r₁
 - $-T_{\mathbf{j}}(\mathbf{x}) = \mathbf{x} + \mathbf{o}_{\mathbf{j}}$
- Spring cost deformation from this ideal
 - $\| \|_{j} T_{j}(\|_{1}) \|^{2}$



Consider Case of 2 Parts

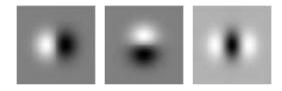
- $\min_{\mathbf{l}_{1},\mathbf{l}_{2}} (m_{1}(l_{1}) + m_{2}(l_{2}) + ||l_{2} T_{2}(l_{1})||^{2})$
 - Where T₂(I₁) transforms I₁ to ideal location with respect to I₂ (offset)
- $\min_{\mathbf{l}_1} (m_1(l_1) + \min_{\mathbf{l}_2} (m_2(l_2) + || l_2 T_2(l_1) ||^2))$
 - But min_x $(f(x) + ||x-y||^2)$ is a distance transform
- $\min_{\mathbf{I}_1} (m_1(l_1) + D_{m_2}(T_2(l_1))$
- Sequential rather than simultaneous min
 - Don't need to consider each pair of positions for the two parts because a distance
 - Just distance transform the match cost function, m

Several Parts wrt Reference Part

- $\min_{\mathbf{L}} (\Sigma_{\mathbf{i}} (\mathsf{m}_{\mathbf{i}}(\mathsf{l}_{\mathbf{i}}) + \mathsf{d}_{\mathbf{i}}(\mathsf{l}_{\mathbf{i}},\mathsf{l}_{\mathbf{1}})))$
- $\min_{L} (\Sigma_{i} m_{i}(l_{i}) + \|l_{i} T_{i}(l_{1})\|^{2})$
 - Quadratic distance between location of part v_i
 and ideal location given location of central part
- $\min_{\mathbf{l_1}} (m_{\mathbf{l_1}}(l_{\mathbf{l_1}}) + \sum_{i>1} \min_{\mathbf{l_i}} (m_{\mathbf{l_i}}(l_{\mathbf{l_i}}) + \|l_{\mathbf{l_i}} T_{\mathbf{l_i}}(l_{\mathbf{l_1}})\|^2))$
 - i-th term of sum minimizes only over li
- $\min_{l_1} (m_1(l_1) + \Sigma_{i>1} D_{mi}(T_i(l_1)))$
 - Because $D_{\mathbf{f}}(x) = \min_{\mathbf{v}} (f(y) + \|y x\|^2)$
 - Using same D.T. algorithms as for binary images

Application to Face Detection

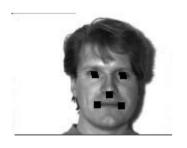
- Five parts: eyes, tip of nose, sides of mouth
- Each part a local image patch
 - Represented as response to oriented filters



- 27 filters at 3 scales and 9 orientations
- Learn coefficients from labeled examples
- Parts translate with respect to central part, tip of nose

Flexible Template Face Detection

- Runs at several frames per second
 - Compute oriented filters at 27 orientations and scales for part cost m_i
 - Distance transform m_i for each part other than central one (nose tip)
 - Find maximum of sum for detected location



More General Flexible Templates

- Efficient computation using distance transforms for any tree-structured model
 - Not limited to central reference part
- Two differences from reference part case
 - Relate positions of parts to one another using tree-structured recursion
 - Solve with Viterbi or forward-backward algorithm
 - Parameterization of distance transform more complex – transformation T_{ij} for each connected pair of parts

General Form of Problem

- Best location can be viewed in terms of probability or cost (negative log prob.)
 - $\max_{L} p(L|I,\Theta) = \operatorname{argmax}_{L} p(I|L,A) p(L|E,C)$
 - $\min_{L} \Sigma_{V} m_{j}(l_{j}) + \Sigma_{E} d_{ij}(l_{i},l_{j})$
 - m_j(l_j) how well part v_j matches image at l_j
 - d_{ij}(l_i,l_j) how well locations l_i,l_j agree with model (spring connecting parts v_i and v_j)
- Difficulty of maximization/minimization depends to large degree on form of graph

