

CS 664 Slides #11 Image Segmentation

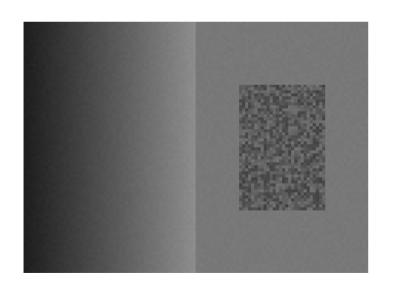
Prof. Dan Huttenlocher Fall 2003

Image Segmentation

- Find regions of image that are "coherent"
- "Dual" of edge detection
 - Regions vs. boundaries
- Related to clustering problems
 - Early work in image processing and clustering
- Many approaches
 - Graph-based
 - Cuts, spanning trees, MRF methods
 - Feature space clustering
 - Mean shift

A Motivating Example

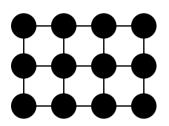
- Image segmentation plays a powerful role in human visual perception
 - Independent of particular objects or recognition



This image has three perceptually distinct regions

Graph Based Formulation

• G=(V,E) with vertices corresponding to pixels and edges connecting neighboring pixels



4-connected or 8-conneted

- Weight of edge is magnitude of intensity difference between connected pixels
- A segmentation, S, is a partition of V such that each $C \in S$ is connected

Important Characteristics

- Efficiency
 - Run in time essentially linear in the number of image pixels
 - With low constant factors
 - E.g., compared to edge detection
- Understandable output
 - Way to describe what algorithm does
 - E.g., Canny edge operator and step edge plus noise
- Not purely local
 - Perceptually important

Motivating Example

- Purely local criteria are inadequate
 - Difference along border between
 A and B is less than differences
 within C
- Criteria based on piecewise constant regions are inadequate (e.g., Potts MRF)
 - Will arbitrarily split A into subparts



MST Based Approaches

- Graph-based representation
 - Nodes corresponding to pixels, edge weights are intensity difference between connected pixels
- Compute minimum spanning tree (MST)
 - Cheapest way to connect all pixels into single component or "region"
- Selection criterion
 - Remove certain MST edges to form components
 - Fixed threshold
 - Threshold based on neighborhood
 - How to find neighborhood

Component Measure

- Instead of constructing MST based on just the edge weights
 - Consider properties of two components being merged when adding an edge
- Recall Kruskal's MST algorithm adds edges from lowest to highest weight
 - Only when connect distinct components
- Apply criterion based on components to further filter added edges
 - Form of criterion limited by considering edges weight ordered

Measuring Component Difference

 Let internal difference of a component be maximum edge weight in its MST

$$Int(C) = \max_{e \in MST(C,E)} w(e)$$

- Smallest weight such that all pixels of C are connected by edges of at most that weight
- Let difference between two components be minimum edge weight connecting them

$$Dif(C_{1,}C_{2}) = \min_{v_{i} \in C_{1}, v_{j} \in C_{2}} w((v_{i},v_{j}))$$

- Note: infinite if there is no such edge

Region Comparison Function

- Two components judged to be distinct when $Dif(C_1, C_2)$ large relative to $Int(C_1)$ or $Int(C_2)$
 - Require that it be *sufficiently* larger
 - Controlled by (non-negative) threshold function τ
- Region comparison function $g(C_{1,}C_{2})$ is true when regions should be distinct, i.e., when

$$Dif(C_{1,}C_{2}) > MInt(C_{1,}C_{2})$$
 where $MInt(C_{1,}C_{2})$

$$= min(Int(C_{1}) + \tau(C_{1}), Int(C_{2}) + \tau(C_{2}))$$

About the Threshold Function au

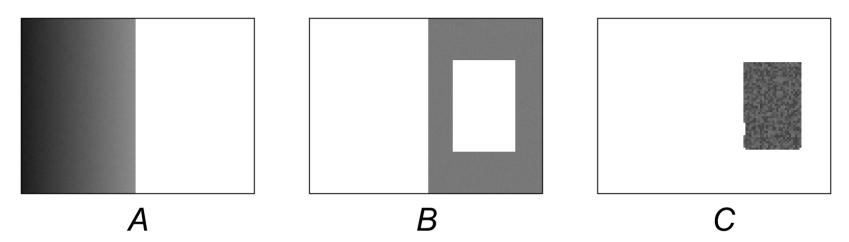
- Intuitively Int(C) estimates local differences over component
 - Small components give underestimate of local difference – neighboring pixels tend to be similar
 - Thus τ should be large in this case
- Use a function inversely proportional to component size $\tau(C) = k / |C|$
 - k is a parameter of the method that captures "scale of observation"
 - Larger *k* means prefer larger components
 - Other functions possible, e.g., based on shape

