CS6480:
Model Checkmg and TLC

Robbert van Reness
Cornell University

What is formal verification?

* Does software correctly implement a specification?
* Does software have desired properties (safety, liveness, other)?
* |s a particular optimization correct (equivalence, bi-simulation)?

Formal tools are used to check the above

Three parts to formal verification

e Soundness
* |f the formal verifier reports no bug, then the system does not fail

* Completeness
* |f the formal verifier reports a bug, then the system can fail

e Termination
* The formal verifier terminates

Two types of formal verifiers

* Provers
e Reason based on axioms and rules of inference

e Automatic proof checking
* but proof creation can be at least partly manual

* Difficult
* Model checkers
* Manually create a model

* Automatically explore the state space of the model
* Relatively simple

Recall TLA+

e A state is an assignment of values to all variables
e A step is a pair of states
* A stuttering step wrt some variable leaves the variable unchanged

* An action is a predicate over a pair of states
* |If xis a variable in the old state, then x’ is the same variable in the new state

* A behavior is an infinite sequence of states (with an initial state)
* A specification characterizes the initial state and actions

Some more terms

* A state function is a first-order logic expression
* A state predicate is a Boolean state function
* A temporal formula is an assertion about behaviors

* A theorem of a specification is a temporal formula that holds over
every behavior of the specification

 If S is a specification and I is a predicate and S = LI is a theorem
then we call I an invariant of S.

emporal Formula
Based on Chapter 8 of Specifying Systems

* A temporal formula F assigns a Boolean value to a behavior o
* 0 = F means that F holds over o

* If P is a state predicate, then o = P means that P holds over the first
statein o

* If A is an action, then o = A means that A holds over the first
two statesin o
* j.e., the first step in o is an A step
* note that a state predicate is simply an action without primed variables

* If Ais an action, then o E [A], means that the first stepin o isan A
step or a stuttering step with respect to v

Always

* ¢ = LIF means that F holds over every suffix of o

* More formally
e Let 0™ be o with the first n states removed
eTheno EF 2 VneN: gt "EF

Not every temporal formula is a TLA+ formula

* TLA+ formulas are temporal formulas that are invariant under stuttering
* They hold even if you add or remove stuttering steps

Eventually an A step occurs...

HourClock with liveness
clock that never stops

Module HourClock

 Variable hr

 HCini2 hr € {1,2,3,4,5,6,7,8,9,10,11,12 }
e HCnxt 2 hr' = hr mod 12 + 1

 HC = HCini A O[HCnxt];,,

* LiveHC £ HC A OJ(<®(HCnxt),,-)

Weak Fairness as a liveness condition

- ENABLED (A),, means action A is possible in some state
 WE,(A) £ O(OeNABLED (A),, = <O(4),)

* HourClock: WF;,.(HCnxt)

Strong Fairness

* SE,(A) £ OO(—enaBLep (4),) V O (A4),

* A is eventually disabled forever or infinitely many A steps occur

SE,(A): an A step must occur if A is continually enabled
WE,(A): an A step must occur if A is continuously enabled

As always, better to make the weaker assumption if you can

How important is liveness?

* Liveness rules out behaviors that have only stuttering steps
* Add non-triviality of a specification

|II

* In practice, “eventual” is often not good enough

* Instead, need to specify performance requirements
» Service Level Objectives (SLOs)
* Usually done quite informally

What is Model Checking?

* Check whether a finite state machine satisfies certain properties

* More generally: check whether the set of behaviors of one
specification is a subset of the behaviors of another

* Or even check whether two different specs are equivalent

* By exploring all possible executions of the FSM

* Suffers from combinatorial explosion
e But still useful for “small” models

 Very successful for hardware designs

Turing Awards

* Amir Pnueli received the 1996 Turing award for "seminal work
introducing temporal logic into computing science”

* Led to checking models where the specification is given by a temporal logic
formula

 Edmund Clarke (Cornell Ph.D. 1976), Allen Emerson, and Joseph Sifaki
received to 2007 Turing award for their seminal work founding and
developing the field of model checking

* Leslie Lamport received the 2013 Turing award for imposing clear,
well-defined coherence on the seemingly chaotic behavior of
distributed computing systems [...]

* And the development of TLA+ and TLC can be considered part of this

Basic Concept

System Model

T~

and

Property

/

Model
Checker

/

Model satisfies
Property

or

™~

Counter-Example

TLC Model Checker

* Model: Spec £ Init AO|Next],,-s A Temporal

e TLC checks for

* ”Silliless errors”: 1/0, 1/”string”, (1, 2,3)[10], ... (things that are undefined)
* Deadlock: states where Next is not enabled
* User-specified properties
 Two modes:
* Model check: explore all states
e Simulate: explore randomly generated behaviors

Finite State Models

* Model Checkers can only check finite state models

* Many specs are not finite state
e Recall “FIFO” spec: allows for arbitrarily long queues

N out

> q —>

* Need to add constraints on allowable states
* Recall “BoundedFIFO” spec, where we bounded the size of the queue

