
Cornell University
Computer Science 664

Stereopsis and Motion:
Extracting Shape from Images

1 Middle Level Vision

One of the goals of so-called ‘middle level’ visual processing is to extract three-dimensional
geometric information from one or more images. Extracting three-dimensional geometry
from images is often referred to as shape-from-x, because there are a number of different
sources of information that can be used to recover the three-dimensional structure of a
scene (or shape) from two-dimensional images. For instance, shading in an image reveals
information about three-dimensional shapes (e.g., much of the way that the shape of a
sphere in a photograph is perceived as being a solid rather than a disk is due to the uniform
change in brightness away from the light source). Shape-from-shading is an active area
of research, but we will not study it here because it requires a substantial amount more
knowledge of surface reflectance properties than we will have time to cover (also its use
in practice is quite restricted).

Another source of three-dimensional shape information is provided by the change in
location of an object from one image to the next, in a set of two or more images. The
two main techniques for extracting image shape from multiple images are stereopsis and
structure from motion. These are the two approaches that we will be considering in some
detail in this section of the course.

In the first approach, stereopsis, two images are taken of the same scene from slightly
different viewpoints. Those objects in the scene that are far away from the two cam-
eras will appear nearly identical in the two images, whereas those objects that are near
the cameras will change significantly between the two images. The key idea underlying
stereopsis (or stereo vision) is to make use of the disparity, or change in image location,
of an object from one view to the next. The closer an object is to the camera, the
larger the disparity will be. This allows us to reconstruct three-dimensional shape from
disparity. Generally the depth (or distance) information recovered from stereo is quite
noisy, and thus a surface interpolation process is often applied to the data (cf. [3]). Such
interpolation methods have broad applicability beyond computer vision.

The second approach that we will consider is structure from motion. Here the idea is
to take a sequence of images, and to use the motion of an object with respect to the cam-
era to reconstruct its three-dimensional shape. There are many methods for solving this
problem, but all of them involve first tracking the object (finding corresponding points
in successive frames), and then applying some sort of technique to recover the three-
dimensional positions of the points from their two-dimensional motions. The tracking

1Copyright c© 1992, 1993 Daniel Huttenlocher

1

problem is itself is quite difficult, particularly when it is necessary to identify correspond-
ing points in successive frames. Many methods require the object to be stationary, and
the camera to undergo a restricted type of motion. This helps with both the tracking
problem, and the subsequent shape reconstruction.

Stereo vision is the more structured of the two problems, because we assume that the
cameras and the objects are fixed. It is also generally assumed that something about the
relation between the two camera frames is known. Thus we will first investigate the stereo
vision problem, and then turn to the more general problems of tracking and recovering
structure from motion.

2 Stereopsis

In the basic stereo vision paradigm, there are two cameras observing a static scene (i.e.,
where nothing is moving). The relative coordinate systems of the two cameras are known,
or are constrained in some fashion. Various modifications include adding a third camera,
and adding small motions of the cameras to help resolve possible ambiguities. In the
basic two-camera case, the images are generally referred to as L and R (resulting from
the left and right cameras respectively). The idea underlying stereopsis is to determine a
correspondence (or matching) between each location pl of L and some location pr of R.
In other words, to find the pairs of points pl and pr that result from the projection of the
same point p into the two images. Note that a given point p need not have an image in
both L and R — there may be some other point in the scene that hides p from view in
the left or right image, causing there to be no correspondence.

The disparity, or difference in image location, of pl and pr then indicates the distance
from the cameras to the point p in the world. If an object is infinitely far away, then
its projection into the two camera planes will be at the same location, and the disparity
will be zero. If an object is close to the cameras then the disparity will be large. In
other words, disparity is inversely proportional to the distance between an object and the
camera system. Stereopsis is a common technique for recovering shape both in artificial
vision systems and in the human visual system. It is not indispensable, however, as a
significant percentage of people have little or no stereo vision.

To make the discussion more precise, we will consider the geometry of the camera
system. We will use a simple pinhole-camera model, where optical effects due to the lens
are ignored completely. This model of the camera geometry is illustrated in Figure 1. A
simple camera thus consists of a focal point (or center), o, through which all the rays of
light pass, and an image plane I onto which these rays are projected. The optical axis of
the camera is the line perpendicular to the image plane, I , and through the focal point,
o. We will call the intersection of the optical axis with the image plane o′. The distance
from o to o′ is called the focal length, f , of the camera. If we place the origin of the
world coordinate system at o, and the origin of the image plane at o′, and assume that
the optical axis points in the ẑ direction, then the following two equations describe the
projection of a point at location (x, y, z) in the world into location (x′, y′) in the image

2

I

p

p′

f

z

x

o′

o

Figure 1: A pinhole camera model.

plane:

x′

f
=

x

z

y′

f
=

y

z
.

These equations are referred to as the perspective equations. The projection of the world
onto a plane through a central point in this manner is referred to as perspective projection
(or central projection). In general we will assume that the world origin is at o, the image
origin is at o′, and the optical axis is in the ẑ direction, and use the above equations.

For stereo vision there are two cameras at some fixed relative position and orientation
with respect to one another. First we will consider a simple stereo camera geometry in
which the optical axes of the two cameras are parallel to one another, and are perpendic-
ular to the baseline connecting the two camera centers (which are denoted by ol and or).
Moreover, we will assume that the focal length, f of the two cameras is the same. This
situation is illustrated in Figure 2, where the length of the baseline (distance between the
camera centers) is denoted by b. We will let the origin of the coordinate system for the
left image plane, L, be the projection of its optic axis, o′l (and similarly the origin of the
right image plane, R, is at o′r). We will let the origin of the world coordinate frame be
along the baseline, at the point equidistant between the two camera centers (at distance
b/2 from each ol and or). Note that this camera geometry makes L and R the same
plane, and with the same coordinate frames except for a translation of the origin in the
x-direction.

Consider a point p = (x, y, z) in the world which is imaged into L at location pl =
(x′

l, y
′
l) and into R at location pr = (x′

r, y
′
r). By the perspective equations and the geometry

3

p′r

f

z

x

p′l

f

b

ol or

o′ro′l

p

Figure 2: A simple stereo camera geometry.

of the two cameras,

x′
l

f
=

x + b/2

z

x′
r

f
=

x− b/2

z

y′
l

f
=

y′
r

f
=

y

z

where b is the baseline width and f is the focal length of both cameras. Thus in this
simple camera geometry, only the x location of a projected point differs between the left
and right images. The y location of a given point in space is the same for both images.

Recall that the disparity is defined as the distance between (x′
l, y

′
l) and (x′

r, y
′
r), which

in this case is just the magnitude of the difference between the x coordinates, x′
l − x′

r.
From the above equations, we see that

x′
l − x′

r

f
=

b

z
.

Thus if b and f are known then the depth z of the point p can be computed from the
disparity. Note that as z gets infinitely large the disparity goes to zero (as we noted in the
introduction, things that are very far away have no disparity). If b and f are unknown
then we can compute the relative depths of points, but not their absolute distance from
the camera (because b and f although unknown are fixed, and thus there is simply a
constant factor difference). In other words, for an uncalibrated camera system (unknown
f and b) all that we can conclude is disparity is inversely proportional to depth.

The disparity is directly proportional to the focal length, f . Thus a larger focal
length camera system will produce bigger disparities for the same distance, z. Disparity

4

is also directly proportional to the baseline width, b. Note that if there is some fixed
error in determining disparity, then increasing b and f will reduce the error in the depth
computation (because increasing these quantities increases the amount of disparity for a
fixed depth difference). The focal length, f is effectively limited for most cameras. The
baseline is quite easy to increase, however this results in other problems. As b is increased,
the two images become less and less similar to one another (in the worst case two finite size
images contain nothing in common). Even when the images contain common subparts,
the large disparities make it quite difficult to identify corresponding points pl and pr in
the two images that both result from the same point p in the world (because the points
may be very far apart). This is a fundamental tradeoff in stereo imaging systems: a wider
baseline provides more accurate depth estimates for fixed errors in disparity, however it
also makes the problem of determining a correspondence much more difficult.