Minimizing Over Tree Structures

- Use dynamic programming to minimize $\Sigma_{V} m_{i}(l_{i}) + \Sigma_{E} d_{ij}(l_{i},l_{j})$
- Can express as function for pairs B_i(I_i)
 - Cost of best location of v_i given location l_i of v_i
- Recursive formulas in terms of children
 C_j of v_j
 - $-B_{\mathbf{j}}(l_{\mathbf{i}}) = \min_{\mathbf{i}\mathbf{j}} (m_{\mathbf{j}}(l_{\mathbf{j}}) + d_{\mathbf{i}\mathbf{j}}(l_{\mathbf{i}},l_{\mathbf{j}}) + \Sigma_{C\mathbf{j}} B_{\mathbf{c}}(l_{\mathbf{j}}))$
 - For leaf node no children, so last term empty
 - For root node no parent, so second term omitted

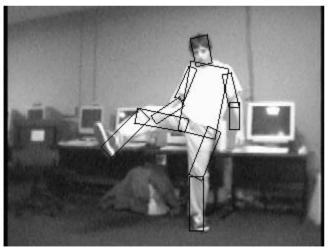
Efficient Algorithm for Trees

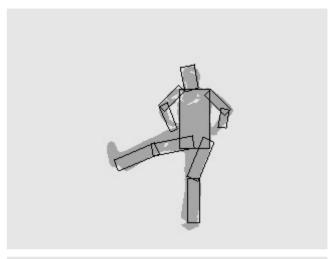
- MAP estimation algorithm
 - Tree structure allows use of Viterbi style dynamic programming
 - O(ns²) rather than O(sⁿ) for s locations, n parts
 - Still slow to be useful in practice (s in millions)
 - Couple with distance transform method for finding best pair-wise locations in linear time
 - Resulting O(ns) method
- Similar techniques allow sampling from posterior distribution in O(ns) time
 - Using forward-backward algorithm

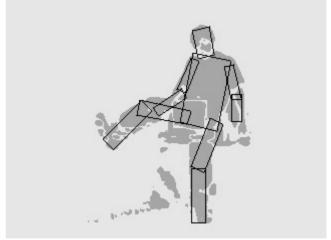
O(ns) Algorithm for MAP Estimate

- Express B_j(l_i) in recursive minimization formulas as a DT D_f(T_{ii}(l_i))
 - Cost function
 - $f(y) = m_j(T_{ji}^{-1}(y)) + \sum_{c_j} B_c(T_{ji}^{-1}(y))$
 - T_{ij} maps locations to space where difference between l_i and l_i is a squared distance
 - Distance zero at ideal relative locations
- Yields n recursive equations
 - Each can be computed in O(sD) time
 - D is number of dimensions to parameter space but is fixed (in our case D is 2 to 4)