MODULE BoundedFIFQO

EXTENDS Naturals, Sequences
VARIABLES in, out
CONSTANT Message, N

ASSUME (N € Nat) A (N > 0)

A

Inner(q) = INSTANCE InnerFIFO
BNezt(q) = A Inner(q)!Next
A Inner(q)! BufRcv = (Len(q) < N)

Spec = g : Inner(q)!Init A O[BNext(q)](in.out,q)
|

/

If it is a BufRcv step,

\

thenlen(q) < N

/

Other limitations

* CONSTANTS must all be specific
 Although can support “model values”, e.g.: Data « {d1,d2,d3}
 Model values are any identifiers

* Does not support unbounded quantification or CHOOSE

* Does not support = (the temporal existential quantifier)
e See previous page
* Must model check InnerFIFO instead

* Variables can only contain “TLC values”
* See next page

TLC values

* Primitive values: Boolean, Integers, Strings, ...
 Model values: d1, d2, ...

* Finite sets of TLC values
e But have to be “comparable”: { “x”, 1 } is not allowed

* Functions whose domains and ranges are TLC values
* Includes tuples

* Nat is not a TLC value
* Therefore [x € Nat — x + 1] is not a TLC value

* However, it will turn out that [x € Nat — x + 1]|3] can be evaluated and
renders the TLC value 4

Example: HourClock

VARIABLE hr

HCini2 hr € {1,2,3,4,5,6,7,8,9,10,11,12 }
HCnxt 2 hr' = hr % 12+ 1

HC £ HCini A O[HCnxt];,- A (<O (HCnxt)y,,)
HCTypelnvariant = O HCini

* No constants
* Variable can only contains integers
 State space is bounded

TLA+ Is a macro preprocessor

VARIABLE hr
HC2 hre{l1,2,3,4,5,6,7,89,10,11,12 } A

O[hr' = hr % 12 + 1];,- AO(O(hr' = hr % 12 + 1))
HCTypelnvariant £ O hr € {1, 2,3,4,5,6,7,8,9,10,11,12 }

* When done, all substitutions have been performed:
 There are no “calls” to operators in expressions
* There are no references to constants
* There are no LET expressions
* There are no INSTANCE calls to other modules

e Semantics of each of these are described in book (and rather complicated),
but not really needed

Evaluating (non-primed, non-temporal) expressions

* Mostly done “left to right”
* expr; + expr,
* First evaluates expry then expr, the adds the results

* IF expr; THEN expr, ELSE exprs

* First evaluates expry, then evaluates either expr, or expr;

* Why does it matter?
 1/0is not a TLC value, and 1/0 would throw an error
* IFx # 0 THEN 1/x ELSE —1 does not throw an errorif x = 0
* Similarly, x # 0 A 1/x < 3 simply evaluates to FALSE if x = 0
* But mathematically equivalent 1/x < 3 A x # 0 throws an error in TLC!

Evaluating primed expressions

* v’ = 3 evaluates to TRUE iff v’ does not have a value or if v’ = 3 already
* In the first case, v’ receives the value 3

* In all other cases, v’ throws an error iff v’ does not have a value

* Note that mathematically equivalent v’ = 3 and 3 = v’ behave
differently if v’ does not have a value

* Note that v’ = v (aka UNCHANGED v) always evaluates to TRUE, but
assigns v' its former value v if it did not yet have a value

Quiz

What is the value of evaluating (FALSE Av' = 3)V (TRUE AV = 4) and
what is the effect on the value of v'?

v' before (FALSE ANV =3)V v' after
(TRUE AV = 4)
3
4
5

unassigned

Recall: Asynchronous FIFO Channel Specification

Typelnvariant = A val € Data Init = Aval € Data
Ardye {0,1} Ardye {0,1}
Nacke {0,1} A ack = rdy
Send = A rdy = ack Rcv = A rdy + ack
Aval € Data AN ack’ =1 —-ack
Ardy =1-rdy A val =val
A ack’ = ack A rdy’ =rdy

Next = Send \/ Recv Spec = Init A O[Next]qy ack vai)

Quiz

What is the value of evaluating (v' =2 v v'=3)Av’ =3 and
what is the effect on the value of v'?

v’ before

(w=2Vvv =3)Av =3

v’ after

2

3

A

unassigned

Computing States

e TLC evaluates disjunctions in primed formulas in a different way
cxVy
e 3x € S: P(x)
cx=>y (E-xVy)
ex'€S (=3qyeS:x' =y)

* |t evaluates all branches even if one branch evaluates to TRUE
* Each may lead to a different state
* Computing next states is SAT solving...

