
CS6480:
Model Checking and TLC

Robbert van Renesse
Cornell University

What is formal verification?

• Does so&ware correctly implement a specifica3on?
• Does so&ware have desired proper3es (safety, liveness, other)?
• Is a par3cular op3miza3on correct (equivalence, bi-simula3on)?

Formal tools are used to check the above

Three parts to formal verification

• Soundness
• If the formal verifier reports no bug, then the system does not fail

• Completeness
• If the formal verifier reports a bug, then the system can fail

• Termination
• The formal verifier terminates

Two types of formal verifiers

• Provers
• Reason based on axioms and rules of inference
• Automatic proof checking

• but proof creation can be at least partly manual
• Difficult

• Model checkers
• Manually create a model
• Automatically explore the state space of the model
• Relatively simple

Recall TLA+

• A state is an assignment of values to all variables
• A step is a pair of states
• A stu'ering step wrt some variable leaves the variable unchanged
• An ac.on is a predicate over a pair of states
• If x is a variable in the old state, then x’ is the same variable in the new state

• A behavior is an infinite sequence of states (with an ini=al state)
• A specifica.on characterizes the ini=al state and ac=ons

Some more terms

• A state func*on is a first-order logic expression
• A state predicate is a Boolean state func6on
• A temporal formula is an asser6on about behaviors
• A theorem of a specifica6on is a temporal formula that holds over

every behavior of the specifica6on
• If ! is a specifica6on and " is a predicate and ! ⇒ ☐" is a theorem

then we call " an invariant of !.

Temporal Formula
Based on Chapter 8 of Specifying Systems

• A temporal formula ! assigns a Boolean value to a behavior "
• " ⊨ ! means that ! holds over "
• If $ is a state predicate, then " ⊨ $ means that $ holds over the first

state in "
• If % is an action, then " ⊨ % means that % holds over the first

two states in "
• i.e., the first step in " is an % step
• note that a state predicate is simply an action without primed variables

• If % is an action, then " ⊨ % . means that the first step in " is an %
step or a stuttering step with respect to /

☐Always

• ! ⊨ ☐# means that # holds over every suffix of !
• More formally
• Let !$% be ! with the first & states removed
• Then ! ⊨ ☐# ≜ ∀& ∈ ℕ: !$% ⊨ #

Not every temporal formula is a TLA+ formula
• TLA+ formulas are temporal formulas that are invariant under stu,ering
• They hold even if you add or remove stu7ering steps

Eventually an ! step occurs…

◇ ! " ≜ ¬☐ ¬! "

HourClock with liveness
clock that never stops

Module HourClock
• Variable ℎ"
• HCini ≜ ℎ" ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• HCnxt ≜ ℎ"′ = ℎ" mod 12 + 1
• HC ≜ HCini ⋀◻[HCnxt]78
• LiveHC ≜ HC ⋀☐(◇ HCnxt 78)

Weak Fairness as a liveness condi,on

• ENABLED ⟨(⟩* means action A is possible in some state
• +,* (≜ ☐(☐ENABLED (* ⇒ ◇⟨(⟩*)

• HourClock: +,01(23456)

Strong Fairness
• !"# $ ≜ ◇☐ ¬ENABLED $ # ∨☐◇⟨$⟩#

• $ is eventually disabled forever or infinitely many $ steps occur

!"# $: an $ step must occur if $ is con6nually enabled
0"# $: an $ step must occur if $ is con6nuously enabled

As always, better to make the weaker assumption if you can

How important is liveness?

• Liveness rules out behaviors that have only stuttering steps
• Add non-triviality of a specification

• In practice, “eventual” is often not good enough
• Instead, need to specify performance requirements
• Service Level Objectives (SLOs)
• Usually done quite informally

What is Model Checking?

