Pictorial Structures for Object Recognition

Pedro F. Felzenszwalb
Artificial Intelligence Lab, Massachusetts Institute of Technology
pff@ai.mit.edu

Daniel P. Huttenlocher
Computer Science Department, Cornell University

dph@cs.cornell.edu

Abstract

In this paper we present a statistical framework for modeling the appearance of ob-
jects. Our work is motivated by the pictorial structure models introduced by Fischler
and Elschlager. The basic idea is to model an object by a collection of parts arranged
in a deformable configuration. The appearance of each part is modeled separately,
and the deformable configuration is represented by spring-like connections between
pairs of parts. These models allow for qualitative descriptions of visual appearance,
and are suitable for generic recognition problems. We use these models to address
the problem of detecting an object in an image as well as the problem of learning an
object model from training examples, and present efficient algorithms for both these
problems. We demonstrate the techniques by learning models that represent faces
and human bodies and using the resulting models to locate the corresponding objects

in novel images.

1 Introduction

Research in object recognition is increasingly concerned with the ability to recognize
generic classes of objects rather than just specific instances of objects. In this paper,
we consider both the problem of detecting objects using generic part-based models
and that of learning such models from example images. Our work is motivated by the

pictorial structure representation introduced by Fischler and Elschlager [15] thirty

Figure 1: Detection results for a face (a); and a human body (b). Each image
shows the globally best location for the corresponding object, as computed by our

algorithms. The object models were learned from training examples.

years ago. The basic idea is to describe an object by a collection of parts arranged in
a deformable configuration. Each part models local visual properties of the object,
and the deformable configuration is characterized by spring-like connections between
certain pairs of parts.

A statistical approach provides a natural formulation for the problem of detecting
objects in images as well as for the problem of learning object models from train-
ing examples. We present such a statistical framework for pictorial structure models
together with efficient algorithms for solving both the learning and detection prob-
lems. These algorithms apply to a specific but large class of pictorial structures. We
demonstrate our techniques by learning models of two different object classes: faces
and human bodies. We then use the resulting models to detect instances of these
objects in novel images, as illustrated in Figure 1. The matches found by our tech-
niques are based on a global search over all possible configurations of the parts in
an image. This search is done efficiently by exploiting properties of the models. In
contrast, most of the existing non-rigid matching techniques use local search meth-
ods and require that an initial configuration be provided close to the final answer.
In many situations one wants to be able to detect objects wherever they are in the
image, in such cases local search methods are not sufficient.

The pictorial structure framework we use is general, in the sense that it is in-
dependent of the specific scheme used to model the appearance of individual parts
and of the type of connections between parts. For the face model in Figure la the

appearance of each part is characterized by the response of Gaussian derivative filters

of different orders, orientations and scales. Each part is simply allowed to translate
in the image plane, yielding a pose space with 2n dimensions for an object with n
parts. The connections between parts enforce that their relative locations be consis-
tent with a typical face. For the person model in Figure 1b, the individual parts look
like rectangles in the image. Each rectangular part is allowed to translate, rotate and
undergo foreshortening, yielding a pose space with 4n dimensions for an object with
n parts. The connections between parts behave like simple revolute joints.

Despite the differences in both the part models and the type of connections be-
tween parts the same framework applies for the face and person models, and the same
learning and matching algorithms can be used. In particular, the pose spaces are very
different for the two kinds of models, but the same search techniques provide efficient

means of finding the best global match of the models to an image.

1.1 Pictorial Structures

In [15] the problem of matching a pictorial structure to an image is defined in terms
of an energy function to be minimized. The quality of a particular configuration for
the parts depends both on how well each part matches the image data at its location,
and how well the configuration agrees with the deformable model. This approach is
different than most methods that use part-based representations. In those methods,
parts are recognized individually in an initial phase, and a second phase uses the
relations between parts to detect a configuration that matches the object model. In
contrast, the pictorial structure approach does not involve making any initial decisions
about the locations of individual parts. An overall decision is made based on the whole
object model.

With pictorial structures we are able to use fairly generic models of appearance
for the individual parts. The connections between parts provide the necessary con-
text to detect them without obtaining a large number of false positive matches. A
connection indicates spatial relationships between two parts. For example, a connec-
tion can enforce precise geometrical constraints, such as a revolute or prismatic joint.
Connections can also represent more generic relationships such as “close to”, “to the
left of”, or something in between these generic relationships and precise geometrical
constraints.

Since both the part models and the relationships between parts can be generic,
pictorial structures provide a powerful framework for recognition problems. For ex-
ample, suppose we want to model the appearance of the human body. It makes sense
to represent the body as an articulated object, with joints connecting different body

parts. With pictorial structures we can use a fairly coarse model, consisting of a

small number of parts connected by flexible revolute joints. The structural relations
between parts provide sufficient context to detect the human body as a whole even
where it would be difficult to detect generic parts such as “lower-leg” or “upper-arm”
on their own. With such coarse models, the connections between parts don’t behave
exactly like rigid joints, since a small number of parts can only approximate the ge-
ometrical structure of the human body. The joint models we use try to ensure that

connected parts be aligned at their joint, while still allowing for small mis-positioning.

1.2 Statistical Formulation

In their original work, Fischler and Elschlager only addressed the problem of finding
the best match of a pictorial structure model to an image. As mentioned above, they
characterized this problem by defining an energy function to be minimized. While
the energy function intuitively makes sense, it has many free parameters. For each
different object, one has to construct a model, which includes picking an appear-
ance model for each part, the characteristics of the connections between parts, and
weighting parameters for the energy function.

We are interested not only in matching models to images but also in learning mod-
els from training examples. To that end we present a statistical formulation of the
pictorial structure framework. In this formulation, the matching problem introduced
by Fischler and Elschlager is equivalent to finding the maximum a posteriori (MAP)
estimate of the object location given an observed image. The statistical formulation
helps to characterize the different parameters of a model. In fact, all model param-
eters can be learned from a few training examples using maximum likelihood (ML)
estimation. This is of practical as well as theoretical interest, since a user generally
cannot find the best parameters for a deformable model by trial and error.

The statistical framework also provides a natural way of addressing another im-
portant detection problem, of finding all good matches of a model to an image rather
than finding just the best match. The idea is to consider primarily good matches
without considering many bad ones. We can achieve this by sampling object loca-
tions from their posterior probability distribution. Sampling allows us to find many
locations for which our posterior is high, and select one or more of those as correct
using an independent method. This procedure lets us use somewhat inaccurate mod-
els for generating hypothesis and can be seen as a mechanism for visual selection (see

[2]). It is also similar to the idea behind importance sampling (see [17]).

1.3 Efficient Algorithms

Our goal is not only to construct a framework that is rich enough to capture the
appearance of many generic objects, but also to be able to efficiently solve the object
detection and model learning problems. We present such algorithms for detecting
and learning a natural class of pictorial structure models. In particular, our methods
require that the set of connections between the parts of an object form a tree structure,
and that the spatial relationships between connected pairs of parts be expressed in a
special form.

Restricting the connections between parts to a tree structure is natural for many
classes of objects. For example, the connections between parts of many animate
objects form a tree corresponding to the skeletal structure. Many other kinds of
objects can be represented using a tree structure such as a star-graph, where there
is one central part to which all the other parts are connected. The restriction that
we impose on the form of connections between pairs of parts allows for a broad range
of relationships to be represented. In particular, we require that there be mappings
from the pose space of each part to a space where the Euclidean distance between
transformed poses measure the extent to which two parts deviate from their ideal
relative configuration.

The asymptotic running time of our matching algorithms is optimal, in the sense
that the methods run as fast as matching each part to the image separately, without
accounting for the connections between them. This means that we can take into
account the context provided by the connections for “free”. In practice, the algorithms
are quite fast, finding the globally best match of a pictorial structure to an image in

a few seconds.

