



CS 664 Slides #10 Structure From Motion

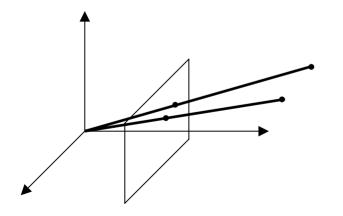
Prof. Dan Huttenlocher Fall 2003

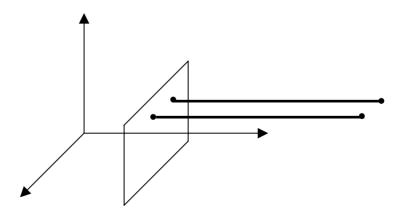
Structure From Motion

- Recover 3D coordinates from set of 2D views
 - Rigid body motion
 - Known correspondence of points in views
 - Various camera models
- Consider representative case of
 - Parallel (orthographic) projection
 - All points visible in all views
 - Un-calibrated camera
 - No outliers (least squares ok)

Parallel Projection

- Point (X,Y,Z) in space projects to (X,Y) in image plane
 - Contrast with (fX/Z,fY/Z) in pinhole model
 - Light rays all parallel rather than through principal point
 - Similar when points at same depth, narrow FOV





Recovering 3D Structure

- With enough corresponding points and views can determine 3D locations
 - Redundant information
 - Each view changes only viewing parameters and not point locations
 - 3P unknowns for P points and kF unknowns for F views
- Minimum sufficient correspondences
 - Orthographic projection, three views of four points
 - Central (pinhole) projection, two views of eight points

Sensitive to Measurement Noise

- Solutions based on a small number of points are not stable
 - Errors of the magnitude found in most images yield substantial differences in recovered 3D values
- Method that works in practice called factorization
 - Works on sequence of several frames
 - With correspondences of points
 - Consider case of factorization for orthographic projection, no outliers, can be extended

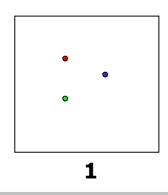
Input: Sequence of Tracked Points

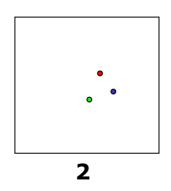
Point coordinates

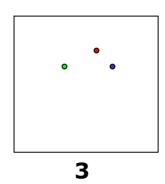
$$w'_{fp} = (u'_{fp}, v'_{fp})$$

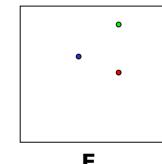
- Where f denotes frame index and p denotes point index
- Points tracked over frames
 - E.g., use corner trackers discussed previously

P points in each frame









Centroid Normalized Coordinates

• From observed coordinates $w'_{fp} = (u'_{fp}, v'_{fp})$ $w_{fp} = (u'_{fp} - \bar{u}_{fp}, v'_{fp} - \bar{v}_{fp})$

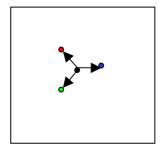
- Where

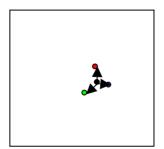
$$\overline{\mathbf{u}}_{\mathbf{fp}} = (1/P) \sum_{\mathbf{p}} \mathbf{u'}_{\mathbf{fp}}$$

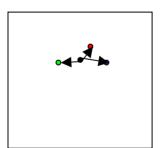
and

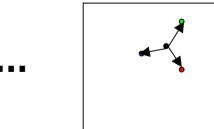
Centroids

$$\overline{V}_{fp} = (1/P) \sum_{p} V'_{fp}$$









Normalization

- Goal of separating out effects of camera translation from those of rotation
- Subtract out centroid to remove translation effects
 - Assume all points belong to object and present at all frames
 - Centroid preserved under projection
- Left to recover 3D coordinates (shape) of P points from F camera orientations

Measurement Matrix

- 2FxP 2 rows per frame, one col per point
- In absence of senor noise this matrix is highly rank deficient
 - Under orthographic projection rank 3 or less

$$W = \begin{bmatrix} U_{11} & \dots & U_{1P} \\ \vdots & & \vdots \\ U_{F1} & \dots & U_{FP} \\ V_{11} & \dots & V_{1P} \\ \vdots & & \vdots \\ V_{F1} & \dots & V_{FP} \end{bmatrix}$$

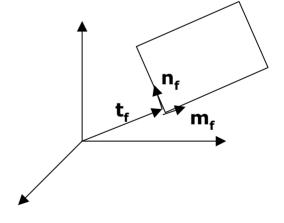
Structure of W

• World point $s_p' = (x_p', y_p', z_p')$ projects to image points

$$u'_{fp} = m_f^T (s_p' - t_f)$$

 $v'_{fp} = n_f^T (s_p' - t_f)$

- Where m_f, n_f are unit vectors defining orientation of image plane in world
- And t_f is vector from world origin to image plane origin



Structure of W (Cont'd)

- Can rewrite in centroid normalized coordinates
 - Since centroid preserved under projection
 - Projection of centroid is centroid of projection

$$u_{fp} = m_f^T s_p$$

 $v_{fp} = n_f^T s_p$

- Where

$$s_p = s_p' - \overline{s}$$

and

$$\overline{s} = (1/P) \sum_{\mathbf{p}} s'_{\mathbf{p}}$$

W Factors Into Simple Product

- W=MS where
 - M is 2Fx3 matrix of camera locations
 - S is 3xP matrix of points in world
 - Product is 2Fx3 matrix W
 - Clearly rank at most 3

$$\mathbf{M} = \begin{bmatrix} \mathbf{m_1}^T \\ \vdots \\ \mathbf{m_F}^T \\ \mathbf{n_1}^T \\ \vdots \\ \mathbf{n_F}^T \end{bmatrix} \qquad \mathbf{S} = \begin{bmatrix} \mathbf{S_1} & \dots & \mathbf{S_P} \end{bmatrix}$$

Factoring W

- Don't know M,S only measurements W
- When noise or errors in measurements seek least squares approximation
 - Note I.s. assumes no outliers (bad data)
 argmin_{M,S} | W-MS | ²
- The best M,S of this form can be found using the SVD of W

```
W = U\Sigma V
```

 Σ' contains only three largest singular values

$$M^* = U \sum_{1/2}^{1/2}$$

$$S^* = \Sigma'^{1/2}V$$

Factorization Not Unique

- Any linear transformation of M,S possible
 W=MS=M(LL⁻¹)S=(ML)(L⁻¹S)
- Often referred to as "affine shape"
 - Preserves parallelism/coplanarity
- Still haven't used a constraint on the form of M
 - Describes camera plane orientation at each frame m_i,n_i all unit vectors m_in_i = 0

Factorization Results

