CS6480:
Real-Time and Composition

Robbert van Renesse

Cornell University

Based on Chapters 9 and 10 of “Specifying Systems” by Leslie Lamport

Recall: HourClock

| MODULE HourClock

EXTENDS Naturals

VARIABLE hr

HCini = hr e (1..12)

HCnzt = hr’ =1F hr = 12 THEN 1 ELSE hr + 1
HC = HCini N\ |HCnzt|p, A WFp,.(HCnaxt)

Recall: HourClock

| MODULE HourClock

EXTENDS Naturals

VARIABLE hr

HCini = hr e (1..12)

HCnzt = hr' =1F hr = 12 THEN 1 ELSE hr + 1

HC = HCini A O[HCnat)n, A WERATFERZL).

Can we create an HourClock that ticks
(approximately) once an hour?

Specifying Real-Time
| MODULE RealTime —

EXTENDS Reals
VARIABLE now

A

RTwni = now € Real
RTnzt = now’ € {r € Real : r > now}
RT = A RTini
A O[RTnxt]now
AV 1 € Real : WF,,,, (RTnzt A (now” > r))

Note: takes discrete steps

Specifying Real-Time
| MODULE RealTime —

EXTENDS Reals
VARIABLE now

A

RTwni = now € Real

RTnzt = now’ € {r € Real : r > now} |

RT = ARTini Why this?
A O[RTnxt]now

/ ‘j
AYr € Real : WF,, ., (RTnzt(A (now’ > r
(RTnat X (now’ > 1)

Composing HourClock and RealTime

Can we create a spec that extends HourClock to “tick” at
(approximately) regular intervals, like a physical clock?

Allowed steps in composition:

hr 12 | hr 1 hr 11 . hr 11
now = /2.47 " lnow = V/2.47 now 23.4 now 23.5

Clock ticks are instantaneous Time progresses between ticks

Real-time HourClock

* Want time between HCnxt steps to be approximately one hour on the
real-time clock

* Real clocks drift!!

* If t is the time in seconds between two steps, then we want
« 3600 —p <t <3600+p
* We call p the “drift” of a clock (not to be confused with “skew” §)

Bounding time between HCnxt steps

CONSTANT Rho A positive real number.

MODULE Inner

VARIABLE ¢ t is the elapsed time since the last HCnzt step.
TNext = t'=1F HCnzt THEN 0 ELSE ¢+ (now' — now)

Timer = (t=0) A OTNext] (¢, hr, now)
MazTime = O(t < 3600 + Rho) t is always at most 3600 + Rho.
MinTime = O/ HCnat = t > 3600 — Rhol|p, An HCnat step can occur only if ¢ > 3600 — Rho.

[P

HCTime Timer N MaxTime N MinTime

Bounding time between HCnxt steps

We're going to want to hide t
CONSTANT Rho A positive real number.

MODULE Inner

VARIABLE ¢ t is the elapsed time since the last HCnzt step.
TNext = t'=1F HCnzt THEN 0 ELSE ¢+ (now' — now)

Timer = (t=0) A OTNext] (¢, hr, now)
MazTime = O(t < 3600 + Rho) t is always at most 3600 + Rho.
MinTime = O/ HCnat = t > 3600 — Rhol|p, An HCnat step can occur only if ¢ > 3600 — Rho.

[P

HCTime Timer N MaxTime N MinTime

Real-Time HourClock

| MODULE RealTimeHourClock

EXTENDS Reals, HourClock

VARIABLE now The current time, measured in seconds.
CONSTANT Rho A positive real number.

ASSUME (Rho € Real) A (Rho > 0)

I(t) = INSTANCE Inner
A
NowNext = A now' € {r € Real : r > now} A NowNezt step can advance now by any amount
A UNCHANGED hr while leaving hr unchanged.

A now € Real
A O[NowNext] o

AV r € Real : WF, o (NowNext A (now’ > r))
RTHC = HC@RTTLOUJ@(H t:I(t)!HCTime) The complete specification.

RTnow

RTnow specifies how time may change.

Real-Time HourClock

| MODULE RealTimeHourClock

EXTENDS Reals, HourClock

VARIABLE now The current time, measured in seconds.
CONSTANT Rho A positive real number.

