CS 664 Machine Vision

March 30, 2000

Lecturer: Ramin Zabih

Scribe: Robert Shcherbakov

Probability, Statistics, Markov Random Fields.

The swap-move algorithm for the Problem set 1b should look like

1. Start at f, succ=0

1.1. For each pair a, b

1.2. Find cheapest f’

1.3. If E(f’) < E(f)

2. f = f’, succ = 1

3. if succ = 0 then done

else succ = 0, goto 2

1. Administrivia:

Next Assignment due April 11.

Written proposal for the project plus oral paper (1 page).

2. Probability and statistics (continued).

Today we are going to finish Probability and Statistics issues then we will talk about Markov Random Fields.

We have a space of outcomers. With outcomers we have associated a pair of random variables.

X, Y      pmf     fx, fy
f :  ( Z2 (pair of random variables)

PMF (probability mass function)  fx,y(,) = P({X=}({Y=}), where fx,y is a joint distribution.

Some useful identities:
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If Ai is a partition then 
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This process is called marginalization.

f :  ( Zn
g : n ( D (arbitrary domain)

g(f – composition (a D-valued random variable)

Suppose D=Zn, m < n, then g is a projection operator.

Look at a single pixel. What is the true intensity?

Using statistics we end up with diagram:


observed







true

Let’s introduce a pair of random variables: {{O=}({T=}}

The joint distribution is fO,T. fO and fT are marginals. fT is a pmf that represents the distribution of true intensities. fT is referred as a PRIOR. Event like that {O=} is an observation. Event {T=} is a hypothesis.

We had an experiment and observed some intensities. What is the best hypothesis?

· Max Likelihood – true state of the world

· MAP- max a posteriori.

Example: O=255, T=0

P(O=255|T=0) – pretty low

P(O=255|T=254) – pretty high

P(O=|T=) is a function of  and 






=100

       

This function captures the “noise” and called LIKELIHOOD.

In most cases it is a function of |-|.

ML estimate for a given  is

ML estimate = arg max P(O=|T=)

Plausible disparities: BVZ paper PAMI98

Intensity i is plausible if |i - iobs| < 
The formal definition: i is plausible if its likelihood is grater than its complement.

Consider {T=x} and given {O=y}

P(O=y|T=x) vs. P(O=y|T(x) i is plausible if the first is grater than the second.

The constant  can be derived from P.

Example of ML estimation.

Suppose we have n samples of normal distribution N(,). This problem is referred to as a parameter estimation. We would like to compute.

’,’ = arg max P(x1,…,xn|,)

We have to maximize (iP(xi|)

Least squares on ML grounds. LS is a model fitting algorithm. If we have a Gaussian noise then ML estimates of model parameters are LS ones.

ML plus assumption of Gaussian noise leads to LS.

ML plus contamination model noise leads to M-estimation.

Reason for choosing LS is the Central Limit Theorem. ML principal is basically reasonable one but it has a fundamental flaw in it.

Consider a car with speedometer. Observed velocity = 56 mph Probability P(Obs=56|T=55). Consider the hypothesis that the speedometer is broken (stack at 56). This is a problem of “overfitting”.

MAP – Maximum a Posteriori estimation.

P(T|O) – posterior distribution.

P(T|O) = P(O|T)P(T)/P(O),

where P(O|T) – likelihood, P(T) – prior and P(O) is irrelevant.

In MAP a posterior is a product of likelihood and a prior. P(T|O) can justify MAP on Bayes risk.

For some given distribution we pick maximum as most probable value.

           P





maximum








hypothesis

A penalty could be 0 or 1. If penalty is quadratic = (H-T)2 then at first order we pick maximum (peak), at second order we have to find width or standard deviation of the distribution and at third order we have to distinguish two or more peaks.

To reproduce the distribution we use sampling. MCMC – Markov chain Monte-Carlo is used to sample distributions. The justification of this method is based on the fundamental theorem of Markov chains.

M = 
To generate such a distribution we have to construct a Markov Chain with correct stationary distribution and walk on it.
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