Statistics, Markov Random Fields

Date: Thursday, April 06, 2000

Send comments to Sergey Kriminski, skrim@ccmr.cornell.edu

Deadly dates and events:

April 11:

1. Should submit proposal for project (gives most of the grade () and topic for oral presentation (15 min).

2. Test on probability and statistics

PS#2

Out in a week and due in two weeks after

May 1, Monday

Oral presentation

Email the time you-can-do-it to colden@cs.cornell.edu by April 11.

Today and future plans

1. Finish statistics

2. Motion, tracking

3. Segmentation

4. Recognition

5. Texture

Lecture

Markov Random Field (MRF)

Markov chain is any series of events where probability of the step depends only upon the previous state of the system. In other words, the system does not remember its history, or, you can also say, that only points adjacent in time are coupled. (E.g. Brownian motion: every time particle makes a step of a random size in a random direction.)

Suppose we have a system where points which are not neighbors are independent:

Pr(Fp == x | Fq == y) = Pr(Fp == x), where Pr(?|?) is the conditional probability, (p and q, which are not neighbors and ( x and y. Such a system is called Markov Random Field.  (An extremely good advice: don’t read this but instead download book by Li: http://courses.cs.cornell.edu/CS664/Papers/Li_book.tar.gz)

Hereafter we are going to use the following notations:

p – sites, P – space of sites (p ( P), L – space of values, N – neighborhood system (all pair which can be called neighbors; N ( P(P), {fq} – not the particular value at point q but the whole set.


Suppose there is a random variables {Fp} defined on P. The probability for them to have some particular value fp will be denoted Pr(fp) (more strict, but useless, notation is Pr(fp == Fp)).


Definition: {Fp} is a Markov random field (MRF) if

1. Pr({fp}) > 0, ( f
2. Pr(fp|{fq}q!=p, q ( P) = Pr(fp|{fq}pq ( N) (in other words probability for a given pixel to have color fp if other pixels have colors {fq}p!=q depends only upon the fq in the neighborhood of p).

This definition does not say much as long as we have not defined N
Gibbs Random Fields


Definition: {Fp} is a Gibbs random field (GRF) if
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where the normalization factor Z is determined from the condition 
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. Here c is a clique – subset of sites P: ( p, q ( c,  pq ( N. C is a set of all possible cliques c. Vc is called clique potential.

MRF <=> GRF

Theorem: Markov random field is equivalent to some Gibbs random field and vise versa (Hammersley-Clifford).

The proof is shown in Li’s book. In one direction (GRF => MRF) it is rather simple. It is more or less clear that the system is ergodic (I’d say less than more), so that let’s prove property 2. 
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where {f’} is the same as {f} everywhere except, possibly, p.

Let’s use two subsets of C: A – subsets there all cliques contain p, and B there they don’t. Substituting the Gibbs distribution for probability we get:
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The last expression contains only neighborhood information, so that it proves 2.

In other direction it’s more tricky (I don’t quite understand it). Let’s first show that for any set S of nodes the probability
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[image: image15.wmf]where product is over some cliques c ( S. Let’s prove it via induction. For |S| = 1 it’s trivial. For arbitrary S the proof is the following: if S is a clique we are done, if not, there should be some pair of pixels which are not neighbors to each other, VLOG we can say that they are p1 and pn. Thus 

Pr(1…n) = Pr(1|2…n)Pr(2…n) = Pr(1…n-1)Pr(2…n)/Pr(2…n-1), where for brevity we use the notation Pr(fpi) = Pr(i). Note, that in numerator and denominator we get terms where |S| has the same parity.

The conditional probability

Pr(fp|fq, q( Np) = Pr(fq, q(Np+{p}) / Pr(fq, q(Np),

where Np is the neighborhood of p can be presented, with the aid of the above formula, as

Pr(fp|fq, q( Np) = (Pr(fq, q( c),





(2)

where product is over all largest cliques c containing p. (Largest: if you add any node q(Np, c will not be a clique).

This suggests the following correspondence (see book by Li) between MRF and GRF:
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where sum is over all subsets b of the clique c. On any clique this potential (used int Gibbs distribution (1)) gives correct answer. Formula (2) completely justifies this potential.

MAP-MRF

There is a connection between maximum a posteriori probability (MAP) and MRF. We may define MAP as maximization of Pr(H|O), where H is “true” (corresponds to Fp above) and O is our observation. Pr(H|O) ~ Pr(H)Pr(O|H), where Pr(H) is called prior. For a given p we may think that Pr(O|H) carries data term information, while prior, Pr(H), carries neighborhood information. If we assume that observations O at different nodes are independent than
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where observations O are included in Dp and last equity is a definition for Dp. Using the GRF-MRF equivalence (at the second step) we get
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where single-site cliques V are the same as D. The problem of the maximization of the Gibbs probability is equivalent to the minimization of the “cliques energy”



[image: image9.wmf]å

Î

=

C

c

c

f

V

f

E

})

({

})

({

.

In the simplest case, when cliques in C are single-sites and pairs, you get the usual vision energy:
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where first sum is over all sites, and second over all pair of neighbors.

The only assumption we made was independence of the observations at different pixels, so that people believe that this is a proof, based on the first principals, for Ising model in vision.

Motion

We already solved a correspondence problem (what went where): stereo.

Another application of the motion is a compression of a frame sequence (MPEG).

Now, let’s talk about the optical flow (normal flow). Disparity field may be considered as velocity field which carries the pixel I(r,t). We believe that 
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This is optical flow constraint equation (OFCE). Here, the “fisherman” derivative is defined by
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and the velocity v is defined as usual:
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The task is to find v if I(r, t) is given. However, the equation in question (4) gives us only projection of v on gradI so that we have to use the neighborhood information to solve it: velocities of the neighbors should be close to each other. Everything is fine, unless there is an aperture problem: gradI does not change form point to point so that the linear system becomes degenerate. Example is shown on Fig. 1.
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Fig. 1: Aperture problem. You cannot say anything about vertical motion because we have no texture in the vertical direction.
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