
CS6630 Homework 3

Instructor: Steve Marschner

Due 3 April 2012

Problem 1. This homework deals with solutions for radiative transfer in an
infinite layer of homogeneous medium—think of a plate of glass with scattering
in the interior, or a cloud layer in the atmosphere. The layer is large enough in
x and y that the radiance in and near the layer is independent of x and y, but
it could be thin in the z direction. Consider such a layer of thickness d0 that
contains a medium with volume emission, absorption, and scattering coefficients
ε, σa, and σs and phase function fp. It is observed by a camera or other radiance
detector from the outside. First suppose that σa = σs = 0.

a. Show that in the case where the refractive index inside and outside the layer
is the same, the radiance emitted in direction ω is

L(ω) = d0ε/µ.

Infer the definition of µ. What uncomfortable prediction does this model
make?

b. Suppose the layer is instead a piece of (glowing) glass (η = 1.5) surrounded
by air, and the back side is painted perfectly black (no reflection from the
back surface). Show that the radiance emitted in direction ω is

L(ω) =
T (η, µ)d0ε

η2µ′
.

Infer the definition of µ′.

c. Remove the black paint from the back; now you have to account for light
reflected internally. Show that the radiance is now

L(ω) =
d0ε

η2µ′
.

Now let σa > 0 but still keep σs = 0. From now on, disregard internal reflection
at the interface, so we only have direct emission (and later, single scattering).

d. Show that the radiance emitting from this layer is

Le(ω) = T (η, µ)(1− τ)
ε

η2σa
+ T (η, µ)2τLb
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Where Lb is the radiance entering from the back and τ = exp(−σad0/µ′).
(The correction to account for internal reflection is again simple—but you
don’t need to include it in your writeup.)

e. What is the radiance emitted by a very thick layer?

Now replace the self-emitting medium with a more ordinary scattering medium,
so ε = 0, σs > 0. Suppose it is illuminated by parallel light coming from a
direction ωi, on the same side of the layer as the viewer, that would produce
irradiance Ei on a surface facing the source. Ignore internal reflection.

f. Show that the irradiance available for scattering at depth d is

E′i(d) = T (η, µi)
µi

µ′i
exp(−σtd/µ′i)Ei.

Also define µi and µ′i. (This formula gives scalar irradiance, or equivalently
in this context, irradiance for a surface perpendicular to the illumination
direction.)

g. Show that the radiance due to single scattering exiting the layer is

Ls(ωs) =
T (η, µi)T (η, µs)

η2
σs
σt
fp(ω′i, ω

′
s)

µi

µ′i + µ′s(
1− exp

(
−µ
′
i + µ′s
µ′iµ
′
s

σtd0

))
Ei.

Provide definitions for the ωs and µs.

h. What is the radiance scattered by a very thick layer?

i. Work out the radiance when the source is on the opposite side of the layer
from the viewer.

Problem 2. This problem is about diffusion-based solutions to scattering in
an infinite homogeneous medium, accounting for multiple scattering as well as
single scattering. Perhaps the most elementary problem to be solved is the
radiance distribution due to a point source, which we conventionally place at
the origin. Since everything is symmetric, we know the radiance distribution
has to be spherically symmetric, so it can only depend on the distance from the
source.

The classical diffusion approximation that we’ve looked at in class provides a
simple approximate solution to this problem. We’ll look at where it comes from
and how accurate it is relative to an exact solution given below. The diffusion
approximation reads:

D∇2φ(x) = σaφ(x)−Q0(x)

where D is called the diffusion constant and has the value 1/(3σ′t). The source
term Q0 is zero everywhere except at the origin, and at the origin it’s not defined
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because of the point source, so we’ll avoid actually looking at radiance values
at x = 0.

a. Let us derive the solution using the time-honored “guess and plug in” method.
Suppose we remember that the solution has the general form

φ(x) = a
e−br

r

where r = ‖x‖, for some positive real numbers a and b. By requiring that φ
satisfies the diffusion equation above for all x 6= 0, figure out what b must be.
Hint: look up the formula for the Laplacian operator in spherical coordinates;
otherwise you will want to use a symbolic algebra program to compute the
derivatives.

b. Another conclusion of the diffusion approximation, in the absence of direc-
tional volume sources, is called Fick’s law, which relates the scalar irradiance
and the vector irradiance:

~E(x) = −D∇φ(x)

What is the vector irradiance at a point x in the volume (x 6= 0)?

c. If we set σa = 0, then particles never go away; they bounce around, spreading
farther and farther out in space. This means the net outward flux across any
surface containing the source had better be equal to the power of the source.
Find the net flux by integrating the vector irradiance and use the very simple
resulting expressions to figure out the value of a. Hint: This is a very simple
calculation.

If we only need to know about fluence, there is an exact analytical solution (not
in closed form but easy to compute) available for the point source problem. It
is found using a simple Fourier transform calculation that results in a messy
integral for the inverse Fourier transform, with the result

φ(x) =
Φσt

4π‖x‖

[
Pd exp(−σt‖x‖/A) +

∫ ∞
1

g(t, α) exp(−σt‖x‖t)dt
]

for a source of power Φ at the origin. Three subsidiary expressions, L, Pd, and
g, are required:

2 = αA ln

(
A+ 1

A− 1

)
Pd =

2(A2 − 1)

αA2(1−A2(1− α))

g(t, α) =

[(
1− α

t
tanh−1

(
1

t

))2

+
(π

2

α

t

)2]−1
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(Yes, finding A requires solving a root-finding problem.) This same solution can
be found in the neutron transport literature (Case & Zweifel) or in the radiative
transport literature (Ishimaru).

I have written up this solution in a Matlab function to save you the trouble
of typing it in and setting up the two 1D numerical calculations required.

d. Plot your diffusion solution as a function of distance for the point-source
problem against the exact solution, for various values of the medium param-
eters. You will need to figure out some way to scale the axes (often it is useful
to plot some ratio or product of quantities to avoid graphing functions with
singularities) so that you can see what is going on despite the wide dynamic
range. Describe the set of medium parameters and distances for which the
diffusion approximation seems to be doing a good job, and hand in plots that
support your claim.

4


