Plausible Disparities Algorithms and Feature-Based Algorithms

1. Plausible Disparities Algorithms

The disadvantage of the variable window approach is that it is very slow. Now we talk about an algorithm that is both fast and able to deal with arbitrary shape of input image.

1.1 Algorithm

For each pixel in an image, define a subset of disparities as the plausible ones. Formally, for pixel P,

A disparity d is possible if | L(p) – R(p+d) | < (, where (is a constant, and L,R are left and right image respectively.

This is equivalent to assigning the data cost C(p,d) to either 0 (plausible) or ((implausible). So in fact plausibility of labels for pixels is exactly the data term in our optimization formula.

In the following example, we have a 4*4 grid of pixels and a set of labels of {0, 1, 2}. Let’s suppose that we end up with the following plausible disparity matrix:

	1, 2
	1, 0
	2
	2, 1

	1, 0
	1, 0
	2, 1
	2, 0

	1, 2
	0, 1
	2, 0
	2, 1

	1, 0
	 1
	2, 0
	2, 0

So the only possible labels are 1 and 2 but not 0 for the red pixel, 2 and 0 but not 1 for the blue one, and 1 only for the green one.

We could have a different representation for the above table. We could mark all the pixels that may take a particular label, and make a separate table for each label. For example, the following tables correspond to labels of 0, 1, 2 respectively. X denotes the pixels for which the label is plausible.

	X
	
	X
	X

	
	
	X
	X

	X
	
	X
	X

	
	
	X
	X

	
	X
	
	

	X
	X
	
	X

	
	X
	X
	

	X
	
	X
	X

	X
	X
	
	X

	X
	X
	X
	

	X
	X
	
	

	X
	X
	
	X

 label = 0

label =1

label = 2

We also want the solution to be smooth. In Pott’s model, we count the number of pairwise disconnections in the image. Here we define smoothness in a slightly different way. For a pixel, we need to find a connected region that this pixel belongs to. Here we define connected region as one in which every pixel is a four-neighbor of at least one different pixel in the same region. Having found the connected region, we can measure its size, ie, the number of pixels in this region. In the above example, the connected regions for the blue pixel consists of all colored pixels, and have size of 7, 9, 8 respectively.

	X
	
	X
	X

	
	
	X
	X

	X
	
	X
	X

	
	
	X
	X

	
	X
	
	

	X
	X
	
	X

	
	X
	X
	

	X
	
	X
	X

	X
	X
	
	X

	X
	X
	X
	

	X
	X
	
	

	X
	X
	
	X

 label = 0

label =1

label = 2

 size = 7

size = 9

size = 8

Finally, each pixel decides which label to take based on the size of the connected regions. The intuition is that the larger a continuous region is, the fewer disconnections we expect to see in the final solution, and hence the smoother the solution will end up with. In this example, the blue pixel will pick label 1 since it will have a connected region of largest size - 9. Notice that this is a heuristic way to minimize number of disconnections.

1.2 Comments

A pixel looks at its neighbors to choose a largest group to stay with. However, these “neighhors” are not necessarily connected in the final solution, since each pixel will make its decision independently according to its own neighbors. In practice, however, this algorithm generally works pretty well.

The power of this algorithm comes from the fact that the neighborhood defined as such is not too local. To make a comparison, consider Ising model. We can actually find a global minimum for this model, but the optimal solution is often times not the correct one. The reason: the smoothness term in Ising model is defined too locally.

Naturally, people try to utilize “shape priors” in their algorithms. The idea is, given some pixels, we can infer what is more likely for the rest ones. However, in reality this information is very hard to be used for technical reasons.

To extend the algorithm we discussed above, we can consider the plausibility of a triple of (disparity, gain, bias) instead of just disparity. We can define:

(d, (, () is possible if | L(p) – [(* R(p+d) + (| < (, where (is a constant, d is disparity, (is gain, and (is bias.

Finally, besides its good performance, this algorithm runs fast as well. Normally it takes about 15 to 20 seconds to finish.

2. Uniqueness

The common problem with all labeling algorithms discussed so far is about our assumption of uniqueness. That is, collision will not happen in which two pixels in left image are matched to the same pixel in the right one, or vise versa.