The Algorithm

- 0. Sort edges of E into $(e_1, ..., e_n)$, in order of non-decreasing edge weight
- 1. Initialize S with one component per pixel
- 2. For each e_q in $(e_1, ..., e_n)$ do step 3
- 3. If weight of e_q small relative to internal difference of components it connects then merge components, otherwise do nothing

I.e., if $w(e_q) \leq MInt(C_i, C_j)$, where $C_i, C_j \in S$ are distinct components connected by e_q , then update S by merging C_i and C_j

Regions Found by the Algorithm



- Three main regions plus a few small ones
- Why the algorithm stops growing these
 - Weight of edges between A and B large wrt max weight MST edges of A and of B
 - Weight of edges between B and C large wrt max weight MST edge of B (but not of C)

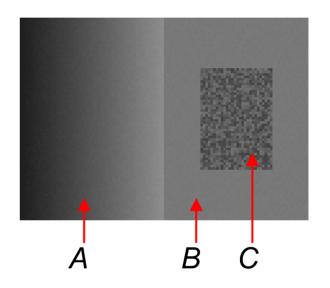
Criteria for a Good Segmentation

- Some predicate for comparing two regions
 - Intuitively, evaluates whether there is evidence for a boundary between two regions
- A segmentation is too fine when predicate says no evidence for a boundary
 - Some pair of neighboring regions where predicate false
- A segmentation is too coarse when there is some refinement that is not too fine
 - A refinement is obtained by splitting one or more regions of a segmentation

Good Segmentations and the Example

 Splitting A, B or C would be too fine

 Not splitting A from B or B from C would be too coarse

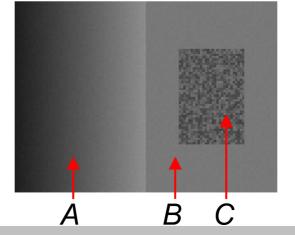


Other Algorithms and the Criteria

- Piecewise constant regions (or compact clusters in a color-based feature space)
 - Too fine: arbitrarily split ramp in A into pieces
- Breaking high cost edges in the MST of a graph corresponding to the image

Both: merge A with B or split C into multiple

pieces



Properties of the Algorithm

- It is fast, $O(n \log n)$ for sorting in step 0 and $O(n\alpha(n))$ for the remaining steps
 - Using union-find with path compression to represent the partition, S
- It produces good segmentations
 - Neither too coarse nor too fine according to the above definitions
 - Despite being a greedy algorithm
- It yields the same results regardless of the order that equal-weight edges are considered
 - Proof a bit involved, won't discuss here

Components "Freeze"

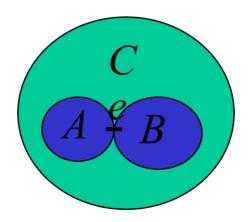
- When two components do not merge, one will be a component of the final segmentation
 - A merge decision is made for an edge e_q and the two components that it connects C_i , C_i
 - Say the merge does not occur because $w(e_q) > Int(C_i) + \tau(C_i)$
 - ullet Then any subsequent merge involving C_i will also not occur, because edges are considered in non-decreasing weight order
 - Analogous for $C_{j'}$, so when a merge fails one or both of the components involved "freeze"

Segmentation Not Too Fine

- Follows readily from fact that components "freeze"
 - An edge between two components in final segmentation implies the algorithm decided not to merge when considering this edge
 - Component that caused this decision is frozen, so appears in the final segmentation
- Thus the decision that was true when the edge was considered remains true for the final segmentation

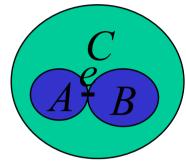
Segmentation Not Too Coarse

- Means any proper refinement is too fine
- Suppose was a proper refinement, T, of the final segmentation, S, that is not too fine
 - Consider the minimum weight edge, e, that is between two components A,B of T but is within a single component C of S



