

CS 664 Lecture 2 Distance Transforms

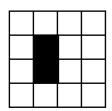
Prof. Dan Huttenlocher Fall 2003

Distance Transforms

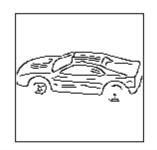
- Map of distance to nearest features
 - Computed from map of feature locations
 - E.g., edge detector output
- Powerful and widely applicable
 - Can think of as "smoothing in feature space"
 - Related to morphological dilation operation
 - Often preferable to explicitly searching for correspondences of features
- Efficiently computable using DP
 - Time linear in number of pixels, fast in practice

Distance Transform Definition

- Set of points, P, some distance $\| \bullet \|$ $D_{P}(x) = \min_{y \in P} \|x - y\|$
 - For each location x distance to nearest y in P
 - Think of as cones rooted at each point of P
- Commonly computed on a grid Γ using $D_P(x) = \min_{y \in \Gamma} (\|x y\| + 1_P(y))$
 - Where $1_{\mathbf{P}}(y) = 0$ when $y \in P$, ∞ otherwise



2	1	2	3
1	0	1	2
1	0	1	2
2	1	2	3

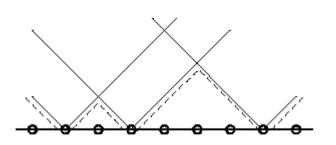


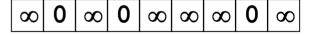
DP for L₁ Distance Transform

- 1D case
 - Two passes:
 - Find closest point on left
 - Find closest on right if closer than one on left
 - Incremental:
 - Moving left-to-right, closest point on left either previous closest point or current point
 - Analogous moving right-to-left for closest point on right
 - Can keep track of closest point as well as distance to it
 - Will illustrate distance; point follows easily

L₁Distance Transform Algorithm

- Two pass O(n) algorithm for 1D L₁ norm (for simplicity just distance)
 - 1. Initialize: For all j $D[j] \leftarrow 1_{\mathbf{p}}[j]$
 - 2. Forward: For j from 1 up to n-1 $D[i] \leftarrow min(D[i],D[i-1]+1)$
 - 1 0
 - 3. <u>Backward</u>: For j from n-2 down to 0 01 $D[j] \leftarrow min(D[j],D[j+1]+1)$

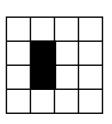




L₁ Distance Transform

- 2D case analogous to 1D
 - Initialization
 - Forward and backward pass
 - Fwd pass finds closest above and to left
 - Bwd pass finds closest below and to right
- Note nothing depends on 0,∞ form of initialization
 - Can "distance transform" arbitrary array

_	1	
1	0	
0	1	



8	8	∞	×
8	0	8	∞
8	0	8	∞
8	œ	8	œ

_∞	8	∞	8
∞	0	1	8
8	0	8	8
8	8	8	8

8	8	8	8
∞	0	1	2
∞	0	1	2
∞	1	2	3

2	1	2	3
1	0	1	2
1	0	1	2
2	1	2	3

L₂ Distance Transform

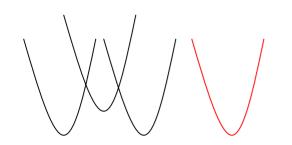
- Approximations using fixed size masks
 - Analogous to 1D case
 - Simple to understand but not best methods
- Exact linear time method for L₂²
 - Can compute sqrt (but usually not needed)
 - Fast in practice, easy to implement
 - Harder to understand than L₁ algorithm
 - Uses important general algorithmic technique of amortized analysis
- 1D case lower envelope of quadratics

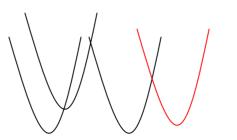
1D L₂² Distance Transform

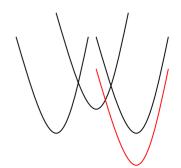
- Single left-to-right pass
 - Adding k-th quadratic to lower envelope (LE) of first k-1 quadratics
 - Quadratics differ only in location of their base
- Concerned about intersection of k-th quadratic and LE of first k-1
 - Consider only rightmost quadratic visible in LE
 - Keep track of locations of bases of visible quadratics (VQ), ordered left-to-right
 - Keep track of visible intersections of adjacent quadratics (VI), ordered left-to-right