A point p = (x, y, z) in the world and the two camera centers define a plane called the
epipolar plane (alternatively this plane is defined by p and its two images pl = (x′

l, y
′
l) and

pr = (x′
r, y

′
r)). In other words, for each point in space there is a corresponding epipolar

plane defined by that point and the two camera centers (or the two images in the stereo
camera system). A given epipolar plane intersects with the left camera plane, L, defining
an epipolar line el. Analogously the intersection with R defines an epipolar line er. These
two lines, one in each image, are referred to as a corresponding pair of epipolar lines.
Note that in the simple camera model illustrated in Figure 2, the epipolar lines el and er

are both parallel to x-axis, and have the same y-coordinate.
The epipolar lines are important in stereo vision because if the corresponding pairs

of epipolar lines in L and R are known, then this constrains the possible locations of
corresponding pairs of points in the left and right images. If a point pl lies on a given
epipolar line el, then the corresponding point pr must lie on the corresponding line er

in the right image (if it occurs at all in the bounded image region of the plane R). For
example, in the simple camera geometry y′

l = y′
r, and thus the corresponding epipolar

lines of the left and right image are those lines with the same y coordinates.
The central computational problem in stereo vision is to determine for each point

pl in the left image, what matching point pr in the right image corresponds to pl (that
is what pairs of points pl and pr are projections of the same point p). Thus knowing
the corresponding pairs of epipolar lines in the two images constrains the search for
corresponding pairs of points to just a line, rather than the entire image plane. In the
case of the simple camera geometry a given point in the left image pl = (x′

l, y
′
l) must have

a match on the line pr = (x′
r, y

′
l) (if there is any matching point at all in the right image).

In case of general camera geometry, the corresponding epipolar lines in R and L form
pencils of lines through the images of the other camera centers (a pencil of lines in the
plane is the set of all lines through some given point). That is, all the epipolar lines in
L go through projection of right camera center into that image (the image of or in L),
and analogously all the epipolar lines in R go through the projection of the right camera
center into that image. In the case of the simple camera geometry, the right camera center
or projects to infinity rather than into L (and analogously for ol and R). Thus the point
that all the epipolar lines go through is at infinity — in other words the epipolar lines

5

are parallel. (Note that the image of the left (right) camera center need not actually be
visible in the right (left) image, because the image is just a finite portion of R (L).)

The correspondence of epipolar lines in the left and right images must be discovered
through some sort of calibration process that relates the coordinate systems of L and
R. We will not discuss such camera calibration further, but only note that accurate
calibration is a difficult and tedious process. We will generally use cameras that are
setup in (approximately) the simple geometry, where corresponding epipolar lines are
lines parallel to the x-axis with the same y coordinate.

2.1 Finding Matching Point Pairs

The geometry of stereo vision is the ‘easy part’, now we must consider the problem of
how to identify pairs of image points p′l and p′r that correspond to projections of the same
scene point p into the left and right images. In order to recover depth (or relative depth
in the case where f and b are not known) we must identify such corresponding pairs of
points. The first problem in identifying corresponding points is that a given point p′l need
not have a corresponding point p′r. It may be that p was not imaged inside the bounded
camera image, or it may be that p was occluded (hidden from view by some other points)
when viewed from R (but not from L). There is nothing to be done in such cases; but we
assume that most of the time p is imaged in both L and R.

The second problem in identifying corresponding pairs of points is the fact that there
are inherent ambiguities in determining which points match in the left and right images.
We can make various assumptions to resolve the ambiguities, such as preferring the match
that results in the least change in depth (disparity). Consider a scene that contains two
points, and the images of those points a′

l and b′l in the left image and a′
r and b′r in the

right image. There are two possible physical interpretations of just these images of two
points. The situation is illustrated in Figure 3. The two possible interpretations are

1. al and ar are both images of B, and bl and br are both images of A

2. al and br are both images of C , and bl and ar both images of D

None of the other pairings are possible, because they involve pairs of points that lie along
the same line.

Ambiguities such as this also arise in human stereo vision. There is a well known
optical illusion, called the ‘double nail illusion’, where two nails that actually are at
locations C and D are seen as if they are at A and B. You can approximate this by
holding your two index fingers in front of your eyes at about arms length and focusing on
them. Don’t move your eyes though, because eye movements allow disambiguation of the
match (i.e., by moving your eyes slightly you can tell that they are actually behind each
other, and not next to each other). You should then see your two fingers as if they are
next to one another, even though they are behind one another (note: for some people this
is not easy to do). Thus the human stereo vision system prefers the ‘flatter’ interpretation
that the two points are at about the same depth (A and B) rather than the true situation
(C and D).

6

A B

al ar brbl

C

D

Figure 3: Inherent ambiguities in stereo correspondence.

In general, the problem of resolving such ambiguities involves making some assump-
tions that allow choosing one interpretation over another. The most common such as-
sumption is that of ‘continuity’ of disparity (and depth values). That is, it is assumed that
disparity (and depth) values vary slowly almost everywhere. Intuitively, this means pre-
ferring the flatter interpretation (the one with less change in disparity, and hence depth).
For the example in Figure 3, this assumption would result in choosing the first rather
than the second of the above two interpretations, because

| |al − ar| − |bl − br| | < | |al − br| − |ar − bl| |

In practice, most stereo matching methods use some sort of ‘continuity’ constraint in
identifying pairs of points pl and pr . Thus we have limited the problem of determining
corresponding pairs of points from that of comparing every pair of points in L and R
to that of comparing every every pair along corresponding epipolar lines, and then to
those pairs that preserve continuity of depth values. We will now turn to some simple
algorithms for identifying correspondences between points along epipolar lines, and then
consider some more involved methods.

For the simplified imaging geometry, the epipolar line pairs are corresponding lines
parallel to the x-axis with the same y-coordinate. Thus in a digitized video image, each
successive scan line of the left and right image forms a pair of corresponding epipolar lines.
The stereo matching problem is therefore that of identifying which portions of each scan
line of L correspond to which portions of the corresponding scan line of R. We assume
that the disparities will vary slowly almost everywhere, so that in general if the point at
x′

l is paired with that at x′
r = x′

l + d (i.e., the disparity is d at x′
l) then x′

l + 1 will be

7

paired with x′
r + 1. In other words, there will usually be a single a disparity, or shift, d

for a set of neighboring pixels of a scan line of L.
One method of identifying the shift between pixels along corresponding epipolar lines

is using correlation. Correlation is a standard technique for finding the best shift of two
functions with respect to each other, by maximizing the product of the two functions.
That is, given a(x) and b(x), the correlation is defined as,

a � b =
∫ ∞

−∞
a(ξ)b(ξ − x)dξ .

Note the similarity of correlation to convolution. The value of x that maximizes this
product is the best correlation of a with b (for example, the maximum value of a � a is at
x = 0).

Another measure that is commonly used to find the best shift of two functions with
respect to each other is to minimize some Lp norm of the difference between the functions,

[∫ ∞

−∞
|a(ξ) − b(ξ − x)|pdξ

]1/p

for integral values of p ≥ 1. Note, however, that this is a nonlinear operation due to the
absolute value and the power p. Thus correlation is used much more commonly.

In order to use correlation for stereo matching, we cannot simply take a and b to be
the entire corresponding epipolar lines. There is no reason to believe that there is a single
disparity, d, for all the pixels along a given scan line (a scan line may contain some pixels
due to objects that are close, and some due to objects that are far). Therefore correlation
is usually applied by selecting some fixed-size window (region) of the left scan line, and
correlating that window with the right scan line to find the best position. Then the next
window of the left scan line is taken, and so on. For example, if a window of ±3 pixels is
used, then each pixel at el defines 7 values that can be correlated with er to find the best
shift, d. This then defines a value of d at each location of el.

There are a number of issues with the simple correlation-based stereo matching method
just described,

1. There need to be identifiable points in the two images. For a uniform intensity
surface all matches (all disparities) are equally good, so the correlation has very
wide peak.

2. The two images need to be the same intensity. Overall differences in intensities
in the left and right image cause there to be no good correlation, or even causes
mismatches to be found.