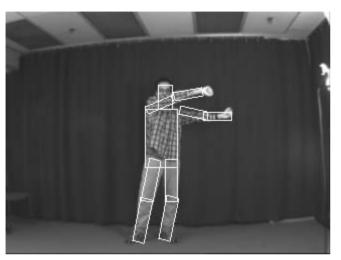
Example: Recognizing People

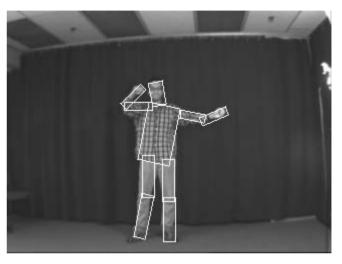


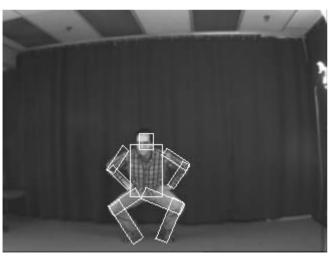


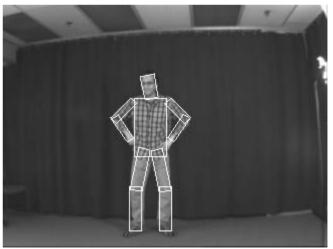


Variety of Poses

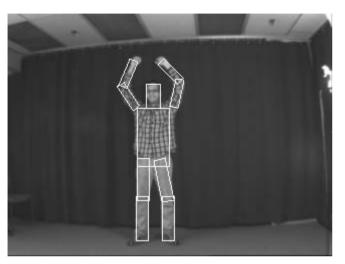


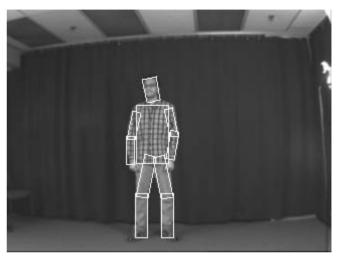


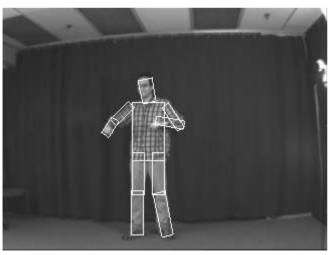


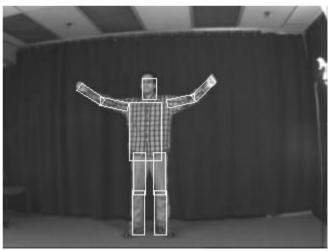


Variety of Poses

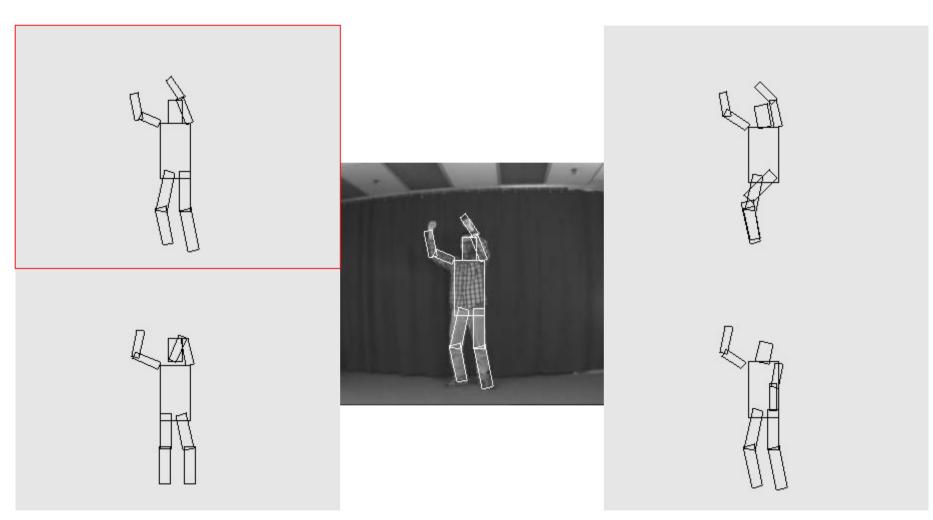








Samples From Posterior



Model of Specific Person

Bayesian Formulation of Learning

- Given example images I¹, ..., I^m with configurations L¹, ..., L^m
 - Supervised or labeled learning problem
- Obtain estimates for model Θ=(A,E,C)
- Maximum likelihood (ML) estimate is
 - $\operatorname{argmax}_{\Theta} p(I^{1}, ..., I^{m}, L^{1}, ..., L^{m} | \Theta)$
 - $\operatorname{argmax}_{\Theta} \prod_{\mathbf{k}} p(I^{\mathbf{k}}, L^{\mathbf{k}}|\Theta)$
 - Independent examples
 - $\operatorname{argmax}_{\Theta} \prod_{\mathbf{k}} p(I^{\mathbf{k}}|L^{\mathbf{k}},A) \prod_{\mathbf{k}} p(L^{\mathbf{k}}|E,C)$
 - Independent appearance and dependencies

Efficiently Learning Tree Models

- Estimating appearance p(I^k|L^k,A)
 - ML estimation for particular type of part
 - E.g., for constant color patch use Gaussian model, computing mean color and covariance
- Estimating dependencies p(L^k|E,C)
 - Estimate C for pairwise locations, p(l_i^k,l_j^k|c_{ij})
 - E.g., for translation compute mean offset between parts and variation in offset
 - Best tree using minimum spanning tree (MST) algorithm
 - Pairs with "smallest relative spatial variation"

Example: Generic Person Model

- Each part represented as rectangle
 - Fixed width, varying length
 - Learn average and variation
 - Connections approximate revolute joints
 - Joint location, relative position, orientation, foreshortening
 - Estimate average and variation
- Learned model (used above)
 - All parameters learned
 - Including "joint locations"
 - Shown at ideal configuration

