2.8 Physics-based Vision: Active Contours (Snakes)

Physics-based Vision is a branch of Computer Vision that became very fashionable around
1987. The basic idea of Physics-based Vision is to pose a vision problem as a physics
problem. The resulting algorithms are very intuitive in contrast to the ‘magic’, non-intuitive
selection of parameters for many other algorithms in Computer Vision. The best example
of Physics-based algorithms are Active Contours, usually called ‘Snakes’. Snakes are very
popular because they are easy to use and reasonably fast.

2.8.1 Snakes - Examples and Physical Model

Snake behavior - a first intuition

Before we start to explain the physical intuition behind Snakes and the algorithms that
allow to compute them efficiently, we should first look at two examples of Snakes. Figure

Figure 1: Initial and final position of a contour finding snake.

1 shows a snake that finds object contours. To initialize the snake, the user draws an
approximate boundary of the object. This initial configuration is shown in the left image
of Figure 1.The snake then behaves roughly like a rubber band that snaps onto the object
boundaries if released (only much slower). This behavior of the snake is caused by an
‘external energy’ term that in this case determines that the snake feels attracted to object
boundaries. The rubber-band metaphor is somewhat misleading because the snake would
snap to the boundaries even when started from ‘within’ the object.

However, if you look carefully at the image on the right, you will see that it is not entirely
true that the snake aligns itself with the object boundary : at the top of the can, the snake
does not delineate the can contours but bulges a little bit. This behavior of the snake is
caused by the second energy term, the so-called internal energy. The internal energy gives
the snake the physical properties of a willow rod!. If you try to wrap a willow branch around
a coke can, it will refuse to bend into sharp corners but will instead bulge like the snake in
the image on the right-hand side.

The second example (figure 2) shows a snake that is able to track moving objects. The
input was a random dot ‘movie’ of a sliding square. The images in the top row are samples

! Physicists prefer to think of thin plates instead.

RN R S
C)lle | || o ©

Figure 2: A snake that tracks motion in random dot ‘movies’.

of the approximate position of the square during the ‘movie’..? The second row shows the
initial snake in the first image and the positions of the snake following the sliding square.
The snake is tracking the moving square because the external energy was defined such that
the snake feels attracted to boundaries of motion fields. This external force would shape the
snake into a square, were it not for the internal energy that makes the snake bulge instead.?

The Physics behind Snakes

Phrased in a more technical way, Snakes are energy-minimizing splines that simulate the
behavior of closed springs rolling downhill on a hilly terrain. This leads us directly to the
continuous model for Snakes.

Consider a 2-D curve V parameterized by the arclength s:

V(s) = (z(s),4(s)), forse[0,1]

We wish to minimize the energy F given by:
1
E = / Eint + Eemtds
0

where F;,; and F.,; represent the energy associated with the “internal” and “external” forces
that act on the snake. Internal forces are the ones that impose constraints on smoothness,
while external forces arise from the data. These terms are usually weighted such that the
emphasis on smoothness is appropriate for the application, but the weighting factor A is
hidden in one of the two terms and does not appear explicitly.

The external energy also depends on the application but is usually rather straightforward
to model. For example, we obtain an energy function for the contour finding snake by
assuming that object contours correspond to sudden intensity changes in the image. How
pronounced such intensity changes are is measured by the magnitude of the intensity gradient.
Therefore, we can model the external energy as E.,; = —|VI|, which corresponds to a hillside
with valleys at the location of edges. Figure 4 shows the image of a cat, the corresponding

2Technically, the images are samples from the series of disparity maps in x direction that were computed
between every pair of successive frames of the random dot movie.
3The snake also would approximate the shape of the square better if it had more nodes.

image of the (squared) gradient magnitudes and and edge image resulting from thresholding
the gradient magnitude.