Sketch Continued

- All edges in MST of either A or B have weights smaller than w(e), say it is A
 - Definition of not too fine, and predicate
- Thus algorithm creates A before considering e
 - Because all edges on boundary of A, but internal to C, have weight larger than w(e)
- Since T not too fine, the decision criterion implies the algorithm would freeze A when considering e



Closely Related Problems Hard

- What appears to be a slight change
 - Make Dif be quantile instead of min

k-th
$$v_i \in C_1, v_j \in C_2$$
 $w((v_i, v_j))$

- Desirable for addressing "cheap path" problem of merging based on one low cost edge
- Makes problem NP hard
 - Reduction from min ratio cut
 - Ratio of "capacity" to "demand" between nodes
- Other methods that we will see are also
 NP hard and approximated in various ways

Some Implementation Issues

- Smooth images slightly before processing
 - Remove high variation due to digitization artifacts
- Sorting is dominant time in processing
 - For known edge distribution can in principle do better by binning
- Treat color images as three separate images
 - Components of segmentation are "intersection" of components from each of the three color planes
 - Motivation: significant change in any color channel should result in a region boundary

Some Example Segmentations



k=300 320 components larger than 10

k=200 323 components larger than 10

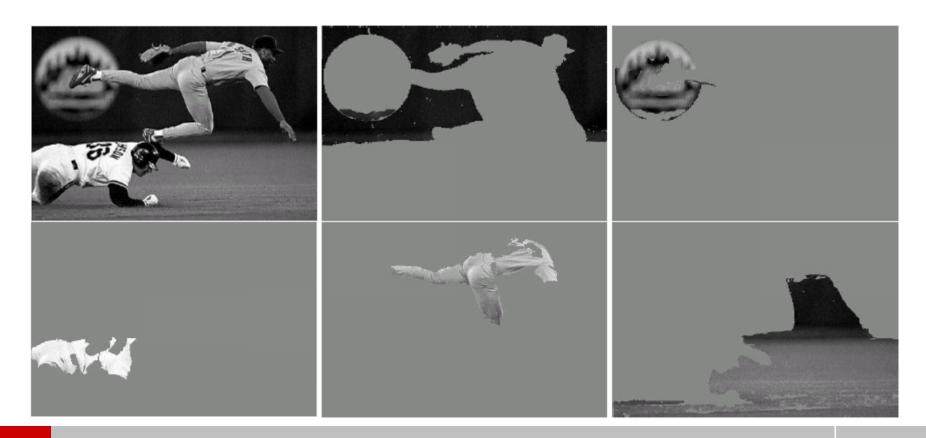
Some Shortcomings

- Smoothing can introduce problems
 - "Extra regions" at boundaries
 - Creates "ramps" between regions, thus merge

Simple Object Examples

Monochrome Example

- Components locally connected (grid graph)
 - Sometimes not desirable

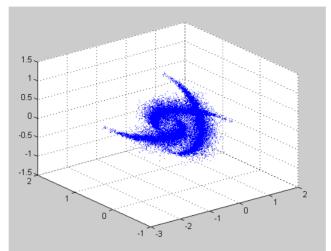


Clustering: Non-Local Components

- Points in d-dimensional space
 - Vertex for each point, edge weights based on distance in this space
- Intuitively, Int measures "density" of clusters
 - Smallest dilation radius such that all points in the cluster are connected
 - When clusters separated by nearly same distance as their "densities" then segmentation is too fine
- For efficiency use a graph with O(|V|) edges
 - Use Mount's approximate nearest neighbor algorithm to find nearest neighbors

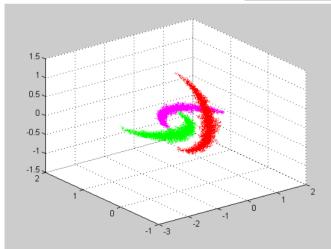
Clustering Gaussian Point Data

Note: Gaussian not constant density

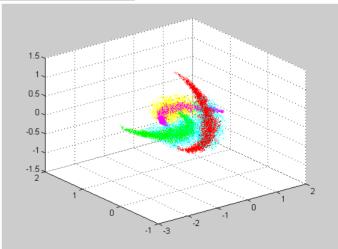


Graph connecting four nearest neighbors to each vertex

$$k = 1$$



3 largest clusters, 75% classified



5 largest clusters, 95% classified

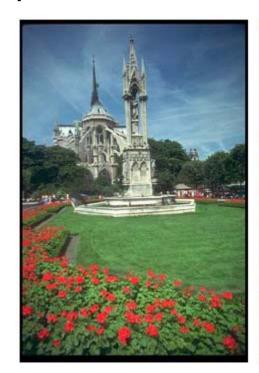
Clustering for Image Segmentation

- Treat each pixel as a point in a feature space
 - More than just local intensity or color, incorporate spatial, texture, motion or other differences
- Now regions of segmentation need not be connected in image
- Practical issue, relatively expensive to find nearest neighbors for graph
 - Can use neighbors in some fixed distance, but restricts regions that can be found
 - In examples here use 4 nearest neighbors