1.4 Related Work

For nearly 40 years, research in object recognition has been dominated by approaches
that separate processing into distinct stages of feature extraction and matching. In
the first stage, discrete primitives, or "features” are extracted from an image. In the
second stage, stored models are matched against the features that were extracted from
the image. For instance, in the pioneering work of Roberts [33] childrens blocks were
recognized by first extracting edges and corners from images and then matchnig these
features to polyhedral models of the blocks. The model-based recognition paradigm of
the 1980’s similarly followed this approach. Model-based recognition methods focus
largely on the problem of efficiently searching for correspondences between features

that have been extracted from an image, and features of a stored model. Examples

of this paradigm include interpretation tree search [19, 3], the alignment method [22],
RANSAC [14] and geometric hashing [26].

The problem of extracting features or parts of objects from images can itself be
seen as another form of recognition problem. This is particularly clear with ap-
proaches such as part-based recognition (e.g., [12] and [32]), where the primitives are
sub-parts of objects — for example the shade on a lamp. Not only is the feature or
part extraction itself a recognition task, in some ways it is actually more difficult than
the subsequent problem of recognizing the full object. Sub-parts or features are in
general less distinctive than an overall object, making it more difficult to determine
whether or not such parts are present in the image.

Limitations of the simple features used by most model-based recognition tech-
niques led to a quite different class of recognition methods, developed in the 1990’s,
which operate directly on images rather than first extracting discrete features or parts.
These include both appearance-based methods (e.g., [35] and [28]) and template-based
methods such as Hausdorff matching [21]. Such approaches treat images as the ar-
tifacts to be recognized, rather than having more abstract models based on features
or other primitives. A single example or multiple training images are generally used
to form a “template” that is used as a model. This model is then compared to
new images to determine whether or not the target is present, generally by explicitly
searching possible transformations of the template with respect to the image.

The matching of pictorial structures, introduced by Fischler and Elschlager is an
alternative approach to recognition that in many ways combines template matching
with the combinatorial model matching approach. A major drawback, however, is
that the problem of finding the best match of a pictorial structure model to an
image is NP hard in general. In the past local minimization techniques that need a
starting solution near the correct answer have been used. In this paper we introduce
algorithms that can be used to match a large class of pictorial structure models to
images efficiently.

In [9] a formulation similar to the one presented here was used to model pictorial
structures consisting of a constellation of features. In their work instead of having
connections between pairs of parts, all parts are constrained with respect to a central
coordinate system by a Gaussian distribution. This makes it impossible to represent
objects with more than one articulation point. Moreover they only provide heuristic
algorithms that don’t necessarily find the optimal match of the model to an image.

Techniques to find people in images using models similar to the ones we present
in Section 6 were described in [23]. However, their methods are more in line with the

classical part-based recognition systems that first detect a number of hypothesis for

the individual parts, and later find groups of parts which match the object model. As
the problem of detecting generic parts such as “lower leg” or “upper-arm” in cluttered

images is very hard, the examples in [23] are limited to simple images.

2 General Framework

A standard way to approach object detection from a statistical perspective is to model
two different distributions. One distribution corresponds to the imaging process, and
measures the likelihood of seeing a particular image given that an object is at some
location. The other distribution measures the prior probability that an object would
be at a particular location.

Let € be a set of parameters that define an object model. The likelihood of
seeing image I given that the object is at location L is given by p(I|L,). The prior
probability of the object being at location L is given by p(L|#). Using Bayes’ rule
we can compute p(L|I,0), the probability that the object is at location L, given an
observed image I (this will be called the posterior distribution from now on). A
number of interesting problems can be characterized in terms of these probability

distributions:

e MAP estimation - this is the problem of finding the location L with highest
posterior probability. In some sense, the MAP estimate is our best guess for

the location of the object.

e Sampling - this is the problem of sampling from the posterior distribution.
Sampling provides a natural way to find many good matches of a model to an

image, rather than just the best one.

e Model estimation - this is the problem of finding # which specifies a good model
for a particular object. Using maximum likelihood estimation we can learn the

model parameters from training examples.

We provide efficient algorithms to solve these problems for a large class of models.
Together the algorithms form the base of a complete object detection system that

learns from examples.

2.1 Pictorial Structure Models

In the pictorial structure framework, an object is represented by a collection of parts,

or features, with connections between certain pairs of parts. A natural way to express

Figure 2: Graphical representation of the dependencies between the location of object
parts (black nodes) and the image. In the case of a car, each black node would

correspond to a part such as a wheel, the body, etc.

such a model is in terms of an undirected graph G = (V, E), where the vertices
V' = {v1,...,v,} correspond to the parts, and there is an edge (v;,v;) € E for each
pair of connected parts v; and v;.

An instance of the object is given by a configuration L = (ly,...,1,), where [; is a
random variable specifying the location of part v;. Sometimes we refer to L simply as
the object location, but “configuration” emphasizes the part-based representation.
The location of a part, [;, can simply be the position of the part in the image,
but more complex parameterizations are also possible. For example, a location can
specify the position, orientation, and scale parameters for two dimensional parts.
Each connection (v;,v;) € E indicates that the locations /; for v; and [; for v; are
dependent. To be precise, the prior distribution over object configurations, p(L|8), is
a Markov Random Field, with structure specified by the graph G.

Using Bayes’ rule, the posterior distribution over object configurations given an

observed image can be characterized by the prior model and a likelihood function,
P(L|L,8) = p(I|L, 0)p(L|6),

where the likelihood, p(I|L, #), measures the probability of seeing image I given a par-
ticular configuration for the object. Figure 2 shows a graphical representation of this
statistical model. The random variable corresponding to the location of each object
part is represented by a black node. Thick edges correspond to dependencies coming
from the prior model, and the thin directed edges correspond to the dependency of
the image with respect to the object configuration.

This posterior distribution is too complex to deal with in its most general form. In

fact, finding the MAP estimate or sampling from such general distributions is an NP-

hard problem. Our framework is based on restricting the form of the prior model and
the likelihood function so that the posterior distribution is more tractable. First of
all, the graphical representation of the posterior should have no loops. In that case, it
is possible to find the MAP estimate and sample from the distribution in polynomial
time. This is done using a generalization of the Viterbi and Forward-Backward algo-
rithms (see [30]). Similar algorithms are known in the Bayesian Network community
as belief propagation and belief revision (see [29]).

Such polynomial time algorithms run in O(h?n) time, where n is the number of
object parts, and h is a discrete number of possible locations for each part. Unfortu-
nately this is too slow for general detection problems because the number of possible
locations for a single part is usually quite large — in the hundreds of thousands or
millions. We have identified a natural restriction on the type of dependencies be-
tween parts for which we obtain algorithms that run essentially in O(hn) time. These
algorithms are also quite fast in practice.