The internal energy is modeled in terms of the derivatives of the curve. A spring-like,

Figure 3: An image of a cat, the corresponding squared gradient magnitudes (enhanced) and
the edge image.

contracting behavior corresponds to the minimization of first derivatives, while the thin-
plate behavior that avoids sharp bends is modeled as the minimization of second derivatives.
Therefore, the internal energy is

Bt = a|Va(s)]? + 8 |Viu(s))?

where 5 52
=51 V=5

The framework of snakes is actually more general, and would allow us to have coefficients
a(s) and F(s) that are dependent on s. But this is never used in practice and we will not
consider it here any further.

V(s)

Interpretation of the Parameters

Parameters o and (3 respectively control the sensitivity with respect to the first and the
second derivative, which physicists call the membrane term, and the thin plate term, respec-
tively. We can distinguish the following cases (see Fig. 4):

(a) [@ = [= 0] The internal force is zero, and the curve does not have to be continuous
(V € C?%). In other words, the snake can even have sharp angles.

(b) [a > 0, @ = 0] This imposes that V, be bounded, and thus that V € C?, i.e. continuous
and once differentiable.

(¢) [# > 0] This forces V,, to be bounded, which implies that V € C?, ie. 2 times
differentiable and once continuously differentiable.

S

(@ (b) (©)

Figure 4: Examples of (a) discontinuous, (b) continuous, and (c) continuously differentiable
curves.

Relative values of o, # control the snake’s “stiffness”.

At this point, we are left with an energy minimization problem:

1
Find V that minimizes / Eii + Eepi ds
0

2.8.2 Computing Snakes

In the continuous case, this minimization problem can be solved using the Calculus of Vari-
ations. The solution has to satisfy the following set of equations:

0

X = (A—’Yf)il (’VXt—l — %

E.pi(o0ld))

0
8—yEemt(Old))

where 7 is the step size, and A is a pentadiagonal matrix formed from «, 3. These equations
are solved by an iterative method. However, this approach for computing Snakes has several
problems, and today, Snakes are usually computed using a dynamic programming technique
known as the Viterbi Algorithm. We will start the discussion of this algorithm by a short
introduction to Dynamic Programming in general.

Y,=(A-7v1)" (7Y —

Dynamic Programming

The main idea behind dynamic programming is to compute the solution of a problem by
combining solutions of subproblems. What makes Dynamic Programming different from
Divide-and-Conquer is that many of the subproblems overlap or occur multiple times. The
main speed-up is then gained by computing solutions to these subproblems only once and
reusing them wherever they occur. A very simple example of this is the computation of a
Fibonacci number. Fibonacci numbers are defined recursively by

Fo=0; =1, F;=F 1+ F »

Obviously, all subterms Fy,...F;_> are computed multiple times if F; is implemented as a
recursive function. However, if you compute the Fibonacci numbers bottom-up (in the order
i= 2,3,4..) and store all results in a table*, no redundant computations are made.

“In this particular example, you only need to remember the last two values, but for other problems, you
usually have to store a whole table of values.

Usually, dynamic programming is applied to complex optimization problems. We will
demonstrate the power of dynamic programming with the example of graph coloring. If you
do not have background in Graph Theory, you may not understand some of the expressions,
but the basic idea should come across anyway.

Solving the Graph Coloring Problem with Dynamic Programming

The particular variant of the Graph Coloring Problem that we are considering here asks in
how many ways a given graph can be 4-colored. The general problem is NP-hard and the
computation of its solution takes O(4™). More formally,

Let G(N,E) a graph with node set N and edge set E € N x N. How many 4-colorings
C : N — {Red,Gree, Blue,Y ellow} exist such that V(n1,n2) € E : C(ny) # C(nz).

In the general case, you cannot do much better than enumerating all combinations of color
assignments for all nodes and to count the number of combinations for which no two neigh-
bored nodes have the same color. However, there are some special cases for which the
complexity of the computation can be reduced considerably. An example of such a graph
is shown in figure 5. The key observation here is that the nodes 7 and 8 form the only

1 3 5 7 9 11

2 4 6 8 10 12

Figure 5: An example graph.

connection between the subgraph on the left and the subgraph on the right. This allows us
to reduce the problem to the solution of the problem for the left subgraph and for the right
subgraph as follows:

Yellow Yellow

> > |(colorings of ni,..ng)| * |(colorings of ng,..n12)|
C(n7)=Red C(ng)=Red

That is, for each of the 16 different ways to color node 7 and 8, we compute the number of
possibilities to color the graph by computing the number of ways to color each subgraph,
multiplying these two numbers and adding up the results for all 16 different colorings.