• Check whether a finite state machine sa0sfies certain proper0es
• More generally: check whether the set of behaviors of one

specifica0on is a subset of the behaviors of another
• Or even check whether two different specs are equivalent

• By exploring all possible execu0ons of the FSM
• Suffers from combinatorial explosion
• But s0ll useful for “small” models

• Very successful for hardware designs

Turing Awards

• Amir Pnueli received the 1996 Turing award for "seminal work
introducing temporal logic into computing science”

• Led to checking models where the specification is given by a temporal logic
formula

• Edmund Clarke (Cornell Ph.D. 1976), Allen Emerson, and Joseph Sifaki
received to 2007 Turing award for their seminal work founding and
developing the field of model checking

• Leslie Lamport received the 2013 Turing award for imposing clear,
well-defined coherence on the seemingly chaotic behavior of
distributed computing systems […]

• And the development of TLA+ and TLC can be considered part of this

Basic Concept

System Model

Property

Model satisfies
Property

Counter-Example

Model
Checkerand or

TLC Model Checker

• Model: !"#$ ≜ &'() ∧☐ +#,) -./0 ∧ 1#2"3456
• TLC checks for
• ”Silliless errors”: 1/0, 1/”string”, 1, 2, 3 10 , … (things that are undefined)
• Deadlock: states where +#,) is not enabled
• User-specified properties

• Two modes:
• Model check: explore all states
• Simulate: explore randomly generated behaviors

Finite State Models

• Model Checkers can only check finite state models
• Many specs are not finite state
• Recall “FIFO” spec: allows for arbitrarily long queues

• Need to add constraints on allowable states
• Recall “BoundedFIFO” spec, where we bounded the size of the queue

q
in out

If it is a BufRcv step,
then !"# $ < &

Other limita+ons

• CONSTANTS must all be specific
• Although can support “model values”, e.g.: !"#" ← %1, %2, %3
• Model values are any identifiers

• Does not support unbounded quantification or CHOOSE

• Does not support ∃ (the temporal existential quantifier)
• See previous page
• Must model check InnerFIFO instead

• Variables can only contain “TLC values”
• See next page

TLC values

• Primitive values: Boolean, Integers, Strings, …
• Model values: d1, d2, …
• Finite sets of TLC values

• But have to be “comparable”: { “x”, 1 } is not allowed

• Functions whose domains and ranges are TLC values
• Includes tuples

• !"# is not a TLC value
• Therefore $ ∈ !"# → $ + 1 is not a TLC value
• However, it will turn out that $ ∈ !"# → $ + 1 3 can be evaluated and

renders the TLC value 4

Example: HourClock

VARIABLE ℎ"
HCini ≜ ℎ" ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
HCnxt ≜ ℎ"′ = ℎ" % 12 + 1
HC ≜ HCini ⋀◻[HCnxt]56 ⋀☐(◇ HCnxt 56)
HCTypeInvariant ≜◻ HCini

• No constants
• Variable can only contains integers
• State space is bounded

TLA+ is a macro preprocessor

VARIABLE ℎ"
HC ≜ ℎ" ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ⋀

◻[ℎ"′ = ℎ" % 12 + 1]56 ⋀☐(◇ ℎ"′ = ℎ" % 12 + 1 56)
HCTypeInvariant ≜◻ ℎ" ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

• When done, all subsAtuAons have been performed:
• There are no “calls” to operators in expressions
• There are no references to constants
• There are no LET expressions
• There are no INSTANCE calls to other modules

• SemanAcs of each of these are described in book (and rather complicated),
but not really needed

Evalua&ng (non-primed, non-temporal) expressions

• Mostly done “left to right”
• !"#$% + !"#$'

• First evaluates !"#$% then !"#$' the adds the results
• IF !"#$% THEN !"#$' ELSE !"#$(

• First evaluates !"#$%, then evaluates !34ℎ!$!"#$' or !"#$(
• Why does it matter?
• 1/0 is not a TLC value, and 1/0 would throw an error
• IF " ≠ 0 THEN 1/x ELSE −1 does not throw an error if " = 0
• Similarly, " ≠ 0 ∧ 1/" < 3 simply evaluates to FALSE if " = 0
• But mathematically equivalent 1/" < 3 ∧ " ≠ 0 throws an error in TLC!