Example Clustering of Image Data

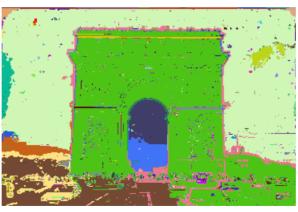
- Segmentation using difference in R,G,B values and in position
 - Distance of 5 pixels same as 1 intensity unit

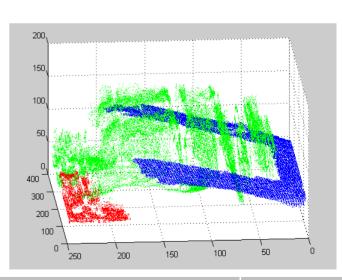
Non-Local Component



About Clustering for Image Data

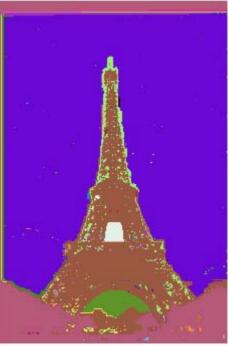
- Meaningful regions in image are not necessarily compact in feature space
- Cheap path in feature space not always apparent in image





Additional Example

High variability in illuminated tower pixels



Beyond Grid Graphs

- Image segmentation methods using affinity (or cost) matrices
 - For each pair of vertices v_i, v_j an associated weight w_{ij}
 - Affinity if larger when vertices more related
 - Cost if larger when vertices less related
 - Matrix W=[w_{ii}] of affinities or costs
 - W is large, avoid constructing explicitly
 - For images affinities tend to be near zero except for pixels that are nearby
 - E.g., decrease exponentially with distance
 - W is sparse

Cut Based Techniques

- For costs, natural to consider minimum cost cuts
 - Removing edges with smallest total cost, that cut graph in two parts
 - Graph only has non-infinite-weight edges
- For segmentation, recursively cut resulting components
 - Question of when to stop
- Problem is that cuts tend to split off small components
 - Few edges

Normalized Cuts

- A number of normalization criteria have been proposed
- One that is commonly used

Ncut(A,B) =
$$\frac{\text{cut(A,B)}}{\text{assoc(A,V)}} + \frac{\text{cut(A,B)}}{\text{assoc(B,V)}}$$

Where cut(A,B) is standard definition

$$\sum_{i \in A, j \in B} W_{ij}$$

• And assoc(A,V) = $\sum_{i \in A} \sum_{i \in A} w_{ij}$

Computing Normalized Cuts

 Has been shown this is equivalent to an integer programming problem, minimize

$$\frac{y^{T} (D-W)y}{y^{T} D y}$$

- Subject to the constraint that y_i∈{1,b} and y^TD1=0
 - Where 1 vector of all 1's
- W is the affinity matrix
- D is the degree matrix (diagonal) $D(i,i) = \sum_{i} w_{ii}$

Approximating Normalized Cuts

- Integer programming problem NP hard
 - Instead simply solve continuous (real-valued) version
 - This corresponds to finding second smallest eigenvector of

$$(D-W)y_i = \lambda_i Dy_i$$

- Widely used method
 - Works well in practice
 - Large eigenvector problem, but sparse matrices
 - Often resolution reduce images, e.g, 100x100
 - But no longer clearly related to cut problem

Normalized Cut Examples

Another Look at the Problem

- Consider eigen analysis of affinity matrix
 W = [w_{ij}]
 - Note W is symmetric; for images w_{ii}=w_{ii}
 - W also essentially block diagonal
 - With suitable rearrangement of rows/cols so that vertices with higher affinity have nearer indices
 - Entries far from diagonal are small (though not quite zero)
- Eigenvectors of W
 - Recall for real, symmetric matrix forms an orthogonal basis
 - Axes of decreasing "importance"