In order to appreciate the complexity reduction, we can look at the problem in terms of
a search tree. In order to solve the general problem, we would have to enumerate all possible
color combinations in a systematic manner. This leads to a search tree of the following form
(see Fig. 6). The tree has n levels, and at expansion level k, the graph nodes 1..k-1 are
colored. Now assume we have expanded the tree until level 7, which means that nodes 1-6
are already colored. At level 7, there are 6% search nodes and in brute force search, we would
have to expand each of these nodes into the complete tree of all different combinations of

5

Leve 1

C(n)=R C(n1)=G C(n1)=B C(n1)=Yy Leve 2

C(n)=G || Cc(nD)=G | | C(n1)=G C(n1)=G

C(n2)=R || C(2=G | | c(n2)=B C(n2)=Y Level 3

Figure 6: The search graph for the 4-coloring problem of the above graph.

ways to color the nodes 7-12. However, we have already noticed that the colorings of the
nodes 9-13 depends only on the colors of nodes 7 and 8. This means that we can put the 6*
nodes into 16 equivalence classes and expand only 16 search trees for the subgraph on the
right instead of more than 1000.

We have chosen this rather complicated example from graph theory because it is actually
quite similar to the Viterbi algorithm. The Viterbi algorithm operates on discretized Snakes,
i.e. we chop the snake into small pieces and regard the positions where we cut the Snake as
nodes. The Snake pieces between the nodes are then approximated by simple functions like
polynoms. This approximation of a function by a chain of short pieces of simple functions
is called a spline. For all nodes of the spline holds that their contribution to the overall
energy of the Snake only depends on their position relative to their immediate predecessor
and successor nodes in the chain. This is similar to the graph coloring problem where the
color of each node was constrained by the color of its immediate neighbors and we can apply
a similar trick. The following paragraph will clarify how the Viterbi algorithm works.

2.8.3 Viterbi algorithm

We already mentioned that we have to discretize the Snake before we can apply the Viterbi
algorithm. A discretized Snake is a spline with vertex positions V' = vy, v, ...v,. We also
have to discretize the energy terms associated with a particular snake. The discretization of
the external energy depends on the particular energy term, but the internal energy is always
the same and can be discretized as follows:

Eini(vi) = alv; — Ui—1|2 + 0 |vigr — 2v; + Ui—1|2

where v; denotes the position of the ith vertex of the snake. Our problem reduces to finding
the set of vertex positions V' that minimizes

Z Eini(v:) + Eeai(v;)

v, €V

In order to make the presentation of the algorithm easier, we will now make the assumption
that the snake is open and that # = 0. We will relax these two assumptions later on. We
also assume that the snake vertex can only move to m nearby locations in order to make the
minimization problem tractable.

First, observe that since the internal energy is a local property of neighboring vertices,
we can decompose it into a sum of local terms:

E(vi,...,v,) = E1(v1,v2) + Ea(ve,v3) + ... + En_1(vn_1,0)

where E;(v;—1,9;) = Eept(V;) + Eint(vi—1, v;). In particular, this means that each vertex posi-
tion v; influences the total energy only through the terms F;_; and F;. The Viterbi algorithm
capitalizes on the property that the influence of the vertex positions is so decoupled.

Now, we introduce the intermediate variables s; (i=2..n) defined by

52(02) = H}}}H El(Ula Uz)

s3(v3) = 11})1211(52(1)2) + Ex(vg, v3))

s4(vg) = n})isn(53(vg) + F3(vs,vq))

$n(VUn) = Min(8p_1(Vn_1) + Ln_1(Vn-1,vn))

Un—-1

Each si(v;,) contains the lowest total energy for the first k-1 vertices of the snake for a given
value of v;. Thus, the minimum energy E of the whole snake is equal to min,, (s,(v,)).