Example

VAz' €1.. Len(y)

N y' = Append(Tail(y), z")
VAz =x+1

Ay = Append(y, ')

x =1
y =(2,3)
x' = unassigned
y' = unassigned

Example

x' €{1,2}

y' = Append((3), x")
VAz' €1.. Len(y) /

N y' = Append(Tail(y), z")
VAz =x+1
Ay = Append(y, ')

x =1
y =(2,3)
x' = unassigned
y' = unassigned

Example v =
/ y' =61

x' €{1,2}

y' = Append((3), x")
VAz' €1.. Len(y) /

N y' = Append(Tail(y), z")
VAz =x+1
Ay = Append(y, ')

x =1
y =(2,3)
x' = unassigned
y' = unassigned

Example v =
y'=(3,1)
x,e{l’z} /

/' y' = Append({3), x') ,
—_— x =2

VAz' €1.. Len(y) y' =(3,2)
N y' = Append(Tail(y), z")

VAz =2 +1
Ay = Append(y, ')

x =1
y =(2,3)
x' = unassigned
y' = unassigned

Example v =
y'=(3,1)
x' €{1,2} /

/' y' = Append({3), x') ,
— X =2

VAz' €1.. Len(y) y' =(3,2)
N y' = Append(Tail(y), z")
VAz =2 +1

Ay = Append(y,z') T o =2

y' = Append((2, 3), 2)
x =1

y =(2,3)
x' = unassigned
y' = unassigned

Example L
y'={31)
x' €{1,2} /

/ y' = Append((3), x") |
—, X' =2

VAz' €1.. Len(y) y' =(3,2)
N y' = Append(Tail(y), z")
VAz =2 +1

A yl - Append(y7 xl) \ x'=2 > x' =

y' = Append((2,3), 2) y' =14(2,3,2)

x =1
y =(2,3)
x' = unassigned
y' = unassigned

Computing Next States

 Start with a completely unassigned next state
* Then recursively

* For each expression
=, A, and V expressions are special

* And for each next state under consideration
* Evaluate possibly multiple resulting next states
* And for each such next state the value of the expression

TLC algorithm to compute all behaviors
(including infinite ones)

e State of TLC model checker:

* G = (V,E): directed graph of states. Edge from s ->¢’if s’ is reachable from s through the
Next relation

« U C V: set of states whose next states have not yet been computed

* |nitialization: compute set of initial states and add them to Vand U
* Much like computing Next states
* Indeed, simply compute /nit’ essentially

* while U # 0:

 SelectsinU

Compute T': set of next states from s

If T = @ report deadlock

AddT\VtoU

Remove s from U

e Add T to V and add edges from s to the statesin T to E

* Add self-edges to each state in I/

TLC algorithm to compute all behaviors
(including infinite ones)

e State of TLC model checker:

* G = (V,E): directed graph of states. Edge from s->s’if s’ is reachable from s through the
Next relation

« U C V: set of states whose next states have not yet been computed

* |nitialization: compute set of initial states and add them to Vand U
* Much like computing Next states
* Indeed, simply compute /nit’ essentially

* while U # 0:

 SelectsinU

Compute T: set of next states from s

If T = @ report deadlock

AddT\VtoU

Remove s from U

e Add T to V and add edges from s to the statesin T to E

* Add self-edges to each state in I/

Resulting G is a “Kripke Structure”

Checking properties

* Check safety (invariant) properties in each state that is computed
* Property of the form 1P, where P is a state predicate

* If property is violated, report shortest path from an initial state to the state
that violates the safety property

* Check liveness (fairness) properties, for example:
* For OP, check that a state satisfying P is reachable from any initial state

* For OGP, check that a state satisfying P is reachable from any initial state,
and that any state reachable from there satisfies P as well

* For LJOP, check that a state satisfying P is reachable from any state

Leveraging Symmetry

* Recall Peterson: the two processes have identical specs
* Hence swapping the processes doesn’t change anything

* In general, it is often the case in concurrent algorithms that
permuting a set of processes doesn’t change anything

* You can tell TLC this: SYMMETRY Permutations(Procs)
* If there are n processes, reduces the state space by n! (n factorial)

* There are often other symmetries, such as the set of memory
addresses

* Other model checkers also leverage symbolic execution for improved
efficiency

“Be suspicious of success”

* Try out properties that should not hold and see if TLC finds the bug

* A finite model may have properties not held by the actual
implementation, which might have an infinite number of states

* In theory, TLC can find any safety violation; you must just pick a model large
enough to find it

* Not so for liveness violations

PlusPy

* RVR’s TLA+ interpreter in Python

* Why an interpreter?
e Can test models that TLC can’t (fewer restrictions)
» Can be used for safety-critical code (no hand translation)

* Why Python?
* In some way like TLA+
* Big integers
* No types
* No expectation that it’ll be fast ©

Distributed PlusPy

* Distributed (and concurrent) specs usually written like this:
* Init==...
* Proc(p) == ...
* Next == \E p \in Processes: Proc(p)
e Spec == Init /\ [][Next]

* Processes communicate through “interface variable”
* Like the queue in FIFO

* PlusPy has option to only evaluate Proc(p) for one specific p
* PlusPy supports “distributed interface variables”

Distributed PlusPy Illustrated

P1 P2 P3

Distributed PlusPy Illustrated

P1 P2 P3

PL| P2 P3: 'P1!|P2|iP3 Pl P2

Distributed PlusPy Illustrated

| P2 | P3 ! Pl P2