Structure of W

- Eigenvectors of block diagonal matrix consist of eigenvectors of the blocks
 - Padded with zeroes
- Note rearrangement so that clusters lie near diagonal only conceptual
 - Eigenvectors of permuted matrix are permutation of original eigenvectors
- Can think of eigenvectors as being associated with high affinity "clusters"
 - Eigenvectors with large eigenvalues
 - Approximately the case

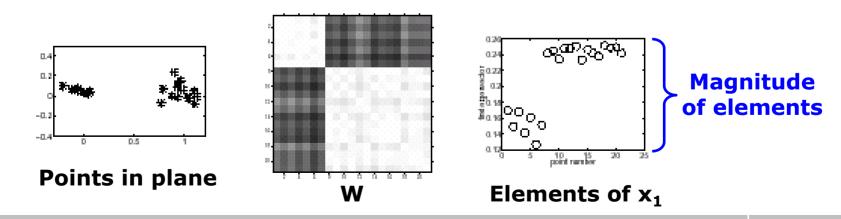
Structure of W

- Consider case of point set where affinities $w_{ij} = \exp(-(y_i-y_j)^2/\sigma^2)$
- With two clusters
 - Points indexed to respect clusters for clarity
- Block diagonal form of W
 - Within cluster affinities A, B for clusters
 - Between cluster affinity C

$$W = \begin{pmatrix} A & C \\ C^T & B \end{pmatrix}$$

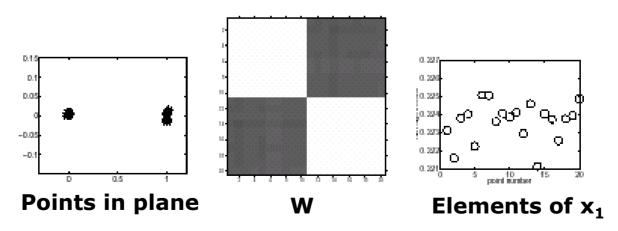
First Eigenvector of W

- Recall, vectors x_i satisfying Wx_i=λ_ix_i
- Consider ordered by eigenvalues λ_i
 - First eigenvector x₁ has largest eigenvalue λ₁
- Elements of first eigenvector serve as "index vector"
 - Selecting elements of highest affinity cluster



Clustering

- First eigenvector of W has been suggested as clustering or segmentation criterion
 - For selecting most significant segment
 - Then recursively segment remainder
- Problematic when similar affinity clusters (regions)



Understanding Normalized Cuts

- Intractable discrete graph problem used to motivate continuous (real valued) problem
 - Find second *smallest* "generalized eigenvector" $(D-W)x_i = \lambda_i Dx_i$
 - Where D is (diagonal) degree matrix $d_{ii} = \sum_{j} w_{ij}$
- Can be viewed in terms of first two eigenvectors of normalized affinity matrix
 - Let N=D-1/2WD-1/2
 - Note $n_{ij} = w_{ij} / (\sqrt{d_{ii}} \sqrt{d_{jj}})$
 - Affinity normalized by degree of the two nodes

Normalized Affinities

- Can be shown that
 - If x is an eigenvector of N with eigenvalue λ then D-1/2x is a generalized eigenvector of W with eigenvalue 1- λ
 - The vector D^{-1/2}1 is an eigenvector of N with eigenvalue 1
- It follows that
 - Second smallest generalized eigenvector of W is ratio of first two eigenvectors of N
 - So ncut uses normalized affinity matrix N and first two eigenvectors rather than affinity matrix W and first eigenvector

Contrasting W and N

- Three simple point clustering examples
 - W, first eigenvector of W, ratio of first two eigenvectors of N (generalized eigenvector of W)

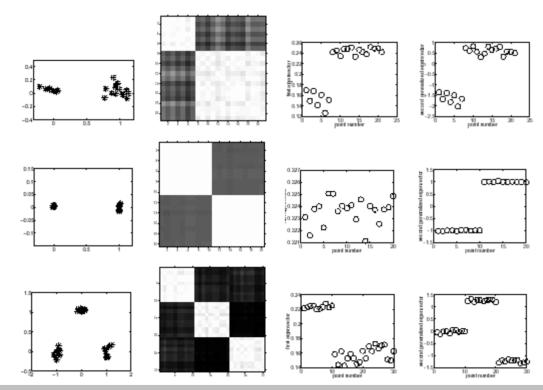
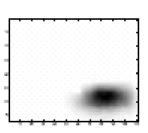