The globally best position for the snake is therefore computed by first computing all the
Sk, which means that we determine at each node the optimal position of its predecessor for
each possible location of the node under consideration. When we have computed s,, we
can find the optimal position for v, by minimizing the expression s,(v,). Once we now the
position of the last node, we look up the optimal position for the second last node, and so
on until we have determined the optimal position for all the nodes.

To further improve the efficiency, we consider typically only m = 9 possible positions for
each vertex when searching for the local minimum (see Fig. 7). In order to allow the snake
to move more than 1 pixel per vertex, we iterate the above procedure using the previous
result as the new starting position, until the snake has converged to a quasi-globally optimal
position. Snakes are not performing a truly global optimization, but they find the optimal
position of the snake within the search window and the search window is repositioned after
each iteration.

Relaxing the assumptions

If # > 0, then the decomposition of the energy function into local terms becomes

E(’Ul, ceey /Un) = El(vl,’Ug, ’U3) + E2(/U27{03,,U4) + ...+ Enfg(’l}nfg,’l}nfl,’l}n)

Snake

. Current Position

O Possible Location For Next Iteration

Figure 7: Minimization within a 9-pixel window.

Therefore, we compute the optimal position of the predecessing node for all possible positions
of the node under consideration and the following node:

59(v2,v3) = Il}gn Eq(v1,v2,v3)

$3(v3, V1) = I%%D(82(712,Us) + Ea(va, v3,v4))

Sn,1(7.7n,1, Un) = £ni}21(3n72(v11727 Unfl) + En72(fun72) Un—1, Un))

where F; 1(v; 1,0, 41) = Eeat(v;) + Eing(vi1, v, v;41). Note that we have to compute a
table of m? values at each node instead of only m values per node for the simpler snakes
with = 0.

The adaptation of the algorithm to a closed snake is part of the homework assignment.

2.8.4 Advantages and Disadvantages of Snakes

The most salient advantage of Snakes besides their highly intuitive behavior is their efficiency.
Snakes are are fast for three reasons:

1. Snakes are 1-dimensional which means that we can reduce 2-dimensional optimization
problems to 1-dimensional optimization problems.

2. Snakes optimize locally.

3. It is possible to apply dynamic programming techniques, which reduces the complexity
from O(m™) for naive search to O(m? * n) for Snakes with 3 = 0 and to O(m? % n) for
Snakes with § > 0.

In the original paper, Kass and Terzopolous also mention that snakes make the combination
of low-level and high-level reasoning processes easy, because they can be implemented as an
interactive technique where the user (or a high-level reasoning system) can provide feedback
during the optimization process by adding additional energy terms. In this respect, Snakes

have not quite lived up to their promises. However, it is a real advantage of the dynamic
programming formulation of Snakes that it is easy to impose hard constraints like ‘the snake
must not have knots’ or ‘vertices cannot come closer than distance d’, which would be
impossible in the Calculus of Variations framework.

The only disadvantage of Snakes is that the Viterbi algorithm trades space for time and
that it can be quite space consuming.

2.8.5 Applications and Extensions

We have already seen in the introduction that Snakes can be used to find contours. Kass
and Terzopolous show in their paper how they used contour finding snakes to track lips.
This is especially impressive because the lips do not only move but also change their shape.
Motion algorithms that rely on correspondence have often difficulties with deformations.
Edge-attracted snakes can even be used to locate illusory contours as shown in Figure 8.
They are also widely used in bio-medical applications for outlining organs or tumors in

Figure 8: A snake for perception of illusory contours

X-rays and magnetic resonance tomograms (MRTSs).

When snakes are applied in technical domains, e.g. locating planes and houses on satellite
imagery, it is desirable that the snakes can form corners. One could set [to zero, but then
the snakes cannot delineate curved objects adequately anymore. A better solution is to use
other types of splines instead of the simple quadratic splines.

Another variation of the basic idea are balloons which are more or less the 3-dimensional
equivalent of snakes and are used to locate the 3D surface of objects, for example from range
data.