We assume that there is an appearance model for each part, and that the appear-
ances are characterized by some parameters v = {u; | v; € V}. The exact method
used to model the appearance of parts is not important. In Section 5, a part is
modeled as a local image feature, based on image derivatives around a point, while
in Section 6 parts are modeled as fairly large shapes. In practice, the appearance
modeling scheme just needs to provide a distribution p(I|l;,u;) (up to a normaliz-
ing constant), which measures the likelihood of seeing a particular image, given that
a part with appearance parameters u; is at location [;. Note that this distribution
doesn’t have to be a precise generative model, an approximate measure is enough in
practice. We model the likelihood of seeing an image given that the object is at some

configuration by the product of the individual likelihoods,

p(I|Lyu) o [T p(I|L). (1)

i=1
This approximation is good if the parts don’t overlap, as in this case they generate
different portions of the image. But the approximation can be bad if one part occludes
another. For the iconic models described in Section 5 the prior distribution over
configurations enforces that the parts never overlap (the probability of a configuration
with overlap is very small). On the other hand, for the articulated models described
in Section 6 there is much less constraint on the locations of parts, and parts can
easily overlap. For those models, the MAP estimate of an object location can be a
poor estimate of its position. Even when this is the case, however, the correct match
still has high posterior probability, it is just not the maximum. We show that we can

find the correct location by obtaining multiple samples from the posterior and then

selecting one of the random samples using an independent method.
In our models, the set of connections between parts forms a tree structure. In
general, when the set of dependencies between random variables forms a tree, their

joint distribution can be expressed as,

vi0;)e PUis 1)
HviEV p(li)degvi—l ,

where deguv; is the degree of vertex v; in the dependency graph. We don’t model

p(L) =

any preference over the absolute location of object parts, only over their relative
configuration. This means p(l;) is a constant, and we let the constant be one for
simplicity. The dependencies between parts are characterized by some parameters
¢ = {cj | (vi,v;) € E}. For example, such a connection might indicate that a
given part tends to be at a certain distance to the left of another one. Our efficient
algorithms require that the joint distribution for the locations of two connected parts
be expressed in a special form. We use a Normal distribution for the distances between

part locations in a transformed space,
p(li, lleiz) o< N(To () — Tlly), 0, Biy), (2)

where T;;, Tj;, and X;; are the connection parameters encoded by ¢;;. The covariance

B
matrix Y;; should be diagonal, and for simplicity we will assume that 7;;, and T};
are one-to-one. We further require that it be possible to represent the set of possi-
ble transformed locations as positions in a grid. The functions Tj; and T}; together
capture the ideal relative locations for parts v; and v;. The distance between the
transformed locations, weighted by J;;, measures the deformation of a “spring” con-
necting v; and v;. This special form for the joint distribution of two parts arises
naturally from our algorithmic techniques. Moreover, it allows for a broad class of
interesting models. In Section 5 we describe simple feature based models where the
connections between parts behave like springs. More complex models are described
in Section 6, where the connections between parts behave like flexible joints.

Since we let p(l;) = 1, the prior distribution over object locations is defined by

the joint distributions for pairs of connected parts,

p(LIE)= I i lley). (3)

(’UZ‘,’U]‘)GE

Note that both the p(l;, [j|c;;) and p(L|E,c) are improper priors (they integrate to
infinity). This is a consequence of using an uninformative prior over absolute locations

for each part (see [4]).

10

Figure 3: Graphical representation of the dependencies between the location of object

parts (black nodes) and the image in the restricted models (see text).

So our models depend on parameters 0 = (u, F, c¢), where u = {uy,...,u,} are
the appearance parameters for each part, E indicates which parts are connected,
and ¢ = {¢; | (v;,v;) € E} are the connection parameters. We have defined the
form of p(I|L,), the likelihood of seeing an image given that the object is at a
some configuration, and p(L|f), the prior probability that the object would assume
a particular configuration. This is sufficient to characterize the posterior p(L|I,#),
the probability that the object is at some configuration in an image. A graphical

representation of our restricted models is shown in Figure 3.

3 Learning Model Parameters

Suppose we are given a set of example images I',...,I™ and corresponding object
configurations L',..., L™ for each image. We want to use the training examples to
obtain estimates for the model parameters § = (u, F, ¢), where u = {uy,...,u,} are
the appearance parameters for each part, F is the set of connections between parts,
and ¢ = {¢;; | (vi,v;) € E} are the connection parameters. The maximum likelihood

(ML) estimate of # is, by definition, the value §* that maximizes

p(I',...., 1™ L', ..., L™0) = T[p(I*, L*|9),

k=1
where the right hand side is obtained by assuming that each example was generated
independently. Since p(I, L|0) = p(I|L,0)p(L|f), the ML estimate is

0* = arg m‘;dxkl;[lp(fkwk, 0) TI »(L*10). (4)

k=1
The first term in this equation depends only on the appearance of the parts, while the

second term depends only on the set of connections and connection parameters. Below

11

we show that one can independently solve for the appearance models of the individual
parts and the structural model given by the connections and their parameters. As a
consequence, any kind of part models can be used in our framework as long as there is
a maximum likelihood estimation procedure for learning the model parameters from
examples. We use quite simple part models in this paper because our focus is on
developing a general framework and providing efficient algorithms that can be used

with many different modeling schemes.

3.1 Estimating the Appearance Parameters

From equation (4) we get

u* = argmax [[p(I*|L*,).
Yok=1
The likelihood of seeing image I*, given the configuration L* for the object is given

by equation (1). Thus,

u* = argmax [[[[p(Z*|1¥, u;) = argmax [T T[p(I*|1F, us).
Y k==t YiSk=1
Looking at the right hand side we see that to find u* we can independently solve for
the u,
ul = arg%?xlgp(lk|lf, u;).
This is exactly the ML estimate of the appearance parameters for part v;, given inde-
pendent examples (I',1}),..., (™, ™). Solving for u} depends on picking a specific

modeling scheme for the parts, and we return to this in Sections 5 and 6.

3.2 Estimating the Dependencies

From equation (4) we get

* % S k
E* ¢ —argr%zlxkl;[lp([, |E, c). (5)
We need to pick a set of edges that form a tree and the properties for each edge.
This can be done in a similar way to the Chow and Liu algorithm in [10], which
estimates a tree distribution for discrete random variables. Equation (3) defines the

prior probability of the object assuming configuration L* as,

p(Lk|E,C) = H p(lfalﬂcw)

(Ui7vj)€E

12

Plugging this into equation (5) and re-ordering the factors we get,

E* c" = arg max II H p lf,lﬂcm (6)
© (viv;)EE k=1
We can estimate the parameters for each possible connection independently, even
before we know which connections will actually be in F as
m
Cij = arg max H p(If, lf|ci]-).

Yk=1
This is the ML estimate for the joint distribution of /; and /;, given independent exam-
ples (Ij,15), ..., (Ii*,17). Solving for ¢}; depends on picking a specific representation
for the J01nt distributions. Independent of the exact form of p(l;,[;|¢;;), and how to
compute ¢;; (which we consider later, as it varies with different modeling schemes), we
can characterize the “quality” of a connection between two parts as the probability

of the examples under the ML estimate for their joint distribution,

q(vi, vj) Hp lf,l;C

Intuitively, the quality of a connection between two parts measures the extent to which
their locations are related. These quantities can be used to estimate the connection
set E* as follows. We know that E* should form a tree, and according to equation
(6) we let,

E* = arg max (Ui’gwq(vi, vj) = arg mhin (Ui%;eE —log q(vs, vj). (7)
The right hand side is obtained by taking the negative logarithm of the function
being maximized (and thus finding the argument minimizing the value, instead of
maximizing it). Solving this equation is equivalent to the problem of computing the
minimum spanning tree (MST) of a graph. We build a complete graph on the vertices
V', and associate a weight —log¢(v;,v;) with each edge (v;,v;). By definition, the
MST of this graph is the tree with minimum total weight, which is exactly the set
of edges E* defined by equation (7). The MST problem is well known (see [11]) and
can be solved efficiently. Kruskal’s algorithm can be used to compute the MST in

O(n?logn) time, since we have a complete graph with n nodes.

4 Matching Algorithms

In this section we describe efficient algorithms to match our pictorial structure models

to images. The first algorithm finds the MAP estimate of the object location given

13

an observed image. The second algorithm samples configurations from the posterior
distribution. Recall that the MAP estimate of the object location is a configuration
with highest posterior probability given an observed image. In some sense, this is our
best guess for the object location. On the other hand, sampling from the posterior
distribution is useful to produce multiple hypotheses. In [13] we presented a version
of the MAP estimation algorithm that uses a different restriction on the form of
connections between parts. That form did not allow for efficient sampling from the
posterior distribution.