Image Segmentation

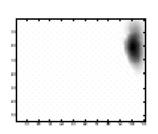
- Considering W and N for segmentation
 - Affinity a negative exponential based on distance in x,y,b space
- Eigenvectors of N more correlated with regions

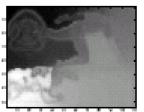
First 4 eigenvectors of W

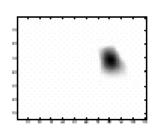
First 4 eigenvectors of N

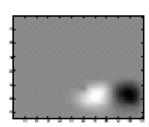


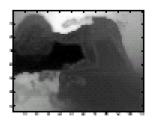












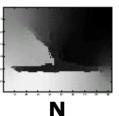
Using More Eigenvectors

- Based on k largest eigenvectors
 - Construct matrix Q such that (ideally) $q_{ij}=1$ if i and j in same cluster, 0 otherwise
- Let V be matrix whose columns are first k eigenvectors of W
- Normalize rows of V to have unit Euclidean norm
 - Ideally each node (row) in one cluster (col)
- Let Q=VV^T
 - Each entry product of two unit vectors

Normalization and k Eigenvectors

- Normalized affinities help correct for variations in overall degree of affinity
 - So compute Q for N instead of W
- Contrasting Q with ratio of first two eigenvectors of N (ncut criterion)
 - More clearly selects most significant region
 - Using k=6 eigenvectors
 - Row of Q matrix vs. ratio of eigenvectors of N

N



Spectral Methods

- Eigenvectors of affinity and normalized affinity matrices
- Widely used outside computer vision for graph-based clustering
 - Link structure of web pages, citation structure of scientific papers
 - Often directed rather than undirected graphs

Mean Shift

- Used both for segmentation and for edge preserving filtering
- Operates on collection of points $X=\{x_1, ..., x_n\}$ in R^d
- Replace each point with value derived from mean shift procedure
 - Searches for a local density maximum by repeatedly shifting a d-dimensional hypersphere of fixed radius h
 - Differs from most hyper-sphere based clustering in that no fixed number of clusters

Mean Shift Procedure

For given point x∈X let y₁, ..., y⊤ denote successive locations of that point

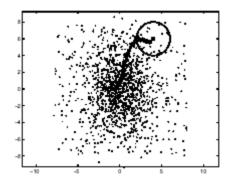
$$y_1 = x$$

$$y_{k+1} = 1/|S(y_k)| \sum_{x \in S(y^k)} x$$

- Where $S(y_k)$ is the subset of X contained in a hyper-sphere of radius h centered at y_k
 - The radius h is a fixed parameter of the method
- For a point set X, the mean shift procedure is applied separately to all the points

Illustration of Mean Shift

 Path of successive values of y_k for given starting point x



 Can be shown that converges to local density maximum

Mean Shift Image Filtering

 Map each image pixel to point in u,v,b space

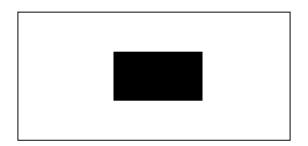
$$x_i = (u_i, v_i, b_i/\sigma)$$

- Analogous for color images, with three intensity values instead of one
- Scale factor σ normalizes intensity vs. spatial dimensions
- Perform mean shift for each point
 - Let $Y_i = (U_i, V_i, B_i)$ denote mean shifted value
- Assign result z_i=(u_i,v_i,B_i)
 - Original spatial coords, mean shifted intensity

Mean Shift Example

Edge Preserving Filtering

- Mean shift tends to preserve edges
- Edges are where intensity is changing rapidly
- Rapid changes in intensity will result in lower density regions in joint spatialintensity space
- Mean shift finds local density maxima

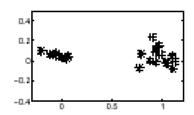


Mean Shift Clustering

- Run mean shift procedure for each point
- Cluster resulting convergence points that closer than some small constant
- Assign each point label of its cluster
- Analogous to filtering, but with added step of merging cluster that are nearby in the joint spatial-intensity domain

About Mean Shift

- Convergence to local density maximum
 - Where "local" determined by sphere radius
- Consider simple point set



- Over wide range of sphere radii end up with two clusters
 - Relationship to MST