Adding k-th Quadratic to LE

- Case 1: intersection of k and rightmost VQ (RVQ) outside range, k not visible on LE
- Case 2: intersection of k and RVQ to right of rightmost VI (RVI), k added to right
- Case 3: intersection of k and RVQ to left of RVI, k covers at least RVQ, remove RVQ and try adding again







Running Time of 1D Algorithm

- Traditional analysis would consider time for each case, multiplied by n iterations
 - Cases 1 and 2 O(1), but case 3 ??
- Amortized analysis: charge work done by algorithm to "events" that can be bounded
 - Three event types
 - K-th quadratic initially excluded
 - K-th quadratic added
 - K-th quadratic removed
 - Each event happens at most once per quadratic (note once removed, never again)
 - Algorithm does constant work per event

2D Algorithm

- Horizontal pass of 1D algorithm
 - Computes minimum x² distance
- Vertical pass of 1D algorithm on result of horizontal pass
 - Computes minimum x²+y² distance
 - Note algorithm applies to any input (quadratics can be at any location)
- Actual code straightforward and fast
 - Each pass maintains arrays of indexes of visible parabolas and the intersections
 - Fills in distance values at each pixel after determining which parabolas visible

Horizontal Pass of 2D L₂² DT

```
for (y = 0; y < height; y++) {
  k = 0; /* Number of boundaries between parabolas */
   z[0] = 0; /* Indexes of locations of boundaries */
   z[1] = width: /* No current boundaries (first at end of array) */
  v[0] = 0;  /* Indexes of locations of visible parabola bases */
   for (x = 1; x < width; x++) {
    do {
   /* intersection of this parabola with rightmost visible parabola */
   s = ((imRef(im, x, y) + x*x) - (imRef(im, y[k], y) + y[k]*v[k])) /
      (2 * (x - v[k]));
    sp = ceil(s);
    /* case one: intersection off end, this parabola not visible */
    if (sp >= width)
      break:
    /* case two: intersection is rightmost, add it to end*/
    if (sp > z[k]) {
      z[k+1] = sp; z[k+2] = width; v[k+1] = x; k++;
      break; }
    /* case three: intersection is not rightmost, hides rightmost
       parabola and perhaps others, remove rightmost and try again */
    if (k == 0) {
      v[0] = x; break;
    } else {
      z[k] = width; k--; }
     } while (1);
   }
```

DT Values From Intersections

```
/* get value of input image at each parabola base */
for (x = 0; x <= k; x++) {
    vref[x] = imRef(im, v[x], y);
}
k = 0;
/* iterate over pixels, calculating value for closest parabola */
for (x = 0; x < width; x++) {
    if (x == z[k+1])
    k++;
    imRef(im, x, y) = vref[k] + (v[k]-x)*(v[k]-x);
}</pre>
```

- No reason to approximate L₂ distance!
- Code available at www.cs.cornell.edu/~dph/matchalgs/

DT and Morphological Dilation

 Dilation operation replaces each point of P with some fixed point set Q

$$-P \oplus Q = U_p U_q p+q$$

- Dilation by a "disc" C^d of radius d replaces each point with a disc
 - A point is in the dilation of P by C^d exactly when the distance transform value is no more than d (for appropriate disc and distance fcn.)
 - $-x \in P \oplus C^d \Leftrightarrow D_P(x) \leq d$

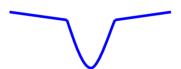
2	1	2	3
1	0	1	2
1	0	1	2
2	1	2	3

0	1	0	0
1	1	1	0
1	1	1	0
0	1	0	0

1	1	1	0
1	1	1	1
1	1	1	1
1	1	1	0

Generalizations of DT

- Combination distance functions
 - Robust "truncated quadratic" distance
 - Quadratic for small distances, linear for larger
 - Simply minimum of (weighted) quadratic and linear distance transforms



- DT of arbitrary functions: $\min_{\mathbf{y}} \|\mathbf{x} \mathbf{y}\| + f(\mathbf{y})$
 - Exact same algorithms apply
 - Combination of cost function f(y) at each location and distance function
 - Useful for certain energy minimization problems

Distance Transforms in Matching

- Chamfer measure asymmetric
 - Sum of distance transform values
 - "Probe" DT at locations specified by model and sum resulting values
- Hausdorff distance (and generalizations)
 - Max-min distance which can be computed efficiently using distance transform
 - Generalization to quantile of distance transform values more useful in practice
- Iterated closest point (ICP) like methods
 - Fitzgibbons