Both algorithms work in a discretized space of locations for each part. They run
essentially in O(hn) time, where h is a number of discrete locations for each part and
n is the number of parts. To be precise, the running time of the algorithms is O(h'n),
where h' is the number of discrete positions in the space of transformed poses for a
part. Sometimes h' can be slightly bigger than h, as seen in Section 6. To understand
how the algorithms work it is useful to consider the configuration space for an object.
There are h™ possible configurations for the object. It is not necessary to explicitly
consider such a huge state space because the structure of dependencies between parts
forms a tree. This restriction allows us to use dynamic programming to solve the
original problems by solving a sequence of subproblems. Each subproblem depends
only on the location of two connected parts. There are h? possible configurations for
two parts, but our algorithms use a second level of dynamic programming to solve

each subproblem in time that is linear in A'.

4.1 MAP Estimate

The MAP estimate of the object location is a configuration with highest probability

given an observed image. Such a configuration is defined by

L* = arg rnLaxp(L|I,) = arg rnLaxp(I|L, 0)p(L10).
Equation (1) characterizes the likelihood p(I|L, #) in terms of an appearance model for
each part, and equation (3) characterizes the prior p(L|f) in terms of the connections
between parts. Thus, in our framework we have,

L* = arg max (Zl_[lp(ﬂli,ui) p(li;lj|cij)) :

= (vi,vj)GE
By taking the negative logarithm of this equation, a typical energy minimization

problem arises,

L* = arg rnLin (2“: mi(l) + > dy(l;, lj)) , (8)

=1 (Ui,vj)EE

14

where m;(l;) = —logp(I|l;,u;) is a match cost, which measures how well part v;
matches the image data at location l;, and d;;(l;, ;) = —log p(;, [;|ci;) is a deformation
cost, which measures how well the relative locations for v; and v; agree with the prior
model. The form of this minimization is quite general, and it appears in a number of
problems in computer vision, such as MAP estimation of Markov Random Fields for
low-level vision (such as image restoration and stereo) and optimization of dynamic
contour models (snakes). While the form of the minimization is shared with these
other problems, the structure of the graph and space of possible configurations differ
substantially. This changes the computational nature of the problem.

Solving equation (8) for arbitrary graphs and arbitrary functions m;, d;; is an NP-
hard problem (see [7]). However, when the graph G = (V, E) has a restricted form,
the problem can be solved more efficiently. For instance, with first-order snakes the
graph is simply a chain, which enables a dynamic programming solution that takes
O(h?n) time as described in [1]. Moreover, with snakes the minimization is done
over a small number of locations for each vertex (e.g., the current location plus the 8
neighbors on the image grid). This minimization is then iterated until the change in
energy is small. The key to an efficient solution is that the number of locations, h,
be small, as the dynamic programming solution is quadratic in this value. Another
source of efficient algorithms has been in restricting d;; to a particular form. This
approach has been particularly fruitful in some recent work on MRFs for low-level
vision ([8, 7, 24]). In our algorithm, we use constraints on both the structure of the
graph and the form of d;;.

By restricting the graphs to trees, a similar kind of dynamic programming can be
applied as is done for chains, making the minimization problem polynomial rather
than exponential time. The precise technique is described in Section 4.1.1. However,
this O(h?n) algorithm is not practical, because the number of possible locations for
each part, h, is usually huge.

The restricted form of the joint distribution for the locations of two connected

parts in equation (2) is,
p(li; lileij) o< N(Tij (L) = Tia(ly), 0, 3ij).
So d;j(l;,1;) is a Mahalanobis distance between transformed locations,
dij(li, 1) = (T3 (1) — Tya(ly))" S, (T (L) — Tha(ly)), (9)

where ¥, = %; /2, and we ignored an additive constant since it doesn’t change
the solution of the minimization problem. This form for d;; yields a minimization

algorithm which runs in O(h/n) rather than O(h*n) time. This makes it quite practical

15

to find the globally optimal match of a pictorial structure to an image, up to the

discretization of the possible locations.

4.1.1 Efficient Minimization

In this section, we discuss how to efficiently find the configuration L* = (If,...,[}),
minimizing equation (8) when the graph G is a tree. Given G = (V, E), let v, € V
be an arbitrarily chosen root vertex. From this root, each vertex v; € V' has a depth
d; which is the number of edges between it and v, (and the depth of v, is 0). The
children, C;, of vertex v; are those neighboring vertices, if any, of depth (d;+1). Every
vertex v; other than the root has a unique parent, which is the neighboring vertex of
depth (d; — 1).

For any vertex v; with no children (i.e., any leaf of the tree), the best location [}
of that vertex can be computed as a function of the location of just its parent, v;.
The only edge incident on v; is (v;, v;), thus the only contribution of /; to the energy
in (8) is m;(l;) + d;;(l;,1;). The quality of the best location of v; given location I; of
v; 18

Bj(l;) = min (m;(l;) + dij(li, 1)), (10)

J
and the best location of v; as a function of [; can be obtained by replacing the min
in the equation above with arg min.
For any vertex v; other than the root, assume that the function B.(l;) is known
for each child v, € C;. That is, the quality of the best location of each child is known
with respect to the location of v;. Then the quality of the best location of v; given

the location of its parent v; is

Bj(l;) = min (mj(lj) +dig(l, 1) + Bc(lj)> : (11)
7 UCEC]'

Again, the best location of v; as a function of /; can be obtained by replacing the min

in the equation above with argmin. This equation subsumes (10) because for a leaf

node the sum over its children is simply empty. Finally, for the root v,, if B.(l,) is

known for each child v, € C, then the best location of the root is
¥ = arg rrllin (mr(lr) + > Bc(lj)) .
" v €C

That is, the minimization in (8) can be expressed recursively in terms of the (n —
1) functions Bj(l;) for each vertex v; € V (other than the root). These recursive

equations suggest a simple algorithm. Let d be the maximum depth node in the tree.

16

For each node v; with depth d, compute B;(l;), where v; is the parent of v;. These
are all leaf nodes, so clearly B,(l;) can be computed as in (10). Next, for each node v;
with depth (d — 1) compute B;(l;), where again v; is the parent of v;. Clearly, B.(l;)
has been computed for every child v, of v;, because the children have depth d. Thus
B;(l;) can be computed as in (11). Continue in this manner, decreasing the depth
until reaching the root at depth zero. Besides computing each B; we also compute B;-,
which indicates the best location of v; as a function of its parent location (obtained
by replacing the min in B; with argmin). At this point, we compute the optimal
location [} of the root. The optimal location L* of all the parts can be computed by
tracing back from the root to each leaf. We know the optimal location of v; given the
location of its parent, and the optimal location of each parent is now known starting
from the root.

The overall running time of this algorithm is O(Hn), where H is the time required
to compute each Bj(l;) and Bj(l;). In the general case this takes O(h?) time as it is
necessary to consider every location of a child node for each possible location of the
parent. In the next section, we show how to compute each Bj;(l;) and B}(l;) more

efficiently when d,; is restricted to be in the form of equation (9).

4.1.2 Generalized Distance Transforms

Traditional distance transforms are defined for sets of points on a grid. Suppose we
have a grid G. Given a point set B C G, the distance transform of B specifies for
each location in the grid, the distance to the closest point in the set,
Dg(x) = min d(x,y).

In particular, Dg is zero at any point in B, and is small at nearby locations. The
distance transform is commonly used for matching edge based models (see [6, 21]).
The trivial way to compute this function takes O(k|B|) time, where k is the number
of locations in the grid. On the other hand, efficient algorithms exist to compute
the distance transform in O(k) time, independent of the number of points in B (see
[5, 25]). These algorithms have small constants and are very fast in practice. In order

to compute the distance transform, it is commonly expressed as

Dp(r) = min (d(z,y) + 15(y)) ,

yeG
where 15(y) is an indicator function for membership in the set B, that has value 0
when y € B and oo otherwise. This suggests a generalization of distance transforms

where the indicator function is replaced with some arbitrary function over the grid G,

Dy(r) = min (d(z,y) + f(y))-

17

Intuitively, for each grid location z, the transform finds a location y that is close to
x and for which f(y) is small. Note that difference between the values of D at two
locations is bounded by the distance between the locations, regardless of how quickly
the function f changes (the indicator function of the classical distance transform is
a limiting case, being either 0 or co). In particular, if there is a location where f(z)
has a small value, Dy will have small value at and nearby locations.