ASSUME (Rho € Real) A (Rho > 0)

I(t) = INSTANCE Inner
NowNexzt = A now' € {r € Real : r > now} A NowNezt step can advance now by any amount
A UNCHANGED hr while leaving hr unchanged.

A now € Real
A O[NowNext] o

AV r € Real : WF, o (NowNext A (now’ > r))

RTnow

RTnow specifies how time may change.

RTHC = HC N RTnow (At:I(t)!HCTime) The complete specification.
|

Why do we need this?

Composition of Specifications

* Given two or more specifications, looking for set of behaviors that
satisfy all specifications

=» Composition is the conjunction of specifications

Let’s compose two instantiations of HourClock and see what happens...

Rewriting HourClock a bit

| MODULE HourClock
EXTENDS Naturals

VARIABLE hr

h = (h%12) +1 <

HCini = hr e (1..12)
HCnzt = HCN (hr)
HC = HCini A O[HCnzt) s,

e

HCN (h)

TwoClocks Spec

TwoClocks = A(z€1..12) A HCN(z)
A(yel..12) AN OHCN (y)

N

TwoClocks Spec

TwoClocks = A(z€1..12) A HCN(z)
AN(yel..12) AN OHCN (y)l,

Not in the “standard” form Init A L[Next]|, s

TwoClocks Spec

TwoClocks = A (z€1..12) A OJHCN(z)],
AN(yel..12) AN OHCN (y)l,

= A (IE cl..12) A(yel..12) Because O(F A G) = (OF) A (OG).
O([HCON(z)]s N [HCN(y)]y)
= A(zel..12) A (y €1l..12) By definition of [...], and [...],.
AO(A HCN(z) V ¢’ =
A HCN(y) V y' =)

Because:

(

AV A
VvV As
ANV By
V By

)

(

vV A1 A By
vV A1 A By
V As A By
V As A B

)

TwoClocks Spec

TwoClocks = A (z€1..12) A OJHCN(z)],
AN(yel..12) AN OHCN (y)l,

= A(zel..12) A (yel..12) By definition of [...]¢, -
A OV HCN(z) AN HCN (y)

V HCN(z) A (y' = y)

V HCN(y) A (2" = 2)|](z, 4

“standard” form Init AU|[TCNxt], 4

TwoClocks Spec

TwoClocks = A (z€1..12) A OJHCN(z)],
AN(yel..12) AN OHCN (y)l,

= A(zel..12) A (yel..12) By definition of [...]¢, -

A OV HCN(x) N HCN (y
[\/ HC’NE ; |)\ Clocks can progress
(%)

) A (Y =y) ,
V HCON(y) A (2" = 2) |14,) simultaneously!

TwoClocks Spec

TwoClocks = A (z€1..12) A OJHCN(z)],
AN(yel..12) AN OHCN (y)l,

= A(zel..12) A (yel..12) By definition of [...]¢, -

A OV HCN(x) N HCN (y
[\/ HC’NE ; |)\ Clocks can progress
(%)

) A (Y =y) ,
V HCON(y) A (2" = 2) |14,) simultaneously!

/

If we don’t want this, can write: TwoClocks N D[(SCI =)V (y = y)]<w»y>

Performance properties

1. Step must complete within 6 time: safety property
* “hard real-time”

2. Step must complete within 6 time on average: hyperproperty
* Implied by 1

3. Step must eventually occur: liveness property
* Implied by 1 or 2

TLA+ only allows specifying properties

* A property is a set of behaviors (infinite traces) each satisfying some predicate
* “response time < §” is a predicate over a single behavior

» “average response time < §” is a predicate over a set of behaviors

Tools for checking hyperproperties

* Some hyperproperties just involve small sets of behaviors
 2-Safety: two behaviors provide a counterexample

* Security example: “Observational Determinism”
* Behavior of public variables is deterministic
* Independent of behavior of private variables or scheduler
* Bad: pair of traces that cause system to look nondeterministic to low observer

e Can be handled in TLA+ using “self-composition”
* Like TwoClocks
* Can be model-checked, TLAPS, ...

e Still can’t handle average response time...
* Good: average time over all behaviors is low enough

 Alternative tools: HyperLTL, HyperCTL, Hyper modal p-calculus