Left image

Right image

Collision could be valid in some circumstances, such as compression flow in case of motion or front-shortening in case of stereo, but in general, the assumption of uniqueness is at best an ugly one. We need to modify our algorithms to impose uniqueness (ie, a pixel can go to at most one pixel in the other image. On the other hand, we allow a pixel to be not matched though).

A simple technique to check for collision is “L-R cross checking”. We run stereo algorithm twice, first matching the left image to the right one and then matching the right one to the left. For a pixel, we see whether the matched pixel in the other image will match back to itself. If it does, then this pixel is OK. Otherwise, we mark it as an unreliable one and we can further apply some other processing to it.

3. Feature-Based Algorithm

3.1 Dense-output vs. sparse-output algorithms

The algorithms we have covered belong to “dense output algorithms”. They give solutions for all pixels in an image. In contrast, the feature-based algorithms belong to “sparse-output algorithms”. They only give solutions for some of the pixels in the image. In general these pixels contain more useful information than others and are associated with distinctive features such as edges.

We would expect to see a better performance of the latter one, since fewer pixels and hence less computation is involved, and the emphasis is put on the distinctive features. In fact, they do not work very well. They are slow and yield poor solutions. This is because in computer representation edges are often broken even though they appear to be smooth. Some extra work is needed to pair up these broken pieces.

Dense-output algorithms are doing well for the following reasons. Many applications (e.g. in computer graphics) need dense instead of sparse output. Most vision problems are inherently hard, so it is desirable to have more information available. Furthermore, in some cases dynamic programming can help to reduce the cost of computation.

3.2 Julesz’s RDS

Psychophysical experiments by B. Julesz suggested that stereo preceeded recognition in human vision. The stimuli were popularized and referred to as random dot stereograms (RDS). The image consists of random dots, so each pixel is randomly assigned to be black or white. The only difference between left and right images is that the central portion of the image is shifted in one direction and therefore disparity is created.

left image

right image

3.3 Marr & Poggio’s computational model

First it is obvious that black and white pixels can only be matched to black and white ones, respectively. This defines a set of plausible disparities for each pixel and forms a part of the data term.

Marr and Poggio imposed uniqueness and smoothness constraints in their cooperative algorithm. In L-R plot, a cell is a matched pair of pixels from left and right images. All cells fall within a stripe, the vertical height of which corresponds to the maximum disparity allowed.

R

 max disp

 cell

 L

Consider such a cell and its neighbors. We define two kinds of connections – excitatory and inhibitory ones. We set up the connections in a way that a cell will discourage its horizontal and vertical neighbors but encourage its diagonal neighbors to have the same disparity.

 excitatory connection

 inhibitatory connection

Notice that the inhibitory connections enforce uniqueness and excitatory connections enforce smoothness.

Let’s now define some notations.

Ct(x,y,d) – a binary value, where 1 means that at time t pixel (x,y) in L-R plot has disparity of d, while 0 means disparity of (x,y) is not d.

S(x,y,d) – number of excitatory neighbors

O(x,y,d) – number of inhibitory neighbors

Finally, the algorithm is to update Ct(x,y,d) at every time step:

Ct+1(x,y,d) = (* [(Ct(x’,y’,d’) - (* (Ct(x’,y’,d’) + C0(x’,y’,d’)]

 (x’,y’,d’)(S(x,y,d)

 (x’,y’,d’)(O(x,y,d)

Notice that the last term C0(x’,y’,d’) plays the role of a “data anchor”.

3.3 Comments

The algorithm works well with this kind of stereo problem. It is actually an instance of a class of “relaxation methods”, in which neighborhood information is diffused to derive the solution.

4. Intra-Scanline Dynamic Algorithm

This is the last class of algorithm we will cover for stereo problem. In general it is feature-based, but it can be dense as well. Both the strength and the weakness of this algorithm comes from the fact that only one scanline is considered at a given time. The strength is that we can now construct optimal solution with an additional fairly strong (possibly bad) assumption for each line. The assumption is “ordering constraint”, ie, for two pixels a and b in left image and their correspondences a’ and b’ in right image,

a is left of b in L (a’ is left of b’ in R

In another word, we assume the surface is always monotonous. With this assumption we can use dynamic programming to find a unique monotone surface path in L-R plot that has the lowest cost. The monotonicity of surface in general is not violated, except for some cases like middle front visual field.

However, the fact that we only consider one line at a time poses more serious problems. (to be continued)

