
��� Physics�based Vision� Active Contours �Snakes�

Physics�based Vision is a branch of Computer Vision that became very fashionable around
����� The basic idea of Physics�based Vision is to pose a vision problem as a physics
problem� The resulting algorithms are very intuitive in contrast to the �magic�	 non�intuitive
selection of parameters for many other algorithms in Computer Vision� The best example
of Physics�based algorithms are Active Contours	 usually called �Snakes�� Snakes are very
popular because they are easy to use and reasonably fast�

����� Snakes � Examples and Physical Model

Snake behavior � a �rst intuition

Before we start to explain the physical intuition behind Snakes and the algorithms that
allow to compute them e
ciently	 we should �rst look at two examples of Snakes� Figure

Figure �� Initial and �nal position of a contour �nding snake�

� shows a snake that �nds object contours� To initialize the snake	 the user draws an
approximate boundary of the object� This initial con�guration is shown in the left image
of Figure ��The snake then behaves roughly like a rubber band that snaps onto the object
boundaries if released 
only much slower�� This behavior of the snake is caused by an
�external energy� term that in this case determines that the snake feels attracted to object
boundaries� The rubber�band metaphor is somewhat misleading because the snake would
snap to the boundaries even when started from �within� the object�

However	 if you look carefully at the image on the right	 you will see that it is not entirely
true that the snake aligns itself with the object boundary � at the top of the can	 the snake
does not delineate the can contours but bulges a little bit� This behavior of the snake is
caused by the second energy term	 the so�called internal energy� The internal energy gives
the snake the physical properties of a willow rod�� If you try to wrap a willow branch around
a coke can	 it will refuse to bend into sharp corners but will instead bulge like the snake in
the image on the right�hand side�

The second example 
�gure �� shows a snake that is able to track moving objects� The
input was a random dot �movie� of a sliding square� The images in the top row are samples

�Physicists prefer to think of thin plates instead�

�



Figure �� A snake that tracks motion in random dot �movies��

of the approximate position of the square during the �movie���� The second row shows the
initial snake in the �rst image and the positions of the snake following the sliding square�
The snake is tracking the moving square because the external energy was de�ned such that
the snake feels attracted to boundaries of motion �elds� This external force would shape the
snake into a square	 were it not for the internal energy that makes the snake bulge instead��

The Physics behind Snakes

Phrased in a more technical way	 Snakes are energy�minimizing splines that simulate the
behavior of closed springs rolling downhill on a hilly terrain� This leads us directly to the
continuous model for Snakes�

Consider a ��D curve V parameterized by the arclength s�

V 
s� � 
x
s�� y
s��� for s � ��� ��

We wish to minimize the energy E given by�

E �
Z �

�
Eint �Eextds

where Eint and Eext represent the energy associated with the �internal� and �external� forces
that act on the snake� Internal forces are the ones that impose constraints on smoothness	
while external forces arise from the data� These terms are usually weighted such that the
emphasis on smoothness is appropriate for the application	 but the weighting factor � is
hidden in one of the two terms and does not appear explicitly�

The external energy also depends on the application but is usually rather straightforward
to model� For example	 we obtain an energy function for the contour �nding snake by
assuming that object contours correspond to sudden intensity changes in the image� How
pronounced such intensity changes are is measured by the magnitude of the intensity gradient�
Therefore	 we can model the external energy as Eext � �jrIj	 which corresponds to a hillside
with valleys at the location of edges� Figure � shows the image of a cat	 the corresponding

�Technically� the images are samples from the series of disparity maps in x direction that were computed

between every pair of successive frames of the random dot movie�
�The snake also would approximate the shape of the square better if it had more nodes�

�



image of the 
squared� gradient magnitudes and and edge image resulting from thresholding
the gradient magnitude�

The internal energy is modeled in terms of the derivatives of the curve� A spring�like	

Figure �� An image of a cat	 the corresponding squared gradient magnitudes 
enhanced� and
the edge image�

contracting behavior corresponds to the minimization of �rst derivatives	 while the thin�
plate behavior that avoids sharp bends is modeled as the minimization of second derivatives�
Therefore	 the internal energy is