Given the restricted form of d;; in equation (9), the functions B;(l;) that must be
computed by the dynamic programming algorithm can be rewritten as generalized
distance transforms using the Mahalanobis distance defined by X}, as the distance in
the grid,

Bj(li) = Dy(Ti;(Li)),

where

00 otherwise

fy) = { m; (Tg_l(y)) + 2 veec; Bc(TjEl(y)) if y € range(7};)

and the grid G specifies a discrete set of possible values for 7);(/;) that are considered
during the minimization (this in turn specifies a discrete set of locations ;). There is
an approximation being made, since the set of discrete values for T};(l;) (the locations
in the grid) might not match the set of discrete values for T;;(l;) (where we need the
value of Df). We can simply define the value of the distance transform at a non-
grid position to be the value of the closest grid point. The error introduced by this
approximation is small (as the transform by definition changes slowly).

The same algorithms that efficiently compute the classical distance transform can
be used to compute the generalized distance transform under different distances, by
replacing the indicator function 15(z) with an arbitrary function f(z). In particular
we use the method of Karzanov (originally in [25], but see [34] for a better description)
to compute the transform of a function under a Mahalanobis distance with diagonal
covariance matrix. This algorithm can also compute B}(l;), the best location of v; as

a function of its parent location, as it computes the cost function B;(l;).

4.2 Sampling from the Posterior

We now turn to the problem of sampling from the posterior distribution of object
configurations. The sampling problem can be solved with an algorithm almost iden-
tical to the one used to compute the MAP estimate. The relationship between the
two cases is analogous to the relationship between the Viterbi and the Baum-Welch
algorithms for Hidden Markov Models (HMM’s). Basically the sampling algorithm
works directly with the probability distributions instead of their negative logarithms,

18

and the maximizations in the recursive equations are replaced by summations.

The posterior distribution is

p(L|1,0) o< p(I|L, B)p(L|6) o (HP Il u) 1 P(lz’alﬂcz‘j)) :
(vi,v;)EE
Like before, let v, € V be an arbitrarily chosen root vertex, and the children of v;
be C;. The algorithm works by first computing p(/,|I,6). We then sample a location
for the root from that distribution. Next we sample a location for each child, v., of
the root from p(l.|l,,I,0). We can continue in this manner until we have sampled a

location for each part. The marginal distribution for the root location is,

p(l.|1,6) Z S (HP I,u) 1 P(lialj|0z'j)) -
lr—1lry1 In (viyv;)EE
Computing the distribution in this form would take exponential time. But since the

set of dependencies between parts form a tree, we can rewrite the distribution as,

p(\1,0) o< (Tl ur) TT Selly)
v €C

The functions S;(/;) are similar to the B;(l;) we used for the MAP estimation algo-
rithm,

Sj(li) oc Y (P(f|ljauj)P(lz‘alj|Cz'j) I1 Sc(lj)) : (12)

l; ve€C;

These recursive functions already give a polynomial algorithm to compute p(l,.|I,8).
As in the MAP estimation algorithm we can compute the S functions starting from
the leaf vertices. The trivial way to compute each S;(l;) takes O(h?) time. For each
location of [; we evaluate the function by explicitly summing over all possible locations
of 1;. We will show how to compute each S;(/;) more efficiently for the case where
p(l;,1j]cij) is in the special form given by equation (2). But first let’s see what we
need to do after we sample a location for the root from its marginal distribution. If

we have a location for the parent v; of v; we can write,

Pl 1,0) o< p(I1L, wi)p(l, Lileis) TT Se(ly)- (13)

ve€C;
If we have already computed the S functions we can compute this distribution in O(h)
time. So once we have sampled a location for the root, we can sample a location for
each of its children. Next we sample a location for the nodes at the third level of the
tree, and so on until we sample a location for every part. In the next section we show

how to compute the S functions in time linear in A/, yielding an O(h'n) algorithm

19

for sampling a configuration from the posterior distribution. Note that if we want to
sample multiple times we only need to compute the S functions once. And when the
location of a parent node is fixed, we only need to compute the distribution in (13)
for locations of the children where p(l;,;|c;;) is not too small. So sampling multiple

times isn’t much more costly than sampling once.

4.2.1 Computing the S functions

We want to efficiently compute the function in equation (12). We will do this by
writing the function as a Gaussian convolution in the transformed space (given by T;;

and T};). Using the special form of p(l;,;|c;;) we can write,

Si(ls) o< Yy (N(Ti'(lz') — Tyi(1),0,%i5) p(I1l5,u;) 11 Sc(lj)) :

L UCECj

This can be seen as a Gaussian convolution in the transformed space:
Sj(li) < (G @ f) (Ti;(Ls)),

where GG is a Gaussian filter with covariance ¥;;, ® is the convolution operator, and

K

tg) = [PUIT 00,0 Ty ST () iy € range(T;)
0 otherwise

Just like when computing the generalized distance transform, the convolution is done
over a discrete grid which specifies possible values for 7j;(l;). The Gaussian filter
G is separable since the covariance matrix ¥;; is diagonal. We can compute a good
approximation for the convolution in time linear in the set of grid locations using the

techniques from [36].

5 Iconic Models

The framework presented so far is general in the sense that it doesn’t fully specify
how objects are represented. A particular modeling scheme must define the pose
space for the object parts, the form of the appearance model for each part, and the
type of connections between parts. Here we present models that represent objects
by the appearance of local image patches and spatial relationships between those
patches. This type of model has been popular in the context of face detection (see
[15, 9, 37]). We first describe how we model the appearance of a part, and later

describe how we model spatial relationships between parts. Learning an iconic model

20

AEI-ESNERN

Figure 4: Gaussian derivative basis functions used in the iconic representation.

involves picking labeled landmarks on a number of instances of the target object.
From these training examples both the appearance models for each part and the
spatial relationships between parts are automatically estimated, using the procedure

described in Section 3. In Section 5.3 we show some experiments with face detection.

5.1 Parts

In this class of models the location of a part is specified by its (z,y) position in
the image, so we have a two-dimensional pose space for each part. To model the
appearance of each individual part we use the iconic representation introduced in
[31]. The iconic representation is based on the response of Gaussian derivative filters
of different orders, orientations and scales. An image patch centered at some position
is represented by a high-dimensional vector that collects all the responses of a set of
filters at that point. This vector is normalized and called the iconic index at that
position. Figure 4 shows the nine filters used to build the iconic representation at a
fixed scale. In practice, we use three scales, given by o1 = 1, 0o = 2, and 03 = 4, the
standard deviations of the Gaussian filters. So we get a 27 dimensional vector. The
iconic index is fairly insensitive to changes in lighting conditions. For example, it is
invariant to gain and bias. We get invariance to bias as a consequence of using image
derivative filters, and the normalization gives us the invariance to gain. Iconic indices
are also relatively insensitive to small changes in scale and other image deformations.
They can also be made invariant to image rotation (see [31]), although we use an
orientation-sensitive representation here.

The appearance of a part is modeled by a distribution over iconic indices. Specifi-
cally, we model the distribution of iconic indices at the location of a part as a Gaussian
with diagonal covariance matrix. Using a diagonal covariance matrix makes it possi-
ble to estimate the distribution parameters with a small number of examples. If many
examples are available, a full Gaussian distribution or even more complex distribu-
tions such as a mixture of Gaussians, or a non-parametric estimate could be used.
Under the Gaussian model, the appearance parameters for each part are u; = (p;, 3;),

a mean vector and a covariance matrix. We have,
Pl i) = N(als), pis Zi),

21

where «(l;) is the iconic index at location [; in the image. If we have some training
examples, we can easily estimate the maximum likelihood parameters of this distri-
bution as the sample mean and covariance.

Note that we could use other methods to represent the appearance of image
patches. In particular, we experimented with the eigenspace techniques from [27].
With a small number of training examples the eigenspace methods are no better than
the iconic representation, and the iconic representation can be computed more effi-
ciently. In fact, the iconic representation can be computed very fast by convolving

each level of a Gaussian pyramid with small x-y separable filters (see [16]).

5.2 Spatial Distribution

The spatial configuration of the parts is modeled by a collection of springs connecting
pairs of parts. Each connection (v;,v;) is characterized by the ideal relative location
of the two connected parts s;;, and a covariance matrix 3;; which in some sense
corresponds to the stiffness of the spring connecting the two parts. So the connection
parameters are ¢;; = (s, 2;;). We model the distribution of the relative location
of part v; with respect to the location of part v; as a Gaussian with mean s;; and
covariance Y;;,
p(li, lilei) = Nl — 1y, 835, 5ij).- (14)
So, ideally the location of part v; is the location of part v; shifted by s;;. Since the
models are deformable, the location of v; can vary by paying a cost that depends on
the covariance matrix. This corresponds to stretching the spring. Because we have a
full covariance matrix, stretching in different directions can have different costs. For
example, two parts can be highly constrained to be at the same vertical position,
while their relative horizontal position may be uncertain. As with the appearance
models for the individual parts, the maximum likelihood parameters of these spatial
distributions for pairs of parts can easily be estimated using training examples.
In practice, we need to write the joint distribution of /; and [; in the specific
form required by our algorithms. It must be a Gaussian distribution with zero mean
and diagonal covariance in a transformed space, as described by equation (2). To

do this, we first compute the singular value decomposition of the covariance matrix

Ti(li) = UL (L — si5), and Tyi(ly) = U5 (1y),
which allow us to write equation (14) in the correct form,
pUli; ljleiz) = N (Ti(li) = Ti(l5), 0, Dig).-

22

Figure 5: Three examples from the first training set and the structure of the learned

model.

5.3 Experiments

Now we present some experiments of using the iconic models just described to detect
faces. The basic idea is to use ML estimation to train a model of frontal faces, and
MAP estimation to detect faces in novel images. Our first model has five parts,
corresponding to the eyes, nose, and corners of the mouth. To generate training
examples we labeled the location of each part in twenty different images (from the
Yale face database). More training examples were automatically generated by scaling
and rotating each training image by a small amount. This makes our model handle
some variation in orientation and scale. Some of the training examples and the
structure of the learned model are shown in Figure 5. Remember that we never
told the system which pairs of parts should be connected together. Determining the
structure is part of the ML parameter estimation procedure.

We tested the resulting model by matching it to novel images using MAP es-
timation. Note that all model parameters are automatically estimated under the
maximum likelihood formalism. Thus, there are no “knobs” to tune in the matching
algorithm. Some matching results are shown in Figure 6. Both the learning and
matching algorithms are extremely fast. Using a desktop computer it took a few
seconds to learn the model and less than a second to compute the MAP estimate in
each image. These experiments demonstrate that we can learn a useful model from
training examples. However the structure of this model is not particularly interesting
as all the parts are connected through a central part, and the properties of all the
connections are similar.

We also tried learning a larger model, this one with nine parts. We now have
three parts for each eye, one for the left corner, one for the right corner and one for
the pupil. This is a useful model to detect gaze direction. Figure 7 shows one of
the training examples and the learned model. Also, in Figure 7, there is a detailed

illustration of the connections to the left corner of the right eye. The ellipses illustrate

23

Figure 6: Matching results.

24

Figure 7: One example from the second training set, the structure of the learned
model, and a pictorial illustration of the connections to one of the parts, showing the

location uncertainty for parts 2, 3, and 4, when part 1 is at a fixed position.

the location uncertainty for the other parts, when this part is at some fixed location.
They are level sets of the probability distribution for the location of parts 2, 3, and
4, given that part 1 is fixed. Note that the location of the pupil (part 2) is much
more constrained with respect to the location of the eye corner than any other part,
as would be expected intuitively. Also note that the distributions are not centrally
symmetric, as they reflect the typical variation in the relative locations of parts.
We see that the algorithm both learned an interesting structure for the model, and
automatically determined the constraints between the locations of different pairs of

parts.

6 Articulated Models

Now we present a scheme to model articulated objects. Our main motivation is to
construct a system that can estimate the pose of human bodies. We concentrate on
detecting objects in silhouette images. These images can be generated by subtracting
a background image from the input image. Figure 8 shows an example input and
matching result. Silhouette images characterize well the problem of pose estimation
for an articulated object. We want to find an object configuration that covers the
foreground pixels and leaves the background pixels uncovered. Note that we don’t
assume “perfect” silhouette images. In fact, our method works with very noisy input.
In order to detect articulated bodies in such silhouette images we use the sampling
techniques instead of computing the MAP estimate for the object location. This
is important because the models for articulated bodies are not accurate generative

models. This is explained in more detail below.

25

Figure 8: Input image, silhouette obtained by background subtraction, and matching

result.

6.1 Parts

For simplicity, we assume that the image of an object is generated by a scaled or-
thographic projection, so that parallel features in the model remain parallel in the
image. For images of human forms this is generally a reasonable assumption. We
further assume that the scale factor of the projection is known. We can easily add
an extra parameter to our search space in order to relax this latter assumption.

Suppose that objects are composed of a number of rigid parts, connected by flexi-
ble joints. If a rigid part is more or less cylindrical, its projection can be approximated
by a rectangle. The width of the rectangle comes from the diameter of the cylinder
and is fixed, while the length of the rectangle depends on the length of the cylinder
but can vary due to foreshortening. We model the projection of a part as a rectangle
parameterized by (x,y, s,0). The center of the rectangle is given in image coordinates
(x,y), the length of the rectangle is defined by the amount of foreshortening s € [0, 1],
and the orientation is given by #. So we have a four-dimensional pose space for each
part.

We model the likelihood of observing an image given a particular location for a

26

Area2

Areal

Figure 9: A rectangular part. area; is the area inside the part, and areas is the

border area around it.

part in the following way. First, each pixel in the image is generated independently.
Pixels inside a part are foreground pixels with probability ¢;. Intuitively, ¢; should be
close to one, expressing the idea that parts occlude the background. We also model
a border area around each part (see Figure 9). In this area, pixels belong to the
foreground with probability ¢,. In practice, when we estimate ¢, from data we see
that pixels around a part tend to be background. We assume that pixels outside both

areas are equally likely to be background or foreground pixels. Thus,

county areal —county
(1- Ch)()

p(I|li, u;) = qf

counts (1 . q2)(areazfcount2) 0.5(t7area17area2)

ds

Y

where count; is the number of foreground pixels inside the rectangle, and area; is
the area of the rectangle. count, and area, are similar measures corresponding to
the border area, and ¢ is the total number of pixels in the image. So the appearance
parameters are u; = (qi,¢2), and it is straightforward to estimate these parameters
from training examples.

To make the probability measure robust we consider a slightly dilated version of
the silhouette when computing count,, and to compute count, we erode the silhouette
(in practice we dilated and eroded the silhouette by two pixels). Computing the
likelihood for every possible location of a part can be done efficiently by convolving
the image with uniform filters. Each convolution counts the number of pixels inside
a rectangle (specified by the filter) at every possible translation.