3. The window size must be appropriate. If the window is too small then many false
matches will be found (e.g., just one pixel matches nearly everywhere). If the window
is too large then different disparity regions will be combined together, and there will
be no single shift (disparity) that matches.

8

4. There cannot be significant foreshortening in the images. Foreshortening is caused
by something that is changing depth quickly with respect to the camera, which
causes the disparities to change quickly. Even worse is the situation where the two
images have different amounts of foreshortening, which ‘warps’ el with respect to
er.

The first of these issues is problematic for all stereo matching methods, although some
are more sensitive than others. The second issue is mainly a problem for methods that
rely on absolute intensity values in the two images (such as grey-level correlation). The
main means of dealing with this problem is to use edges or other binary features instead.
We will delay talking about edge-based stereo matching for a bit longer. The third and
fourth issues are problems primarily for correlation based stereo matching, thus we now
turn to techniques that do not suffer from these latter two problems.

2.2 Marr-Poggio Method

The Marr-Poggio algorithm [6] is a local iterative method for computing disparities from
binary image pairs, by matching pixels of the left and right images. The method is based
on three constraints on stereo matching (recall that the matching of points in one frame
to the other is not unique, thus we need some sort of constraints to find the ‘best’ match).
These constraints, or criteria for a good match, are

1. ‘continuity’ - the disparity of matches varies slowly almost everywhere

2. compatibility - only ‘same type’ elements match (e.g., in binary images black pixels
match with black pixels and white pixels with white pixels)

3. uniqueness - there is almost always a single match for each element

4. epipolar lines - matches must occur along corresponding epipolar lines of L and R

The Marr-Poggio method was developed in the context of Julesz’s random dot stere-
ograms — two images of black/white dots that produce the illusion of surface depth. Such
a stereo pair is illustrated in Figure 4. The image in this case is a raised square in the
center (as indicated by the corresponding disparities also shown). The key underlying
assumption of the Marr-Poggio method is that the data are dense — that there are many
and frequent changes from white pixels to black pixels in the image. In other words, the
method assumes that there are many pairs of pixels on which to compute disparity. It
then determines the subset of these possible pixel pairs for which the disparities best meet
the above four criteria. Thus the best images for this type of stereo matching (and in fact
for most stereo matchers) are highly textured; for example natural scenes, or manmade
objects that have been spattered with paint.

In the simple imaging geometry, matching elements in the left and right images lie on
corresponding horizontal lines el and er. Thus for a binary image, the possible matching
elements are any pair of black pixels on el and er, or any pair of white pixels on el and er.

9

Figure 4: A random dot stereogram and the corresponding disparities computed using
the Marr-Poggio method (larger disparity values are displayed as lighter grey levels).

X = x

Y = x + d

Figure 5: A simple disparity space for corresponding epipolar lines.

We will denote a matching pair of points as ly(x) and ry(x + d). Where the y subscript
indicates which epipolar lines the two points are on, the left point is at location x on
that line, and the right one is at location x + d (the disparity is d). If we form the two
dimensional space of ly(x)× ry(x) then we obtain a binary valued ‘disparity space’, where
each point (X, Y) in the space has value 1 when ly(X) = ry(Y) and value 0 otherwise. This
space is illustrated in Figure 5, where the line segments indicate matching pairs of points
in the left and right images (places where (X, Y) has value 1). Note that the disparity is
encoded implicitly in this space. For instance, the disparity at ly(X) is d = Y − X.

The ‘continuity’ constraint means that the disparity lines should be nearly diagonal
(slope 1) almost everywhere, as illustrated in Figure 5. A slope 1 line in disparity space
indicates constant disparity. The uniqueness constraint means that over some disparity
range, ±r, there should only be a single match for a given pixel. In other words, given
that ly(x0) is paired with ry(x0 + d), ly(x0) should not match any ry(x0 + d + i) and
ry(x0 + d) should not match any ly(x0 + i), −r ≤ i ≤ r.

For intensity images, equality of pixels in the left and right image is not a good
way of finding possible matching pairs of pixels, because the image intensities may be

10

Figure 6: The pattern of excitatory and inhibitory connections for the simple disparity
space.

substantially different for the two images. The two options are to produce a binary image
from the intensity image (e.g., by edge detection, or the sign bit of ∇2I) or to match
pairs of points that are approximately equal in the two images (e.g., within some range
|ly(X) − ry(Y)| < ε).

The ‘continuity’ and uniqueness constraints can be combined into a local pattern of
connections in the disparity space, with excitatory connections on the slope 1 diagonal,
and negative connections on the x and y axes, as illustrated in Figure 6. This pattern
can be used to iteratively update matches in the disparity space. For example, initially
each point of disparity space (X, Y) has value 1 whenever ly(X) = ry(Y) and value 0
otherwise. Then the local neighbors are used to change the value of (X, Y) based on the
values of its six neighbors using some combination of positive weights on the diagonal,
and negative weights on the axes. This is the basic idea of the Marr-Poggio algorithm,
although the exact details are a bit more involved.

Unlike the above description, the Marr-Poggio technique does not operate just on single
pairs of epipolar lines. Even though matching pairs of points must lie along corresponding
epipolar lines in the two images, information is lost by just looking at single pairs of
epipolar lines because neighboring lines will generally be highly similar to one another.
Thus we want to consider the disparity space for neighboring pairs of corresponding
epipolar lines at the same time. This yields a three-dimensional disparity space, which
can be thought of as a ‘stack’ of the two-dimensional spaces that result from just pairing
ly(x) with ry(x). This space is a bit harder to visualize, however, because the three
dimensions are x, y and d, where x and y are positions in the left image, and d is the
disparity from the left image to the right image. Note that this differs from the two-
dimensional space above, where X and Y were the x-coordinate in the left image and the
x coordinate in the right image, respectively.

In this three-dimensional disparity space, the constant disparities form a plane parallel
to the x-y-plane, rather than a line of slope one as before. A local neighborhood of
radius r in this plane is the excitatory set of neighbors of a given point. The inhibitory
neighborhood is any conflicting matches along the same epipolar line. In the three-
dimensional space this neighborhood is a bit more complicated, and will be described
in more detail below. Basically the inhibitory neighborhood is again the set of local

11

conflicting matches (as represented in the simpler case above by dotted lines).
We will denote the three-dimensional disparity space by D(x, y, d) which is a binary-

valued space. We will denote points of the left image by l(x, y), and points of the right
image by r(x, y), and disparity by d. The corresponding epipolar lines in the left and
right images have equal y-coordinates. For a given pair of images, the disparity space
is initialized to contain all possible matches of points along corresponding epipolar lines.
That is

D0(x, y, d) =

{
1 if l(x, y) = r(x + d, y)
0 otherwise

(1)

So, for example, given two identical images l(x, y) = r(x, y) the initial disparity space
would contain all ones in the d = 0 plane (i.e., D(x, y, 0) = 1). In general, however,
for two identical images there will also be other values for which D(x, y, d) is nonzero.
In other words, there will be multiple possible disparities for which a given point of the
left image matches some point on the corresponding epipolar line of the right image (i.e.,
other values of d where l(x, y) = r(x + d, y)).

In practice, the range of d is limited to some interval dmin ≤ d ≤ dmax. This limits
the range of disparities that can be recovered by the stereo algorithm, but also limits
the number of such ‘false’ matches that occur. Rather than pairing each point of el

with all possible matching points of er, each point is only paired with those in the range
[dmin, dmax].

The basic idea of the algorithm is to iteratively update the disparity space, given the
initial possible matches computed as just described. These iterative updates ‘enforce’ the
criteria of uniqueness and ‘continuity’ described above. After sufficiently many iterations,
the space should converge to a good match, according to the criteria. The uniqueness
constraint says that if a given location in D(x, y, d) = 1 then certain neighbors should be
zero. Those neighbors are the set O(x, y, d), the inhibitory neighborhood. The ‘continuity’
constraints says that if a given location D(x, y, d) = 1 then certain neighbors should be
one. Those neighbors are S(x, y, d), the excitatory neighborhood.

The iterative update of the disparity space is thus

Dt+1(x, y, d) = σ


 ∑

x′,y′,d′∈S(x,y,d)

Dt(x
′, y′, d′) − ε

∑
x′,y′,d′∈O(x,y,d)

Dt(x
′, y′, d′) + D0(x, y, d)



(2)

where D0 is initial state described above, ε is the inhibition constant (which is generally
1 or 2), and σ(z) is a threshold function,

σ(z) =

{
1 if z > σ
0 otherwise

where σ is generally abpit 3. This iterative updating can be implemented by a network of
interconnected simple processors in a three-dimensional grid, or by updating arrays that
store Dt(x, y, d) and Dt+1(x, y, d) on a serial machine.

12

Now we turn to the definitions of the excitatory and inhibitory neighborhoods S(x, y, d)
and O(x, y, d) about a point (x, y, d) in the disparity space. The excitatory neighbor-
hood is simply a ‘circular’ region about D(x, y, d) with constant d; a circle in the plane
D(x, y, d). The radius of this circle is generally about 2 pixels (with an ε of 1 or 2 and a
σ of 3).

The inhibitory neighborhood is any conflicting match in the disparity range dmin to
dmax. Recall that D(x, y, d) means that point l(x, y) in the left image matches r(x + d, y)
in the right image. Therefore,

1. l(x, y) should not match any other r(x+d1, y), for dmin ≤ d1 ≤ dmax. In other words,
ideally D(x, y, d1) = 0 except for d1 = d. Thus the method should penalize D(x, y, d)
when these other locations are 1 (they are part of the inhibitory neighborhood).

2. l(x + d1, y) should not match r(x + d, y) for dmin ≤ d1 ≤ dmax. In other words,
ideally D(x + d1, y, d − d1) = 0 except for d1 = 0. Thus these locations are part of
the inhibitory neighborhood.

In summary, the Marr-Poggio stereo matching algorithm consists of the following steps:

1. Create the initial state using equation (1).

2. Iterate using the update rule in equation (2). (Reasonable values for the parameters
are a radius of 2 pixels for the excitatory region, ε = 2.0 and σ = 3.0.)

3. Display the results at each iteration using a grey level ‘disparity image’, where for
x, y location in the disparity image the grey level is proportional to the disparity at
that x, y location of the left image. Initially there are several different disparities
for each location, use the mean, maximum, minimum or median.

4. Stop iterating when the number of locations in disparity space that change state
from t to t + 1 is ‘small’.

Figure 4 illustrates the output of the Marr-Poggio method for the random dot stere-
ogram also shown in the Figure. There are a number of issues with the Marr-Poggio stereo
algorithm. First of all, it can be quite sensitive to the settings of the parameters, ε, σ,
and the radius of the excitatory region. Secondly, the method actually prefers constant
disparity, rather than slowly changing disparity, which can be problematic. Thirdly, the
method works best when limited to a relatively small range of possible disparities, dmin

to dmax (8 or so pixels for the range). Finally, the method may not converge to any stable
solution, although for ‘reasonable’ settings of the parameters the number of changes from
one iteration to the next does generally get small quite quickly (5-10 iterations).

2.3 Area Based Methods

Another class of stereo matching methods is based on aggregating information about
disparity estimates across local regions of the image. These methods are often referred

13

to as ‘area based’ because they smooth or aggregate disparity values over some local
area. In contrast with an iterative approach such as Marr-Poggio, these methods require
only a single pass to smooth or aggregate the disparities. The averaging together of
neighboring values in order to obtain estimates of disparity reflects the implicit assumption
that disparity ‘changes smoothly’ (varies slowly), as was also assumed by the Marr-Poggio
method. Unlike the Marr-Poggio method, however, area based methods generally do not
exploit the uniqueness constraints that a given pixel in the left image should only be
paired with one pixel in the right image and vice versa.

Most area based stereo methods consist of two steps: (i) determining where each
pixel in the left image might have ‘moved to’ in the right image, and (ii) aggregating this
information over some local area. The first step of this process is very similar to the initial
matching of pixels in the left and right images by the Marr-Poggio method. Those pixels
that are of the ‘same type’ and are within some maximum disparity range are possible
pairs in the left and right image (e.g, those points along the proper epipolar line in the
right image that are within distance [dmin, dmax] and have similar intensity values to the
point in the left image). This ‘moved to’ map is generally not a very good estimate of
disparity, because the local pairing process is quite error prone. Thus the measures are
aggregated over some region in order to obtain more accurate estimates.

One stereo method of this type [9] operates as follows. We assume that the simple
camera geometry holds, so that corresponding epipolar lines el and er have the same y-
coordinate. Denote the intensity value at a given location xl on el by il(x) (and analogously
on er by ir(x)). For each location xl, a range of intensity values are used to find possible
matching locations xr. This range of intensities is determined from the minimum and
maximum intensity values in a small neighborhood, il(x− δ), . . . , il(x + δ). Generally δ is
just one pixel. Any pixel of er in the disparity range, xr = [xl − dmin, xl + dmax] for which
ir(xr) is in the intensity range is then a possible match. In other words, the possible
matching pixels must lie within the displacement range specified by dmin and dmax, and
also be within the intensity range determined by xl and its neighbors.

In general each pixel pl on el will have several possible matching pixels along er (result-
ing in several different disparities). The next step is to determine an aggregate disparity
for each pixel of the left image. This is done by finding the modal disparity value for a
local neighborhood around pl. The neighborhood is generally a circle of some radius r
(or a square of size ±r as this is easier to compute). Note that the modal value is the
‘most popular’ or most frequently occurring value in the region (in the case of a tie, one
is chosen arbitrarily). This modal value is then chosen as the disparity at pl. This results
in a single disparity value for each pixel, which can be displayed as a grey level image by
mapping each disparity value to a grey value. An image pair and the resulting disparity
map for this method are shown in Figure 7.

2.4 Edge Matching Methods

The key problem underlying stereopsis is determining the correspondence between points
in the left and right images. The basic methodology is to form likely pairs of points,

14

Figure 7: An image from a stereo pair and the output of an area based stereo matcher.

and then apply some sort of constraints (as in Marr-Poggio) or smoothing (as in area
based methods) to generate a disparity map. In some ways, the problem of identifying
corresponding points in the two images is worse for intensity images than it is for binary
images such as edges. Part of the problem is that intensities may change from the left
to the right image, making intensity matching difficult. The other part of the problem is
that intensity information is dense (there are intensities at every point) making for more
ambiguity in matching than when the points are sparser. In an attempt to address these
problems, another class of stereo methods take explicit advantage of the fact that they
operate on edge detector outputs.

Edge matching stereo methods produce sparse disparity maps, because disparities are
only computed at edge locations, not at every pixel as was the case with the Marr-Poggio

15

and area-based methods. Thus it is necessary to interpolate between these sparse values
in order to obtain a dense disparity map. In practice, this is not really an issue, because
the dense disparity maps produced by other methods are sufficiently noisy that they also
need to undergo some sort of surface interpolation or approximation process in order to
obtain a good estimate of three-dimensional shape. See [3] for a discussion of such surface
interpolation methods.

Grimson’s [2] edge based stereo method (which we will refer to as MPG, because it
was developed initially with Marr and Poggio) estimates disparity at edge pixels along
corresponding epipolar lines. The basic idea is to make use of information about the
smoothing parameter, σ, of the edge detection process in order to aid in finding matching
edge locations in the two images. Grimson uses a (∇2Gσ) ⊗ I (Laplacian of Gaussian)
edge detector, which also divides the edges into two classes: positive (+) and negative (-)
depending on the direction of the sign change at the zero crossing. That is, going left to
right along an epipolar line, if an edge pixel corresponds to going from a negative sign
region of (∇2Gσ)⊗ I to a positive sign region, then this is a positive sign change (and the
opposite is negative).

Given that we have smoothed the image with a Gaussian of size σ, if there is an edge
at some location x, of some type (say +), then it is very low probability that there will
be another edge of the same type within some range x± r, for some distance r. In other
words, for a given σ, we can determine the probability of seeing an edge of same type
as a function of the distance r from the edge location, x. Grimson has shown that if
r =

√
2σ/2 then the probability of finding another edge of the same type within the range

±r is less than 5%. In other words, with probability 95%, this is the only edge of this
type within a range of ±√

2σ/2.
This fact can be used to constrain the problem of finding possible matching edges in

the following fashion. If the true disparity d is no larger than r =
√

2σ/2, then 95% of
the time a given edge at location xl on the left epipolar line el should have exactly one
corresponding edge (of the same type) in the range [xl − r, xl + r] on the right epipolar
line er. If, on the other hand, the true disparity d is not in range (d > r), then there
is a much lower probability that an edge of the correct sign will be found in the range
(Grimson has shown that this probability is about 40%). This yields the following means
of finding corresponding points in the left and right images. For each edge location in
the left image, search the region [xl − r, xl + r] of the corresponding right epipolar line
for edges of the same type. Count the number of times that exactly one match is found.
If exactly one match is found closer to 95% of the time than to 40%, then the σ is large
enough to allow for the true disparity. In other words, the known value of σ for the edge
detector is used to solve the matching problem based on probabilities of matching edges
within a range that depends on σ.

Note that one serious problem with this method as described so far is that a given σ
not only rules out finding large disparities (which we can detect by looking at the fraction
of matches that are found), but also prevents accurately measuring small disparities.
Recall from our study of edge detectors, that larger values of σ produce more and more
uncertainty in the locations of edges. Thus, while the MPG method will detect matches

16

at large values of σ, the resulting disparity values will not be very accurate. Thus the full
method operates at multiple scales, starting at the coarsest value of σ, and then reducing
the size of σ (generally by one half on each iteration) in order to produce more accurate
disparity estimates. This results in the following overall structure to the method.

1. Compute the zero crossing of (∇2Gσ) ⊗ I for the current scale, σ. Label each zero
crossing as + or -.

2. For each zero crossing in L, find the matches (if any) on the corresponding epipolar
line of R that are of the same type (+/-) in the range xl ± r, where r =

√
2σ/2.

3. Any region of the image with substantially fewer than 95% of the edges matched
indicates that the disparity is not in the the range ±r.

4. Use the disparities in those regions where the disparity is in the proper range as
estimates of the true disparity.

5. Repeat with the next smaller value of σ, if any.

The result is a disparity estimate for each location in the left image that contained an
edge. These disparities were computed from several different scales of smoothing, with
the disparity at each point resulting from the smallest value of σ for which the disparity
was in the range ±r.

There are two refinements to this basic MPG edge matching stereo method that make
it work better in practice. The first is to us the orientation of the edges to filter possible
matches of pixels in the left and right image. That is, in addition to using the +/- type to
limit pairings, the orientation of two matching edges must be approximately the same in
the two images. The second refinement is to expand the disparity range r to be twice the
size (r =

√
2σ). This results in a lower threshold for determining whether the disparity

is too large for the given σ, but lowers by a factor of two the size σ that is needed for a
given disparity range.

3 Motion and Optical Flow

In the case of stereo matching, we were able to make use of the structure of the two-camera
system to define corresponding epipolar lines on the two image planes. In the case of a
general motion of some object with respect to a camera, corresponding points from one
frame to the next can move in any direction. If the motion of the object with respect to
the camera is of some restricted form and is known, then a type epipolar constraint can
generally be applied. In this section, however, we will consider the general problem of
unconstrained and unknown motion of some object with respect to the camera (note that
this can involve motion of the object, the camera, or both).

The quantity that we are interested in recovering is the actual motion of some object in
three-space, which we call the motion field. All that we can observe, however, is changing
intensities in the image. This results in several problems. First, the motion of a given

17

point from one image to the next is only the projection of motion in the three-dimensional
world. Second, and more importantly, intensity changes do not necessarily allow us to
recover corresponding points from one image frame to the next. Thus all that we can
observe is the change in intensities, or optical flow, and this may be substantially different
than the motion field. We saw a manifestation of the fact that it is difficult to recover
point correspondences in the case of stereo, but there we were able to apply the epipolar
line and continuity constraints to help find a ‘best’ correspondence. In the case of general
motion, this is not a viable approach.

The relation between the image motion field and the object motion field is relatively
straightforward, and is governed by the projection equations discussed above. A given
object point (x, y, z) projects to a point x′/f = x/z and y′/f = y/z. As the object point
moves with respect to the camera, the motion in space v = (dx/dt, dy/dt, dz/dt) results
in a corresponding motion v′ = (dx′/dt, dy′/dt). Given several corresponding points, and
several frames of observation, if the velocities of the points in space are constrained in
some fashion (for instance they correspond to rigid motion of an object in space), then
the projection equations can be inverted. In other words, the three-dimensional object
motion field and the three-dimensional shape of the object can be reconstructed from the
two-dimensional image motion field, given certain assumptions about the motion. This
is known as structure from motion, and will be considered below. Here we address the
problem which precedes computing structure from motion: determining the image motion
field.

The only measurements that we can make in the image are brightness changes, there
is no way to tell what the corresponding points actually are between two images. For
example, consider a rotating uniform sphere, in this case there is no optical flow (no
change in brightness patterns in the image) but there is motion of the object. On the
other hand, consider a shadow moving across a scene. In this case there is optical flow,
but there is no motion of the object. Optical flow is all that is accessible, and to the extent
that it does correspond to the true motions of image points, it allows us to determine
image motion and thus eventually also scene motion.

3.1 Local Differential Methods

Most optical flow methods are based on measuring local intensity changes in the image
with respect to time (cf. [5]). If we have an image I(x, y, t) then what does the optical
flow mean? It is the vector field that tells us where each point in the the image at time
t ‘moved to’ at time t + δt. As long as there are no overall changes in brightness of the
image, then we expect that

I(x + uδt, y + vδt, t + δt) = I(x, y, t),

where u(x, y) and v(x, y) are the x and y components of the optical flow vector at (x, y).
The Taylor series expansion of this is,

I(x, y, t) + δx
∂I

∂x
+ δy

∂I

∂y
+ δt

∂I

∂t
+ e = I(x, y, t),

18

where e is the second and higher order terms. Cancelling, dividing through by δt, and
taking the limit as δt → 0 we get

∂I

∂x

dx

dt
+

∂I

∂y

dy

dx
+

∂I

∂t
= 0

(which is actually just the expansion of dI
dt

= 0, in other words the total derivative of I
with respect to time is zero — there are no overall changes in brightness of the image).

Rewriting this equation using u = dv
dt

, v = dy
dt

, and Ix = ∂I/∂x, etc., yields what is
known as the optical flow constraint equation,

Ixu + Iyv + It = 0.

This equation gives the (linear) relation between the components of the optical flow, u
and v, and the image measurements of the derivatives Ix, Iy and It. The optical flow
equation by itself is not sufficient to determine the optical flow from the derivatives of the
image with respect to time. The equation can be re-written in vector form as

(Ix, Iy) · (u, v) = −It.

In other words, the component of the optical flow in the direction of the brightness gradient
(Ix, Iy) is

It√
I2
x + I2

y

.

We cannot, however, determine the component of the optical flow along the isobrightness
contour (normal to the intensity gradient).

This problem, of being able to measure the optical flow only in the direction of the
intensity gradient, is known as the ‘aperture problem’. The issue is that measuring the
flow locally is like looking at the image of an edge through a small aperture window. The
only component of the edge motion that can be determined is that in the direction normal
to the edge (in the gradient direction). We can’t tell how much the edge is moving in the
direction along the edge (see Figure 8a). If, however, there is some identifiable point in
the image, rather than just an edge, the complete motion of this point can be determined
(see Figure 8b).

There are a number of ways to provide additional constraint so that the flow problem
can be solved:

1. Assume that there is a single body moving rigidly; this is powerful but generally
overly restrictive.

2. Assume that the motion field varies smoothly in most parts of the image (allows for
nonrigid deformations). This is the method of choice when staying within the local
differential framework.

19

Figure 8: The aperture problem: a) only the motion normal to the edge can be determined,
b) and edge with two distinct normals allows the full (planar) motion to be determined.