Eint � � jVs
s�j
� � � jVss
s�j

�

where

Vs �
�

�s
V 
s� Vs �

��

�s�
V 
s�

The framework of snakes is actually more general	 and would allow us to have coe
cients
�
s� and �
s� that are dependent on s� But this is never used in practice and we will not
consider it here any further�

Interpretation of the Parameters

Parameters � and � respectively control the sensitivity with respect to the �rst and the
second derivative	 which physicists call the membrane term	 and the thin plate term	 respec�
tively� We can distinguish the following cases 
see Fig� ���


a� �� � � � �� The internal force is zero	 and the curve does not have to be continuous

V � C��� In other words	 the snake can even have sharp angles�


b� �� � �	 � � �� This imposes that Vs be bounded	 and thus that V � C�	 i�e� continuous
and once di�erentiable�


c� �� � �� This forces Vss to be bounded	 which implies that V � C�	 i�e� � times
di�erentiable and once continuously di�erentiable�

�



(a) (b) (c)

Figure �� Examples of 
a� discontinuous	 
b� continuous	 and 
c� continuously di�erentiable
curves�

Relative values of �� � control the snake�s �sti�ness��

At this point	 we are left with an energy minimization problem�

Find V that minimizes
Z �

�
Eint �Eext ds

����� Computing Snakes

In the continuous case	 this minimization problem can be solved using the Calculus of Vari�
ations� The solution has to satisfy the following set of equations�

Xt � 
A� � I��� 
� Xt�� �
�

�x
Eext
old��

Yt � 
A� � I��� 
� Yt�� �
�

�y
Eext
old��

where � is the step size	 and A is a pentadiagonal matrix formed from �� �� These equations
are solved by an iterative method� However	 this approach for computing Snakes has several
problems	 and today	 Snakes are usually computed using a dynamic programming technique
known as the Viterbi Algorithm� We will start the discussion of this algorithm by a short
introduction to Dynamic Programming in general�

Dynamic Programming

The main idea behind dynamic programming is to compute the solution of a problem by
combining solutions of subproblems� What makes Dynamic Programming di�erent from
Divide�and�Conquer is that many of the subproblems overlap or occur multiple times� The
main speed�up is then gained by computing solutions to these subproblems only once and
reusing them wherever they occur� A very simple example of this is the computation of a
Fibonacci number� Fibonacci numbers are de�ned recursively by

F� � �� F� � �� Fi � Fi�� � Fi��

Obviously	 all subterms F�� ���Fi�� are computed multiple times if Fi is implemented as a
recursive function� However	 if you compute the Fibonacci numbers bottom�up 
in the order
i� �	�	���� and store all results in a table�	 no redundant computations are made�

�In this particular example� you only need to remember the last two values� but for other problems� you

usually have to store a whole table of values�

�



Usually	 dynamic programming is applied to complex optimization problems� We will
demonstrate the power of dynamic programming with the example of graph coloring� If you
do not have background in Graph Theory	 you may not understand some of the expressions	
but the basic idea should come across anyway�

Solving the Graph Coloring Problem with Dynamic Programming

The particular variant of the Graph Coloring Problem that we are considering here asks in
how many ways a given graph can be ��colored� The general problem is NP�hard and the
computation of its solution takes O
�n�� More formally	
Let G�N�E� a graph with node set N and edge set E � N � N � How many ��colorings
C � N � fRed�Gree�Blue� Y ellowg exist such that �
n�� n�� � E � C
n�� �� C
n���

In the general case	 you cannot do much better than enumerating all combinations of color
assignments for all nodes and to count the number of combinations for which no two neigh�
bored nodes have the same color� However	 there are some special cases for which the
complexity of the computation can be reduced considerably� An example of such a graph
is shown in �gure �� The key observation here is that the nodes � and � form the only

531 7 9 11

2 4 6 8 10 12

Figure �� An example graph�

connection between the subgraph on the left and the subgraph on the right� This allows us
to reduce the problem to the solution of the problem for the left subgraph and for the right
subgraph as follows�

Y ellowX
C�n���Red

Y ellowX
C�n���Red

j
colorings of n�� ��n	�j � j
colorings of n
� ��n���j

That is	 for each of the �� di�erent ways to color node � and �	 we compute the number of
possibilities to color the graph by computing the number of ways to color each subgraph	
multiplying these two numbers and adding up the results for all �� di�erent colorings�

In order to appreciate the complexity reduction	 we can look at the problem in terms of
a search tree� In order to solve the general problem	 we would have to enumerate all possible
color combinations in a systematic manner� This leads to a search tree of the following form

see Fig� ��� The tree has n levels	 and at expansion level k	 the graph nodes ���k�� are
colored� Now assume we have expanded the tree until level �	 which means that nodes ���
are already colored� At level �	 there are �� search nodes and in brute force search	 we would
have to expand each of these nodes into the complete tree of all di�erent combinations of

�



C(n1)=R C(n1)=G C(n1)=B C(n1)=Y

R BG Y

R BG Y

C(n1)=GC(n1)=G C(n1)=G C(n1)=G

C(n2)=R C(n2)=G C(n2)=B C(n2)=Y

Level 1

Level 2

Level 3

Figure �� The search graph for the ��coloring problem of the above graph�

ways to color the nodes ����� However	 we have already noticed that the colorings of the
nodes ���� depends only on the colors of nodes � and �� This means that we can put the ��

nodes into �� equivalence classes and expand only �� search trees for the subgraph on the
right instead of more than �����

We have chosen this rather complicated example from graph theory because it is actually
quite similar to the Viterbi algorithm� The Viterbi algorithm operates on discretized Snakes	
i�e� we chop the snake into small pieces and regard the positions where we cut the Snake as
nodes� The Snake pieces between the nodes are then approximated by simple functions like
polynoms� This approximation of a function by a chain of short pieces of simple functions
is called a spline� For all nodes of the spline holds that their contribution to the overall
energy of the Snake only depends on their position relative to their immediate predecessor
and successor nodes in the chain� This is similar to the graph coloring problem where the
color of each node was constrained by the color of its immediate neighbors and we can apply
a similar trick� The following paragraph will clarify how the Viterbi algorithm works�

����� Viterbi algorithm

We already mentioned that we have to discretize the Snake before we can apply the Viterbi
algorithm� A discretized Snake is a spline with vertex positions V � v�� v�� ���vn� We also
have to discretize the energy terms associated with a particular snake� The discretization of
the external energy depends on the particular energy term	 but the internal energy is always
the same and can be discretized as follows�

Eint
vi� � � jvi � vi��j
� � � jvi�� � � vi � vi��j

�

where vi denotes the position of the ith vertex of the snake� Our problem reduces to �nding
the set of vertex positions V that minimizes

X
vi�V

Eint
vi� � Eext
vi�

�



In order to make the presentation of the algorithm easier	 we will now make the assumption
that the snake is open and that � � �� We will relax these two assumptions later on� We
also assume that the snake vertex can only move to m nearby locations in order to make the
minimization problem tractable�

First	 observe that since the internal energy is a local property of neighboring vertices	
we can decompose it into a sum of local terms�

E
v�� � � � � vn� � E�
v�� v�� �E�
v�� v�� � � � �� En��
vn��� vn�

where Ei
vi��� vi� � Eext
vi��Eint
vi��� vi�� In particular	 this means that each vertex posi�
tion vi in�uences the total energy only through the terms Ei�� and Ei� The Viterbi algorithm
capitalizes on the property that the in�uence of the vertex positions is so decoupled�

Now	 we introduce the intermediate variables si 
i����n� de�ned by

s�
v�� � min
v�

E�
v�� v��

s�
v�� � min
v�


s�
v�� �E�
v�� v���

s�
v�� � min
v�


s�
v�� �E�
v�� v���

���

sn
vn� � min
vn��


sn��
vn��� �En��
vn��� vn��

Each sk
vk� contains the lowest total energy for the �rst k�� vertices of the snake for a given
value of vk� Thus	 the minimum energy E of the whole snake is equal to minvn
sn
vn���

The globally best position for the snake is therefore computed by �rst computing all the
sk	 which means that we determine at each node the optimal position of its predecessor for
each possible location of the node under consideration� When we have computed sn	 we
can �nd the optimal position for vn by minimizing the expression sn
vn�� Once we now the
position of the last node	 we look up the optimal position for the second last node	 and so
on until we have determined the optimal position for all the nodes�

To further improve the e
ciency	 we consider typically only m � � possible positions for
each vertex when searching for the local minimum 
see Fig� ��� In order to allow the snake
to move more than � pixel per vertex	 we iterate the above procedure using the previous
result as the new starting position	 until the snake has converged to a quasi�globally optimal
position� Snakes are not performing a truly global optimization	 but they �nd the optimal
position of the snake within the search window and the search window is repositioned after
each iteration�

Relaxing the assumptions

If � � �	 then the decomposition of the energy function into local terms becomes

E
v�� � � � � vn� � E�
v�� v�� v�� �E�
v�� v�� v�� � � � ��En��
vn��� vn��� vn�

�



Current Position

Possible Location For Next Iteration

Snake

Figure �� Minimization within a ��pixel window�

Therefore	 we compute the optimal position of the predecessing node for all possible positions
of the node under consideration and the following node�

s�
v�� v�� � min
v�

E�
v�� v�� v��

s�
v�� v�� � min
v�


s�
v�� v�� �E�
v�� v�� v���

���

sn��
vn��� vn� � min
vn��


sn��
vn��� vn��� �En��
vn��� vn��� vn��

where Ei��
vi��� vi� vi��� � Eext
vi� � Eint
vi��� vi� vi���� Note that we have to compute a
table of m� values at each node instead of only m values per node for the simpler snakes
with � � ��
The adaptation of the algorithm to a closed snake is part of the homework assignment�

����� Advantages and Disadvantages of Snakes

The most salient advantage of Snakes besides their highly intuitive behavior is their e
ciency�
Snakes are are fast for three reasons�

�� Snakes are ��dimensional which means that we can reduce ��dimensional optimization
problems to ��dimensional optimization problems�

�� Snakes optimize locally�

�� It is possible to apply dynamic programming techniques	 which reduces the complexity
from O
mn� for naive search to O
m� � n� for Snakes with � � � and to O
m� � n� for
Snakes with � � ��

In the original paper	 Kass and Terzopolous also mention that snakes make the combination
of low�level and high�level reasoning processes easy	 because they can be implemented as an
interactive technique where the user 
or a high�level reasoning system� can provide feedback
during the optimization process by adding additional energy terms� In this respect	 Snakes

�



have not quite lived up to their promises� However	 it is a real advantage of the dynamic
programming formulation of Snakes that it is easy to impose hard constraints like �the snake
must not have knots� or �vertices cannot come closer than distance d�	 which would be
impossible in the Calculus of Variations framework�

The only disadvantage of Snakes is that the Viterbi algorithm trades space for time and
that it can be quite space consuming�

����	 Applications and Extensions

We have already seen in the introduction that Snakes can be used to �nd contours� Kass
and Terzopolous show in their paper how they used contour �nding snakes to track lips�
This is especially impressive because the lips do not only move but also change their shape�
Motion algorithms that rely on correspondence have often di
culties with deformations�
Edge�attracted snakes can even be used to locate illusory contours as shown in Figure ��
They are also widely used in bio�medical applications for outlining organs or tumors in

Figure �� A snake for perception of illusory contours

X�rays and magnetic resonance tomograms 
MRTs��
When snakes are applied in technical domains	 e�g� locating planes and houses on satellite

imagery	 it is desirable that the snakes can form corners� One could set � to zero	 but then
the snakes cannot delineate curved objects adequately anymore� A better solution is to use
other types of splines instead of the simple quadratic splines�

Another variation of the basic idea are balloons which are more or less the ��dimensional
equivalent of snakes and are used to locate the �D surface of objects	 for example from range
data�

�


