Computer Science 664
Fall 2002

Assignment 2

Due Date: October 31

Material: Lectures on motion estimation.

In this problem set you will implement and experiment with simple parametric motion
estimation. We will consider only the problem of estimating the best global transation
u* mapping pixels of image I to pixels of image .J. As discussed in class, more complex
parametric motions such as affine, projective, or “plane plus parallax” can produce quite
useful estimates of image motion for a wide range of problems including insertion of artificial
objects into video, construction of panoramic mosaics, and detection and removal of moving
objects in video.

Recall that applying the optical flow constraint equation, one can use local estimates
of image derivatives to compute the least squares estimate of a parametric motion such as
the translation u* (or more complex transformations). However, this method assumes that
the magnitude of the motion is small.

For each image pixel i, let Az; and Ay; denote the finite difference approximation to
spatial derivitaves of I, and let At; denote the finte difference approximate time derivative
(the difference between I and J for pixel 7).

The least squares estimate for the translation u* = min, ||Du — t|| where

Az; Ay;
D= : :
Az, Ay,
is an array of the spatial derivatives at each pixel and and ¢ = [t;,...,#]T is a column

vector of the time derivative at each pixel.

This minimizing value u* can be found by the method of normal equations, u* =
(DTD)~'D™t. Note that this is simply a 2 x 2 system, where

TrH > Am? > AxiAyi
Db = [> ArAy; X Ay}
and

Moreover, (DT D), is a symmetric 222 matrix and so its inverse can be computed easily in
closed form (there is no need for general matrix inverse code).

1. Implement the normal equations method of solving for the best least squares estimate
u* of the translation from I to .J, using the estimates of local derivatives. This need
only work for small motions (a pixel or two).

Hand in the code for this, together with a written description of any issues you needed
to address. Also hand in the estimate that you compute for the “tree” and “scene”
image pairs.

2. The estimates computed above are only valid if the translations are small. In this
part, you should implement a 5-level Gaussian pyramid (i.e., the coarsest scale images
should be scaled by 2° from the original images), and perform motion estimation using
the least squares method applied to the Gaussian pyramid.

Recall that a Gaussian pyramid is obtained by smoothing the image with Gaussian
(use 0 = 1) and then subsampling every-other pixel to obtain an image half as large.
This is repeated to obtain another image that is again half as large, and so on. (Note:
You can use the Gaussian smoothing function in the image libraries or your own from
Assignment 1.)

As discussed in class, to estimate motion using a Gaussian pyramid, first estimate the
motion at the coarsest scale. Then transform the image J by applying the inverse
motion to .J, at one finer scale. To apply the motion at one finer scale you must
multiply it by 2, as the finer scale image has twice the resolution. Now compute the
motion estimate at the finer level between I and the transformed .J. To keep track
of the overall motion, you must add this to the transformation you used to warp J.
Continue this at each level of the pyramid until you reach the original images. The
final result is the overall motion estimate, which need not be local because it is the
sum of local transformations at various scales.

Hand in the code for this, together with a written description of any issues you needed
to address. Also hand in the estimates that you compute for the “tree” and “scene”
image pairs.

3. When there are pixels that do not fit the overall motion, a least squares fit may be
fairly inaccurate. As discussed in class, iterative least squares (IRLS) can be used
to discard outliers and obtain a better estimate of the translation. In this case, the
computation is u* = (DTW?2D)~'DTW?t where W is a diagonal weight matrix. The
i-th weight along the diagonal, w; is based on the error in the motion estimate at the
i-th image pixel. You should define and explain an error measure for the motion at
a given pixel (larger values for more error). Be clear in your writeup.

Given your local error measure at each pixel 4, call it r;, let w; =1 if r; < ¢ and let
w; = ¢/r; otherwise, where the “tuning constant” ¢ is 1.5 times the median of the

b

r;S.

Again the overall system is 2 x 2, and DTW?2D is just like DT D above, except each
element in each summation is scaled by w; and analogously for DTt

IRLS starts with an initial motion estimate, which you should compute using your
normal least squares method from Part 1. Then, use that u* to compute local error
measures 7; and a resulting weight matrix. Compute a new value of u* using the
weighted computation, and again compute new errors and weights, iterating until the
change in u* is small.

You should apply the IRLS method to obtain a motion estimate at each level of the
Gaussian pyramid from Part 2.

An image with the error values r; can be a useful way of seeing where in the image
things do not match the overall motion. Where this image is bright (large values)
motions do not match. Your code should output such an image for the original image
level of the Gaussian pyramid.

For this part hand in your writeup, code, the error images, and the overall translation
estimates you obtain for the “tree” and “scene” image pairs.

. Given the final motion estimates, one can create synthetic images that superimpose
two (or more in the case of sequences) images with one another. In this part, write
code that creates a synthetic image based on the average of the corresponding pixels of
I and J given a translation. Note that your translation will generally not be integer-
valued, so you should interpolate a value of J based on four neighboring pixels in
that image and then compute the average of that with each pixel of I.

Again discuss any issues you encounter. For this part hand in your writeup, code
and the composite images for the “trees” and “scene” pairs given the best motion
estimates that you computed in Part 3.