3. Track the motion of edge contours, rather than using local intensity differences with
respect to time. As long as the contour is not a line segment, it is possible to extract
the complete 2D motion (because there are at least two distinct normals to the edge,
which thus span the plane).

We will not consider the first of these options any further. The second method requires
minimizing some measure of the departure from smoothness of the motion field. One such
measure is given by,

es =
∫ ∫

(u2
x + u2

y + v2
x + v2

y)dxdy

the sum of the squared magnitude of the velocity field gradient. A slowly changing velocity
field will have low gradient magnitude, and a rapidly changing one will have have gradient
magnitude.

Moreover, from above we know that the error in optical flow constraint equation should
be small (ideally zero). Thus we also want to minimize the sum of squares of the optical
constraint equation,

ec =
∫ ∫

(Ixu + Iyv + It)2dxdy .

Combining these two terms, yields the problem of minimizing

E(u, v) = es + λec

where λ determines the relative importance of the smoothness criterion and the optical
flow criterion. If λ = 0, then a vector field with zero gradient magnitude is produced, but
it has nothing to do with the optical flow. As λ → ∞ the flow field becomes less and less
smooth, and more and more like the measured data. This weighting term, λ, is generally
referred to as a regularization parameter. λ should be chosen proportional to the signal
to noise ration of the data (i.e., λ should be small if the signal noisy, and large if it is
not). E(u, v) is a quadratic in the unknowns u and v, and thus the minimization can be
solved using standard techniques (see, for example, the Numerical Recipes book).

One source of problems with such a method is that the smoothing process interpolates
across motion boundaries. For example, given an image of a sphere rotating in front
of some background, the sharp boundaries of the motion field at the edge of the sphere

20

Figure 9: The optical flow for the two tree images above.

will tend to get smoothed out by minimization. One approach to this is to attempt to
incorporate segmentation of motion boundaries into the iterative minimization process.
In practice this is difficult to do.

A different approach to computing the optical flow is to identify ‘popular’ displacement
vectors in a local region. This is the natural extension of the area based matching methods
for stereo vision considered above. Recall that for stereo this computation consisted of
two steps: (i) finding possible matches in the right image for each pixel of the left image,
and (ii) determining the disparity at each point based on the modal value of the possible
matches over some local neighborhood. This produced a ‘moves-to’ map, specifying where
each pixel in one image moved to in the other image.

In the case of general motion, rather than stereo, the main difference is that the
possible motion of a pixel from one frame to the next are not constrained to lie along an
epipolar line. Thus, for each pixel (x, y) in the image, It, the neighboring pixels of It are
used to determine a range of possible intensity values [imin, imax]. Then for each pixel of
It+1 that is within some distance dmax of (x, y), if that pixel is also in the intensity range it
is taken as a possible match for (x, y) in It. This results in zero or more possible matching
pixels for each (x, y) location of It (and for each matching pixel a vector specifying where
(x, y) moved to).

The consensus step then picks the modal displacement vector over some region of
radius r about (x, y). That is, each point (x′, y′) within distance r of (x, y) has zero or
more matching points computed as above. Each such matching point (xm, ym) defines
the displacement vector (x′ − xm, y′ − ym). All of these vectors are histogrammed, and
the most commonly occurring one (the modal value) is taken as the displacement vector
for location (x, y). In practice, this type of mode filtering generally results in a relatively
good motion field. The main problem, as with the smoothing method above, is that the
motion boundaries become inaccurate because different motions are aggregated together.

21

The flow field for the two tree images from Figure 7 is shown in Figure 9. The flow field
is drawn as a ‘needle diagram’ with the needle length proportional to magnitude, and the
orientation pointing in the direction of the flow.

3.2 Edge Based Methods

Hildreth [4] notes that image motion is best measured at sharp intensity changes, such
as intensity edges, as this is where the motion can be computed reliably. In areas of slow
intensity change there is a high degree of ambiguity in matching pixels from one frame
to the next, and thus she argues that it is better not to compute the change there at all.
Her approach is to compute flow along connected contours of zero crossings in (∇2G)⊗ I .

Consider a curve c parameterized by arclength, s. Let v(s) measure the velocity of
c at a given location s along the curve. For example, a line segment rotating about its
center will have zero velocity at s = l/2 where l is the length of the segment, and will have
equal but opposite velocities at s = 0 and s = l. We can only measure the component of
v(s) that is normal to the curve at C(s), as we saw above with the aperture effect. The
goal is then to compute the ‘true’ velocities along the contour v(s) given the measured
velocities v̂(s) which reflect only the component of v(s) normal to c(s).

This is an underconstrained problem, for which various minimization techniques can
be used to provide a unique solution. The particular measure of of variation that Hildreth
minimizes is

Θ =
∫ ∣∣∣∣∣∂v̂

∂s

∣∣∣∣∣
2

ds

the squared magnitude of the change in velocity along the curve. This minimization
guarantees a unique solution as long as the measured velocity is known in at least two
distinct directions. (i.e., the motion of a straight line cannot be determined). This
minimization problem can be solved using standard numerical methods, once the observed
velocities have been determined (which can be done by simple local differences in the
image). Note that it is assumed that the curve c(s) does not deform over time, it just
moves in the image plane.

The motion field computed by doing this minimization is not always the same as
the true motion of the curve. In the case that the curve simply translates, the computed
motion is identical to the real motion. If the curve is a polygon that translates and rotates,
then the computed and real motion are also the same. However in the case of a rotating
ellipse, the computed velocity field is quite different from the true motion. There is a
reduced rotational component and an added radial component to the computed motion
(as compared with the real motion). This has the interesting property that it predicts to
some degree the human perception of such curves rotating. Those of you who still have
an old-fashioned turntable at home can try putting a cutout ellipse on the turntable and
rotating it. The ellipse will not not appear rigid, rather it seems to deform continuously
(an added radial component to the motion). A similar effect happens for a rotating spiral.
Thus there is evidence that Hildreth’s method of minimizing the variation in the observed

22

motion along the curve is similar to the type of processing done in human perception of
some kinds of motion.

4 Tracking

The motion field computed from the optical flow gives a local ‘moves-to’ map, that specifies
for each point of image It a corresponding point image It+1. This map is not necessarily a
bijection — a given point of It+1 may have many points of It that map to it, or no points
that map to it. For many problems, we would like to track each point across a sequence of
frames, I1, . . . , Ik. For example, in order to reconstruct the three-dimensional shape of an
object from a sequence of frames, we need to know for each point p in the world, what are
its images in each It. This involves finding a bijection from each frame It to It+1. (Note:
In some situations, such as points that really move to the same location, there will not
be a bijection, but we would like to recover such a mapping when possible).

One way to compute a bijection is to find the minimum weight total matching in a
bipartite graph, where possible matching points in the two frames are connected by edges
of the graph. Assume that points p1, . . . , pn are in It, and q1, . . . , qn are in It+1, and that
each pi, qj are connected by an edge when pi could have moved to qj. These edges could
be simply the optical flow vectors (which specify a qj for each pi) in which case each pi will
have just one edge incident on it. The edges could instead be all possible consistent pairs
of points in the two frames (i.e., what was used as input to the optical flow computation).
The edges form a bipartite graph, because there is no edge connecting any two points pi

and pk, or qj and ql.
A matching in a bipartite graph is a subset of the edges such that each vertex has

exactly one edge incident on it (i.e., it defines for each pi a unique qj and vice versa,
which is a bijection). If the edges of the graph have weights associated with them then
a best matching is a matching that minimizes the weights on the edges. In the case of
the tracking problem, the weights could be something such as the distance from pi to pj

(i.e., points that move less are better candidates for matches). The weighted bipartite
matching problem is also called the assignment problem and can be solved in time O(n3),
where n is the number of nodes in the bipartite graph.

Of course in practice, it may be that some points of It have no counterpart in It+1 (or
vice versa). Thus, rather than finding a matching, which pairs each point of one set with
exactly one point of the other, we can find the minimum weight cover of a bipartite graph.
A cover is a subset of the edges such that each vertex has at least one edge incident on it.
Minimizing the total weight prefers subsets that contain fewer edges, so we get ‘as close
to a matching as possible’. This is the way in which Ullman [8] formulated the problem of
tracking feature points from one frame to the next: finding the minimum weighted cover
of a bipartite graph for each successive frame, where the weights are some function of the
measured points in the successive frames (e.g., distance between points).

In more detail, Ullman sets up a linear programming problem corresponding to the

23

minimum weighted cover. Let

xij =

{
1 if pi paired with qj

0 otherwise

where p1, . . . , pn are the elements of frame t and q1, . . . , qm are the elements of frame t+1.
By definition, a cover has at least one edge incident on each node. Thus the problem can
be cast as a minimization, where the quantity

∑
i,j

xijρij

is minimized with respect to a set of constraints. The function ρij is some measure of the
‘cost’ of pairing pi with qj (e.g., using the distance from pi to qj). This minimization is
subject to a set of constraints that force the answer to be a covering (each pi paired with
at least one qj and vice versa), which corresponds to,

∑
j

xij ≥ 1 1 ≤ i ≤ n

∑
i

xij ≥ 1 1 ≤ j ≤ m

xij ≥ 0 1 ≤ i ≤ n, 1 ≤ j ≤ m .

This is an integer programming problem in mn variables. That is, it is a restricted
form of linear programming problem that must have integral solutions (where all xij are
integers). There are various ways to solve such a linear programming problem, including
simple parallel networks, and gradient descent minimization techniques (a discussion of
which is beyond the scope of this course).

Using this formulation of the tracking problem, Ullman chose to minimize the distance
between corresponding feature points (i.e., chose ρij = |pi − qj|). This also has the effect
of preferring paths that do not cross (due to the triangle inequality). Other cost functions
that have been used include ones that constrain the change in the velocity vector for each
point in successive pairs of frames. This amounts to the assumption that a point does not
change its direction/magnitude of motion suddenly. These functions can be used to set
up similar minimization problems. The major limitation with such approaches in general
is that they are quite computationally expensive, particularly when the number of points
in the two frames is moderately large.

Another approach to tracking is to use the constraint that nearby points should in
general have similar motions. This is true when a given object is imaged as many points,
but is not true when there are many moving objects in the image each of which has very
few corresponding points (e.g., an ‘asteroids’ video game). This approach of using the
‘smoothness’ of the motion field is taken by [9], who define an object at time t to be a
subset of the image pixels at that time. Thus, Ot ⊆ It and Ot+1 ⊆ It+1. The motion field,
Mt : I + t → It+1, is used to construct Ot+1 from Ot, but since it is not a bijection each
point of It+1 may have several (or no) points mapped to it. Thus in constructing Ot+1

24

from Ot some additional processing needs to be done other than simply using Mt to map
each point of Ot to a new point.

If we again denote the points of It by pi and the points of It+1 by qj, then the set of
points that are mapped to qj by Mt is M−1(qj) = {pi|Mt(pi) = qj}. If Mt were a bijection,
this would always be a singleton set, but since it is not it may be the null set (no point
is mapped to qj) or may have several elements (all of which are mapped to qj). In order
to construct Ot+1, [9] use the following local aggregation rule: qj ∈ Ot+1 when the the
majority of the points of M−1(qj) ∈ Ot, moreover it is undefined whether qj ∈ Ot+1 if
there is a tie (no majority), or if M−1(qj) = ∅. This handles the case of multiple points
mapping to qj, by saying that qj ∈ Ot+1 exactly when the majority of the points that
map to it are in Ot.

Those points of It+1 where Ot+1 is undefined can then be filled in by using the neigh-
boring points of It+1 at which Ot+1 is in fact defined. This is done in a ‘second pass’, after
the above rule is applied. This second rule says that for each qj where Ot+1 is undefined,
use the value of the majority of its neighbors in It+1 for which Ot+1 is defined. This has
the effect of filling in ‘holes’ caused when no point of It is mapped to a given qj (or by
ties). The resulting object, Ot+1 still has the drawback that uncertainty in Mt at motion
boundaries tends to make the boundary of Ot+1 very noisy.

In order to adjust the boundaries of Ot+1, [9] apply the following rule at motion
boundaries. They define an adjusted object O′

t+1, where qj ∈ O′
t+1 when

a) there is no motion boundary in the neighborhood around qj, and qj ∈ Ot+1, or

b) there is a motion boundary in the neighborhood around qj, and the majority of the
neighbors of qj that have the same motion as qj are also in Ot+1.

A motion boundary is identified where there Mt+1 takes on substantially different values
in some local neighborhood. Note that in areas where the magnitude of Mt+1 is very small,
the orientations may change quite a lot. Thus for, example, one reasonable definition of
presence of a motion boundary is areas where the magnitude of the difference between
the vectors is large. This adjustment of the model to produce O′

t+1 helps ensure that
the boundaries of the object are consistent with the boundaries of the motion field. This
tracking method has been implemented on a Connection Machine, and used to track
objects in real time. The major limitation of the method, is that it cannot track objects
for which the motions or the 2D shape change are large from one frame to the next. This
is an issue for all local differential tracking methods.

5 Structure from Motion

Determining the three-dimensional structure, or shape, of a point set from a sequence
of two-dimensional views is a problem that has been studied extensively (starting with
Ullman’s 1979 book [8]). The input to the structure from motion process is generally a
set of P feature points, where the two-dimensional image coordinates of each point are
measured in each of F frames. In other words, it is assumed that the feature points have

25

been tracked through the successive frames, so that the correspondence between points in
each frame is known. Precisely what is to be recovered from these 2FP observed values
depends on the exact phrasing of the structure from motion problem. We will consider
the problem where the scene is assumed to be static, and the camera is moving. The task
is thus to recover the three-dimensional structure of the scene points and the trajectory
of the camera. Note that we are really concerned with the relative configuration of the
scene with respect to the camera, and thus if the scene is moving (rigidly) this can be
seen as associating the world coordinate system with some chosen points of the scene.

This formulation of the problem makes it easy to see what we are trying to recover,
namely the 3P values that specify the locations of the P points in space and the kF values
that specify the camera position at each frame as a function of some world coordinate
system (where k depends on the particular camera model). Much of the early work on
structure from motion was concerned with identifying the minimum number of points and
frames such that it is possible to determine the 3P + kF values needed to recover the
positions of the points and locations of the camera. We will not go into the derivation
of these results here, because in practice it is necessary to have many more than the
theoretical minimum number of observations in order to obtain a reliable solution. Ullman
showed that under orthographic projection 3 views of 4 points are necessary and sufficient
to recover three-dimensional shape. In other words, no fewer than three views, nor fewer
than four corresponding points in each view are enough, and more than that lead to an
over-constrained problem. Under perspective projection Longuet-Higgins showed that 2
views of 8 points are sufficient.

We will focus on the case of orthographic projection (all the rays are perpendicular
to the image plane) and applications in which there are substantially more than the
minimum number of observations required to obtain a solution. The key issue is to allow
for measurement noise by using the redundancy of the observations to cancel out the
(unbiased) noise in the locations of the image points and thereby recover the true structure
and motion. There are number of possible techniques for doing this, we consider the work
by Tomasi [7] which has been particularly effective.

As we noted at the beginning of this section, structure from motion methods assume
that each of the P points in the scene is tracked through a sequence of F frames. We
will make the further assumption that all P points appear in each of the F frames, in
order to simplify the presentation. Small numbers of missing and mis-tracked points can
be handled through suitable modifications of the basic method. Denote by (u′

fp, v
′
fp) the

image coordinates of the p-th point in the f -th frame, 1 ≤ p ≤ P , 1 ≤ f ≤ F . We first
build a measurement matrix that contains these 2FP observed values. This measurement
matrix uses normalized coordinates of the points, rather than the actual observed values
(u′

fp, v
′
fp). The normalization re-expresses each point in terms of the centroid of the points

visible in that frame. In effect this places the origin of each image frame at the centroid
of the points in that frame. Given that all of the points are visible in each frame, this is
a valid way of “aligning the origins” of each image.

26

t

i

jf

f

f

Figure 10: The location of the image plane for frame f in the world coordinate system.

