
CS6480:
Real-Time and Composition

Robbert van Renesse
Cornell University

Based on Chapters 9 and 10 of “Specifying Systems” by Leslie Lamport

Recall: HourClock

Recall: HourClock

Can we create an HourClock that ticks
(approximately) once an hour?

Specifying Real-Time

Note: takes discrete steps

Specifying Real-Time

Why this?

Composing HourClock and RealTime
Can we create a spec that extends HourClock to “tick” at
(approximately) regular intervals, like a physical clock?

Allowed steps in composition:

Clock ticks are instantaneous Time progresses between ticks

Real-time HourClock

• Want time between HCnxt steps to be approximately one hour on the
real-time clock
• Real clocks drift!!

• If ! is the time in seconds between two steps, then we want
• 3600 − & ≤ ! ≤ 3600 + &
• We call & the “drift” of a clock (not to be confused with “skew”))

Bounding time between HCnxt steps

Bounding time between HCnxt steps
We’re going to want to hide t

Real-Time HourClock

Real-Time HourClock

Why do we need this?

Composition of Specifications

• Given two or more specifications, looking for set of behaviors that
satisfy all specifications

èComposition is the conjunction of specifications

Let’s compose two instantiations of HourClock and see what happens…

Rewriting HourClock a bit

TwoClocks Spec

TwoClocks Spec

Not in the “standard” form !"#$ ∧☐['()$]+,-.

TwoClocks Spec

Cont’d

TwoClocks Spec

“standard” form !"#$ ∧☐['()*$],-./

TwoClocks Spec

Clocks can progress
simultaneously!

TwoClocks Spec

Clocks can progress
simultaneously!

If we don’t want this, can write:

Performance properties

1. Step must complete within ! time: safety property
• “hard real-time”

2. Step must complete within ! time on average: hyperproperty
• Implied by 1

3. Step must eventually occur: liveness property
• Implied by 1 or 2

TLA+ only allows specifying properties
• A property is a set of behaviors (infinite traces) each satisfying some predicate
• “response time < !” is a predicate over a single behavior
• “average response time < !” is a predicate over a set of behaviors

Tools for checking hyperproperties
• Some hyperproperties just involve small sets of behaviors
• 2-Safety: two behaviors provide a counterexample
• Security example: “Observational Determinism”
• Behavior of public variables is deterministic
• Independent of behavior of private variables or scheduler
• Bad: pair of traces that cause system to look nondeterministic to low observer

• Can be handled in TLA+ using “self-composition”
• Like TwoClocks
• Can be model-checked, TLAPS, …

• Still can’t handle average response time…
• Good: average time over all behaviors is low enough

• Alternative tools: HyperLTL, HyperCTL, Hyper modal μ-calculus