Intuitively, our model of p(1I|l;, u;) is reasonable for a single part. The likelihood
favors large parts, as they explain a larger area of the image. But remember that
we model p(I|L,u) as a product of the individual likelihoods for each part. For a
configuration with overlapping parts, this measure “overcounts” evidence. Suppose
we have an object with two parts. The likelihood of an image is the same if the two
parts are arranged to explain different areas of the image, or if the two parts are on top
of each other and explain the same area twice. Therefore, with this measure the MAP
estimate of an object configuration can be a bad guess for its true position. This is not

because the posterior probability of the true configuration is low, but because there

27

]
i

a b

Figure 10: Two parts of an articulated object, (a) in their own coordinate system

and (b) the ideal configuration of the pair.

are configurations which have high posterior and are wrong. In our experiments, we
obtain a number of configurations which have high posterior probability by sampling
from that distribution. We then select one of the samples by computing a quality
measure that doesn’t overcount evidence.

There is one more thing we have to take into account for sampling to work. When
p(I|L,u) overcounts evidence, it tends to create high peaks. This in turn creates high
peaks in the posterior. When a distribution has a very strong peak, sampling from
the distribution will almost always obtain the location of the peak. To ensure that
we get a number of different hypothesis from sampling we use a smoothed version of
p(I|L,u), defined as

p'(I|Lyu) oc p(I| L, w) T oc [T p(I1li, ui) T,
i=1
where T controls the degree of smoothing. This is a standard technique, borrowed
from the principle of annealing (see [18]). Note that p'(I|L,u) is just the product of

the smoothed likelihoods for each part. In all our experiments we used T = 10.

6.2 Geometry

For the articulated objects, pairs of parts are connected by flexible joints. A pair
of connected parts is illustrated in Figure 10. The location of the joint is specified
by two points (z;j,v;;) and (zj;,y;i), one in the coordinate frame of each part, as
indicated by circles in Figure 10a. In an ideal configuration these points coincide, as
illustrated in Figure 10b. The ideal relative orientation is given by 0;;, the difference
between the orientation of the two parts.

Suppose l; = (z;, yi, si, 0;) and [; = (z;, y;, s, 6;) are the locations of two connected

parts. The joint probability for the two locations is based on the deviation between

28

their ideal relative values and the observed ones,

:)
j y
N (s; — s4,0,0%2) (15)

M(0; —0;,0,5, k),

where (77, y;) and (2}, y;) are the positions of the joints in image coordinates. Let Ry

be the matrix that performs a rotation of # radians about the origin. Then,

(] o) oon (o] wa (9] [] o []
I A R R I e S R

The distribution over angles, M, is the von Mises distribution (see [20]),
MO, 1, k) o ek eos@=m),

The first two terms in the joint distribution measure the horizontal and vertical
distances between the observed joint positions in the image. The third term measures
the difference in foreshortening between the two parts. The last term measures the
difference between the relative angle of the two parts and the ideal relative angle.
Usually o, and o, will be small so parts tend to be aligned at their joint. And if &
is small the angle between the two parts is fairly unconstrained, modeling a revolute
joint.
The connection parameters under this model are,
Cij = (Tijs Yigs Tjis Yjir O Ty 0a i).

Finding the maximum likelihood estimate of o2 is easy since we just have a Gaussian
distribution over s; — s;. Similarly, there are known methods to find the ML pa-
rameters (6,5, k) of a von Mises distribution (see [20]). The ML estimate of the joint
location in each part are the values (z;j, ij, %ji, yj;) which minimize the sum of square
distances between (},y;) and (2}, y;) over the examples. We can compute this as a
linear least squares problem. The variances (o2, 05

We need to write the joint distribution of /; and [; in the specific form required

) are just the sample variances.

by our algorithms. It must be a Gaussian distribution with zero mean and diagonal
covariance in a transformed space, as described by equation (2). First note that a von
Mises distribution over angular parameters can be specified in terms of a Gaussian
over the unit vector representation of the angles. Let & and 5 be the unit vectors
corresponding to two angles o and 3. That is, @ = [cos(a), sin(a)]”, and similarly
for E Then,

& — B)|* — 2

cosla—B)=a-f=— 5

29

Now let
T;'j (ll) = (IL’;, yz{, Si, COS(gi + gz’j)a sin(ﬂi + gij))a
Tj(lj) = (:C;, y;‘a Sjs COS(ej), Sin(ej))a
Nij = diag(1/02,1/0;, 1/0?, k, k),

which allow us to write equation (15) in the right form,
Ui lileig) o< N (Tji(ly) = Tij (1), 0, Bi).-

For these models, the number of discrete locations in the transformed space is a
little larger than the number of locations for each part. This is because we represent
the orientation of a part as a unit vector which lives in a two-dimensional grid. In
practice, we use 32 possible angles for each part, and represent them as points in a
11 x 11 grid.

6.3 Experiments

We use an articulated model to represent the human body. Our model has ten
parts, corresponding to the torso, head, two parts per arm and two parts per leg.
To generate training examples we labeled the location of each part in ten different
images (without too much precision). The learned model is illustrated in Figure 11.
The crosses indicate joints between parts. We never told the system which parts
should be connected together, this is automatically learned during the ML, parameter
estimation. Note that the correct structure was learned, and the joint locations agree
with the human body anatomy (the joint in the middle of the torso connects to the
head). The configuration of parts shown in Figure 11 was obtained by fixing the
position of the torso and placing all other parts in their optimal location with respect
to each other.

We tested the model by matching it to novel images. As described in Section 6.1,
the MAP estimate can be a bad guess for the object location, because our model does
not explicitly account for overlap between parts. Therefore we sample configurations
from the posterior distribution to obtain multiple hypothesis and rate each sample
using a separate measure. For each sample we computed the Chamfer distance be-
tween the shape of the object under the hypothesized configuration and the silhouette
obtained from the input image. The Chamfer distance is a robust measure of binary
correlation (see [6]). The matching process is illustrated in Figure 12. First, a silhou-
ette is obtained from the original image using background subtraction. We use this
silhouette as input to the sampling algorithm to obtain a number of different pose

hypotheses for the object. The best pose is then selected using the Chamfer measure.

30

AR

bk

Figure 11: Model of human body.

More matching results are shown in Figure 13. For each image, we sampled two-
hundred object configurations from the posterior distribution and picked the best one
under the Chamfer distance. Using a desktop computer it took about one minute to
process each image. The space of possible locations for each part was discretized into
a 70 x 70 x 10 x 32 grid, corresponding to (x,y,s,#) parameters. There are over
1.5 million locations for each part, making any algorithm that considers locations for
pairs of parts at a time impractical.

Figure 14 shows that our method works well with noisy input. There is no way
to detect body parts individually on inputs like that. But the dependencies between
parts provide sufficient context to detect the human body as a whole. Of course,
sometimes the estimated pose is not correct. The most common source of error comes
from ambiguities in the silhouette. Figure 15 shows an example where the silhouette
doesn’t provide enough information to estimate the position of one arm. Even in that
case we get a fairly good estimate. We can detect when ambiguities happen because
we obtain many different poses with equally good Chamfer score. Thus we know that

there are different configurations that are equally good interpretations of the image.

7 Summary

This paper presents a statistical framework for representing the visual appearance of
objects composed of rigid parts arranged in a deformable configuration. The models
are based on the pictorial structure representation developed in [15], which allows for
qualitative descriptions of appearance and is suitable for generic recognition prob-
lems. The statistical approach provides a principled way of defining both the object
detection and model learning problems, and yields efficient methods for solving both

of these problems. We have illustrated how models can be learned from a small num-

31

Figure 12: Input image, silhouette, random samples, and best result selected using

the Chamfer distance.

32

Matching results (sampling 100 times).

Figure 13:

33

Figure 14: Even with noisy silhouettes we get good results.

ber of training images, and how the resulting models can be used to find instances of
objects in new images.