More specifically, the measurement matrix is defined as

W =

[
U
V

]

where U and V are the f × p matrices U = [ufp] and V = [vfp] and where (ufp, vfp) are
the normalized coordinates of each observed point (u′

fp, v
′
fp). That is, ufp = u′

fp − ūf and
vfp = v′

fp − v̄f where ūf and v̄f are the centroids of the u and v coordinates in frame f ,

ūf =
1

P

P∑
p=1

u′
fp

and

v̄f =
1

P

P∑
p=1

v′
fp .

In the case that there is no error in the observed data, the measurement matrix W
is highly rank deficient. When there is error, if the magnitude of the errors is relatively
small then the approximate rank of the matrix, as measured using the singular value
decomposition (SVD) will still be small. Tomasi’s structure from motion method uses
this observation to decompose W into the 3P point coordinates and the kF camera frame
coordinate frame values, by using the SVD to factor the matrix W into those components.

First we note that a point s′p = (x′
p, y

′
p, z

′
p) in the world projects to the image points

u′
fp = if · (s′p − tf)

v′
fp = jf · (s′p − tf)

where if , jf are the unit vectors defining the orientation of the image plane in the world
coordinate system, and tf is the vector from the origin of the world coordinate system to
the origin of the image plane (see Figure 10).

27

Now since centroids are preserved under projection (i.e., the centroid of the projec-
tion of a point set is the projection of the centroid of that set) we can use the centroid
normalized coordinates

ufp = if · sp

vfp = jf · sp

where sp = s′p − s̄ and s̄ is the centroid of the points

s̄ =
1

P

P∑
p=1

s′p .

Given this, if there is no error in the observed image data, then the measurement
matrix W can be factored into two parts W = MS, where

M =




iT1
...
iTF
jT
1
...

jT
F




represents the camera motion (the orientation of the image plane for each of the F frames)
and

S = [s1 . . . sP]

is the shape matrix (the locations of the points in space, with their centroid as the origin).
In other words the observed image data, as represented by W , is the product of two parts,
the camera motion and the three-dimensional positions of the points. Now the task is to
recover M and S given W (and despite the fact that there is some error in the observed
data).

Since M is a 2F × 3 matrix and S is 3 × P matrix, when the measurements are
exact W = MS must be of rank at most 3. Of course in the case of even small errors
in the locations of the image points, the rank of W will not be 3. However, we can use
the singular value decomposition to determine the “approximate rank” of W , which we
expect to be 3.

Recall that if A is an m × n matrix then the singular value decomposition (SVD) of
A is

A = UΣV T

where
U = [u1, . . . , um]

is an m × n orthogonal matrix,
V = [v1, . . . , vn]

28

Figure 11: Four frames from a 150 frame sequence of camera moving with respect to a
model house.

is an n×n orthogonal matrix, and Σ is a diagonal matrix with the values σ1, . . . , σp along
the diagonal, where each σi ≥ σi+1 and p = min(m, n).

The number of nonzero singular values, σi, corresponds to the rank of the matrix A.
That is, if σ1 ≥ . . . ≥ σr > σr+1 = . . . = σp = 0 then the rank of A is r. Moreover,
the vectors vr+1, . . . , vn span the nullspace of A and the vectors u1, . . . , ur span the range
of A. Most importantly, this decomposition provides a natural way of measuring the
approximate rank of a matrix. In effect those singular values that are nearly zero can be
taken to be zero — that is the approximate rank of a matrix is the number of singular
values that are not nearly zero. The exact reasons for why this a reasonable thing to do
are beyond the scope of this course (cf. [1]).

The SVD of the measurement matrix W is thus W = LΣR where L is 2F × P , Σ
is a P × P diagonal matrix of singular values and R is P × P . In principle the first
three singular values (i.e., the upper-leftmost three diagonal elements of Σ) should be
nonzero and the remaining ones zero, because we expect the matrix to be of rank 3. In
practice measurement error will cause the remaining singular values to be nonzero, but
they should still be small. As noted above, the information of interest corresponds to
the three greatest singular values, so the best approximation to the “ideal” measurement
matrix is

Ŵ = L′Σ′R′

29

where L′ is the 2F × 3 matrix corresponding to the first three columns of L, Σ′ is the
3 × 3 diagonal matrix corresponding to the upper left part of Σ, and R′ is 3 × P matrix
corresponding to the first three rows of R.

If we define M̂ = L′(Σ′)1/2 and Ŝ = (Σ′)1/2R′, then Ŵ = M̂Ŝ. The question is now
whether M̂ and Ŝ are good estimates of the ideal underlying motion M and shape S that
we want to factor the measurements W into. In other words, we initially noted that W
can be factored into the product MS of the camera motion and the three-dimensional
shape of the point set. The question is whether this factorization of Ŵ into M̂ and Ŝ is
such that M̂ is a good estimate of M and Ŝ is a good estimate of S.

One problem is that this is not a unique factorization of W , any linear transformation A
of M̂ and Ŝ yields a valid result, because (M̂A)(A−1Ŝ) = M̂(AA−1)Ŝ = M̂Ŝ = Ŵ . Thus
we have only recovered the motion and shape up to an arbitrary linear transformation.
We can solve for the “correct” motion and shape transformations by noting that the true
motion matrix M is composed of unit vectors, and the first F rows are orthogonal to
the remaining rows (because each row i and i + F correspond to the two orthogonal unit
vectors defining the image plane at frame i). This allows one to solve for A up to a
rotational ambiguity. This remaining ambiguity corresponds to the initial position of the
camera with respect to the world. In other words, the overall orientation of the points is
only known relative to the initial orientation of the camera.

Thus, in summary the method is a follows,

1. Form the measurement matrix W from the centroid-normalized observed values.

2. Compute the SVD of W and keep just the part corresponding to the three largest
singular values, Ŵ = L′Σ′R′.

3. Solve for the A such that M = L′(Σ′)1/2A is composed of unit vectors and the first
F rows are orthogonal to the remaining rows. Let S = A−1(Σ′)1/2R′. S is the shape
and M is the motion.

Figure 11 shows four frames from a motion sequence in which a camera moved with
respect to a model house. Feature points were extracted from each frame and their
motion was tracked across successive frames (e.g., using a tracking method such as the
ones discussed in the previous section). The two-dimensional locations of the tracked
feature points were then processed according to the above method to recover their three-
dimensional positions. Figure 12 shows a top view of the reconstructed three-dimensional
positions of the features, next to a view of the house from this orientation. (Note that
the house was never seen from a top view in the motion sequence.)

30

points.graph

Y

X
-400.00

-380.00

-360.00

-340.00

-320.00

-300.00

-280.00

-260.00

-240.00

-220.00

-200.00

-180.00

-160.00

-140.00

-120.00

-100.00

200.00 300.00 400.00 500.00

Figure 12: A top view of the reconstructed shape of selected feature points on the house,
and an image of the house from that view.

References

[1] Golub, G.H. and VanLoan, C.F. Matrix Computations, Johns Hopkins University
Press, 2nd ed., 1989.

[2] Grimson, W.E.L. “Computational Experiments with a Feature Based Stereo Algo-
rithm”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 7,
pp. 17-34, 1985.

[3] Grimson, W.E.L. From Images to Surfaces: A Computational Study of the Human
Early Visual System, MIT Press, Cambrdige Mass., 1981.

[4] Hildreth, E. The Measurement of Visual Motion, MIT Press, Cambridge Mass., 1983.

[5] Horn, B.K.P. Robot Vision, MIT Press, Cambridge Mass., 1986.

[6] Marr, D. and Poggio T. “Cooperative Computation of Stereo Disparity”, Science,
Vol. 194, No. 4262, pp. 283-287, October 1976.

[7] Tomasi, C. and Kanade, T. “Shape and Motion from Image Streams Under Orthogra-
phy: A Factorization Method”, Intl. J. of Computer Vision, vol. 9, no. 2, pp. 137–154.

[8] Ullman, S. The Interpretation of Visual Motion, MIT Press, Cambridge Mass., 1979.

[9] Woodfill, J. and Zabih R.D. “An Algorithm for Real-Time Tracking of Non-Rigid
Objects”, Proceedings of the American Association for Aritificial Intelligence, 1991.

31

