CS 664 Lecture 12

Scribed by Andrew J. Lee (AJL19@cornell.edu)

March 2nd, 2000
1 Administrivia

· Password for CS 664 ftp server: v!s!*n
· Students who have received a grade ( 3 on both quizzes should see RDZ

2 More on Stereo Matching

2.1
Gain and Bias

Recall from last time that the brightness of images captured by physical cameras is modulated by a gain (() and bias ((). Consider a pair of stereo images, L and R, captured by separate left and right cameras. We can denote the relationship between the intensities of these images as follows:
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This is a violation of the constant brightness assumption. In general, gain and bias that arise from the mechanical issues of cameras are constant over all pixels of an image. Unfortunately, in the real world you often get variable gain and bias. In other words, there is variable distortion of intensities between corresponding left and right points. 

What exactly can happen between the intensities of corresponding points? If the true disparity between L and R is d*, we have assumed that:
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However, in addition to camera-based gain and bias, this model does not take into account the fact that surfaces can scatter light in different ways. The surface reflectance properties of an object are what cause local variations in gain and bias.

2.2 BRDFs

A BRDF is a bi-directional reflectance distribution function. It describes how a surface maps incoming photons to outgoing photons. Photons are parameterized by an angle ( and a wavelength (. Therefore:
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A BRDF has 6 degrees of freedom.

There are 2 cases of BRDFs that are particularly interesting: specular and lambertian (diffuse) surfaces. A specular surface reflects light as follows:











(in = (out
(in                (out
Therefore, the intensity of any given point on the surface (as seen by the camera) is dependent on the camera and light source positions. On the other hand, lambertian surfaces reflect light in a manner completely irrespective of (in or (out. For a given point, all camera positions yield the same intensity. Moreover, the light source is considered to be at an infinite distance away.

There are actually no true lambertian surfaces (chalk and the moon’s surface come close). However, when we make the constant brightness assumption, we are essentially assuming that the world consists entirely of lambertian surfaces. Why? Because if a surface is not lambertian, it probably has a complex BRDF. This, in turn, seriously complicates the task of stereo matching.

2.3 Methods for Variable Gain and Bias

2.3.1 Global Methods

It is possible to make a coarse approximation of what a BRDF is doing using local gain and bias. Consider the following:
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Here we have augmented the equation discussed earlier by adding ( and (, and allowing them to vary across the image. This can be set up as a labeling problem such that:
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2.3.2 Correlation-based Local Methods

Another way of solving this problem involves correlation-based local methods. Consider a local window in corresponding left and right images:


We can plot the intensities of these points in an LR chart as follows:


If the disparities are the same for all pixels in the window, all of the points will be on a line; the local gain and bias of the window will be the parameters of this line. Therefore, we can do local matching via line fitting in an LR chart.

This is really just a generalization of conventional stereo matching as done in assignment 1A. Previously, the line was “decreed” with slope = 1 and y-intercept = 0. In this case, we also need to find the line.

2.3.2.1 Measuring Goodness of Fit

One question that naturally arises is, how do we measure how well a line fits the data? We can compute the correlation coefficient:

Given data point (li, ri)
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This essentially tells us how well a least squares line fits the data. In stereo, this is called normalized correlation.

2.3.2.2 Issues

If there are multiple disparities in a given window, this will cause problems. Consider an image with a person in the foreground and two objects, a haystack and a house, in the background:


Assume we are looking at a local window around the person’s cheek:


Because the disparities of some pixels are the same (cheek) while others are not (hay and house), the LR chart will contain some points along a line and some points that look like “garbage”:


Obviously, the least squares line for this type of data will be very poor.

2.3.2.3 Alternative Approaches to Fitting

We need a more robust method for fitting a line in the presence of outliers.  Least squares computes the line that minimizes the following sum:
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where ri = residual for pixel i. We would like to fit most of the data, and ignore the outliers. There are two ways of solving this.

· Reduce the squared term (hence reduce the distance of outliers).

· Set a threshold that limits the contribution of outliers. For instance, use a truncated L1 or L2 distance. This method is called M-estimation.





With M-estimation, we are defining our own influence function ( such that we are now trying to minimize
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If we look at the derivative 
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, we essentially would like this to be zero at a threshold.

2.3.2.4 Breakdown Point

The breakdown point defines how much “bad” data can be ignored. M-estimation has a breakdown point of 0%; all bad data is still factored in to some extent. Therefore, a best fit line found using M-estimation with a truncated L1 or L2 distance will still get pulled off a bit by outliers. Note that it is impossible to have a breakdown point > 50%.

2.3.2.5 Methods to Optimize the Breakdown Point

The LMedS (Least Median Squares) algorithm uses the median of the squared residuals to find the line of best fit. The intuition behind it is as follows: put a ruler over 50% of the data; what is the thinnest ruler that can be used to cover half of the data? This algorithm has an optimal breakdown point.

In the case of no gain and bias, both LMedS and M-estimation are pretty trivial to implement. However, with gain and bias, it is considerably more complicated because you need to do a line fitting. For M-estimation, a common method is to solve for the least squares line, take any outliers and reduce their influence, and then repeat the process. This is known as Iteratively Reweighted Least Squares (IRLS).

There are algorithms for solving LMedS exactly, but the code is fairly complicated. In general, they rely on concepts from computational geometry, and run in O(n2) time.

2.3.2.6 Conclusions

As far as correlation-based local methods are concerned, none of the techniques mentioned above work particularly well in practice, especially at the borders of objects. Both thin objects and the corners of objects have the tendency to disappear. It is very important to note that the failures of local algorithms at these kinds of situations are not accidental. There is a fundamental reason; the most popular answer in a window is not always the right one. With robust statistics, we can always find the most popular answer, but the right answer has to take up more than 50% of the window.
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