There are three main contributions in this paper, which set it apart from other
work on pictorial structures and flexible templates for detecting objects in images.
First, we introduce efficient algorithms for finding the best global match of a model
to an image. In contrast, prior work uses local search techniques that must be some-
how initialized near the right answer. Second, we introducte the use of statistical
sampling techniques to identify multiple good matches of a model to an image. In
contrast, prior work focuses on finding the best match. Third, our use of a statistical
formulation provides a natural way of learning pictorial structure models from ex-
ample images. Most of the prior work uses manually constructed models, which are
difficult to create and to validate. We believe that the ability to learn such models is
particularly important as good models of flexible objects are generally too complex
to be constructed manually.

One of the difficulties in representing generic objects is the large variation in shape
and photometric information in each object class. Using a part based representation

we can model the appearance variation in each part separately. We also explicitly

34

Figure 15: In this case, the silhouette doesn’t provide enough information to estimate

the position of one arm.

model the geometric configuration of the parts, which is treated as independent of
their individual appearances. Our framework is general, in the sense that it is inde-
pendent of the specific method used to represent the appearance of parts, and the
type of the geometric relationships between the parts. It allows for a variety of kinds
of part models and geometric relations between parts. By using a general framework
we have provided a set of computational mechanisms that can be used for many dif-
ferent modeling schemes. In this paper we presented two quite different modeling
schemes, one was used to model faces and the other to model articulated bodies.
Given a particular kind of part model and geometric constraints, the parameters
of the models are learned from training examples. We demonstrated the learning
techniques using both simple face models and a simple model of the human body.
With these learned models we were then able to detect the corresponding objects and
estimate their pose in novel images. The learning and the detection techniques are
both computationally efficient — in a theoretical (asymptotic) sense and in practice.
Learning the models from training examples takes just a couple of minutes on a

standard desktop workstation. Detection, searching over the entire space of possible

35

configurations, takes less than a second for the face models and less than a minute
for the body model.

7.1 Extensions
There are a number of possible extensions to our work:

e Occluded parts can be handled by making p(7|l;, u;) a robust measure. Basically
the likelihood should never be too small, even when there is no evidence for the
part at some location. The context provided by the unoccluded parts can be

rich enough to constrain the location of occluded parts.

e There are other ways of detecting multiple instances of an object that we did
not consider here. For instance, the MAP estimation algorithm can be used to
output the configuration with maximum posterior probability conditioned on
each location for the root part. This doesn’t take any more time than computing
the MAP estimate itself. We could select all locations for the root that yield a
high posterior.

e Given an image sequence, our method can be used to detect an object in the
first frame and then use that location as prior information for the detection in
the next frame. The detection algorithms can be modified to take into account
prior information over absolute locations. This would yield a system for tracking

flexible objects.

References

1] A.A. Amini, T.E. Weymouth, and R.C. Jain. Using dynamic programming for
solving variational problems in vision. PAMI, 12(9):855-867, September 1990.

2] Y. Amit and D. Geman. A computational model for visual selection. Neural
Computation, 11(7):1691-1715, October 1999.

(3] N.J. Ayache and O.D. Faugeras. Hyper: A new approach for the recognition and
positioning of two-dimensional objects. PAMI, 8(1):44-54, January 1986.

[4] J.O. Berger. Statistical Decision Theory and Bayesian Analysis. Springer-Verlag,
1985.

[5] G. Borgefors. Distance transformations in digital images. CVGIP, 34(3):344-371,
June 1986.

36

(6]

7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

G. Borgefors. Hierarchical chamfer matching: A parametric edge matching al-
gorithm. PAMI, 10(6):849-865, November 1988.

Y. Boykov, O. Veksler, and R. Zabih. Energy minimization with discontinuities.
Under Review, 1998.

Y. Boykov, O. Veksler, and R. Zabih. Markov random fields with efficient ap-
proximations. In CVPRYS, pages 648655, 1998.

M.C. Burl, M. Weber, and P. Perona. A probabilistic approach to object recogni-
tion using local photometry and global geometry. In ECCV98, pages 11:628-641,
1998.

C.K. Chow and C.N. Liu. Approximating discrete probability distributions with
dependence trees. IEEE Trans. Information Theory, 14(3):462-467, May 1968.

T.H. Cormen, C.E. Leiserson, and Rivest R.L. Introduction to algorithms. MIT
Press and McGraw-Hill, 1996.

S.J. Dickinson, I. Biederman, A.P. Pentland, J.O. Eklundh, R. Bergevin, and
R.C. Munck-Fairwood. The use of geons for generic 3-d object recognition. In
IJCAI93, pages 1693-1699, 1993.

P.F. Felzenszwalb and D.P. Huttenlocher. Efficient matching of pictorial struc-
tures. In CVPRO00, pages 11:66-73, 2000.

M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. CACM,
24(6):381-395, June 1981.

M.A. Fischler and R.A. Elschlager. The representation and matching of pictorial
structures. T'C, 22(1):67-92, January 1973.

W.T. Freeman and E.H. Adelson. The design and use of steerable filters. PAMI,
13(9):891-906, September 1991.

A.E. Gelfand and A.F.M. Smith. Sampling-based approaches to calculating
marginal densities. J. Royal Stat. Association, 85:398-409, 1990.

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. PAMI, 6(6):721-741, November 1984.

W.E.L. Grimson and T. Lozano-Perez. Localizing overlapping parts by searching
the interpretation tree. PAMI, 9(4):469-482, July 1987.

37

[20] E.J. Gumbel, J.A. Greenwood, and D. Durand. The circular normal distribution:
Theory and tables. J. American Stat. Association, 48:131-152, March 1953.

[21] D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. Comparing images
using the hausdorff distance. PAMI, 15(9):850-863, September 1993.

[22] D.P. Huttenlocher and S. Ullman. Recognizing solid objects by alignment with
an image. IJCV, 5(2):195-212, November 1990.

[23] S. Toffe and D.A. Forsyth. Probabilistic methods for finding people. IJCV,
43(1):45-68, June 2001.

[24] H. Ishikawa and D. Geiger. Segmentation by grouping junctions. In CVPRYS,
pages 125-131, 1998.

[25] A.V. Karzanov. Quick algorithm for determining the distances from the points of
the given subset of an integer lattice to the points of its complement. Cybernetics
and System Analysis, pages 177-181, April-May 1992. Translation from the

Russian by Julia Komissarchik.

[26] Y. Lamdan, J.T. Schwartz, and H.J. Wolfson. Affine invariant model-based
object recognition. RA, 6:578-589, 1990.

[27] B. Moghaddam and A.P. Pentland. Probabilistic visual learning for object rep-
resentation. PAMI, 19(7):696-710, July 1997.

[28] H. Murase and S.K. Nayar. Visual learning and recognition of 3-d objects from
appearance. IJCV, 14(1):5-24, January 1995.

[29] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

[30] L. Rabiner and B. Juang. Fundamentals of Speech Recognition. Prentice Hall,
1993.

[31] R.P.N. Rao and D.H. Ballard. An active vision architecture based on iconic
representations. Al 78(1-2):461-505, October 1995.

[32] E. Rivlin, S.J. Dickinson, and A. Rosenfeld. Recognition by functional parts.
CVIU, 62(2):164-176, September 1995.

[33] L.G. Roberts. Machine perception of 3-d solids. In Optical and Electro-optical
Information Processing, pages 159-197, 1965.

38

[34] W. Rucklidge. Efficient Visual Recognition Using the Hausdorff Distance.
Springer-Verlag, 1996. LNCS 1173.

[35] M. Turk and A.P. Pentland. Eigenfaces for recognition. CogNeuro, 3(1):71-96,
1991.

[36] W.M. Wells, ITI. Efficient synthesis of gaussian filters by cascaded uniform filters.
PAMI, 8(2):234-239, March 1986.

[37] L. Wiskott, J. Fellous, N. Kruger, and C. von der Malsburg. Face recognition by
elastic bunch graph matching. PAMI, 19(7):775-669, July 1997.

39