Evalua&ng primed expressions

• !" = 3 evaluates to TRUE iff !" does not have a value or if !" = 3 already
• In the first case, !" receives the value 3

• In all other cases, !" throws an error iff !" does not have a value
• Note that mathematically equivalent !" = 3 and 3 = !" behave

differently if !" does not have a value
• Note that !" = ! (aka UNCHANGED !) always evaluates to TRUE, but

assigns !" its former value ! if it did not yet have a value

Quiz

What is the value of evalua.ng !"#$% ∧ '′ = 3 ⋁ ,-.% ∧ '′ = 4 and
what is the effect on the value of '′?

'′ before !"#$% ∧ '′ = 3 ⋁
,-.% ∧ '′ = 4

'′ after

3
4
5

unassigned

Recall: Asynchronous FIFO Channel Specifica8on

Send ≜ ∧ rdy = ack
∧ val’ ∈ $%&%
∧ rdy’ = 1 – rdy
∧ ack’ = ack

Rcv ≜ ∧ rdy ≠ ack
∧ ack’ = 1 – ack
∧ val’ = val
∧ rdy’ = rdy

Init ≜ ∧ val ∈ $%&%
∧ rdy ∈ { 0, 1 }
∧ ack = rdy

TypeInvariant ≜∧ val ∈ $%&%
∧ rdy ∈ { 0, 1 }
∧ ack ∈ { 0, 1 }

Next ≜ -./0 ⋁2.34 Spec ≜ Init ⋀◻[Next] 678,9:;,<9=

Quiz

What is the value of evalua.ng ("# = 2 ∨ "# = 3) ∧ "# = 3 and
what is the effect on the value of "′?

"′ before ("# = 2 ∨ "# = 3) ∧ "# = 3 "′ after
2
3
4

unassigned

Compu&ng States

• TLC evaluates disjunctions in primed formulas in a different way
• ! ∨ #
• ∃! ∈ &: (!
• ! ⇒ # ≡ ¬! ∨ #
• x’ ∈ S ≡ ∃# ∈ &: !, = #

• It evaluates all branches even if one branch evaluates to TRUE
• Each may lead to a different state
• Computing next states is SAT solving…

Example

! = 1
$ = 2, 3

!(=)*+,,-.*/0
$(=)*+,,-.*/0

Example

! = 1
$ = 2, 3

!(=)*+,,-.*/0
$(=)*+,,-.*/0

!(∈ 1, 2
$(= 233/*0(3 , x’)

Example !" = 1
%" = 3, 1

!" ∈ 1, 2
%" = *++,-.(3 , x’)

! = 1
% = 2, 3

!" = 1-23345-,.
%" = 1-23345-,.

Example !" = 1
%" = 3, 1

!" ∈ 1, 2
%" = *++,-.(3 , x’)

!" = 2
%" = 3, 2

! = 1
% = 2, 3

!" = 1-23345-,.
%" = 1-23345-,.

Example !" = 1
%" = 3, 1

!" ∈ 1, 2
%" = *++,-.(3 , x’)

!" = 2
%" = 3, 2

!" = 2
%" = *++,-.(2, 3 , 2)! = 1

% = 2, 3
!" = 1-23345-,.
%" = 1-23345-,.

Example !" = 1
%" = 3, 1

!" ∈ 1, 2
%" = *++,-.(3 , x’)

!" = 2
%" = 3, 2

!" = 2
%" = *++,-.(2, 3 , 2)

!" = 2
%" = 2, 3, 2

! = 1
% = 2, 3

!" = 1-23345-,.
%" = 1-23345-,.

Computing Next States

• Start with a completely unassigned next state
• Then recursively
• For each expression
• =, ∧, and ∨ expressions are special

• And for each next state under consideration
• Evaluate possibly multiple resulting next states
• And for each such next state the value of the expression

TLC algorithm to compute all behaviors
(including infinite ones)

• State	of	TLC	model	checker:
• 3 = (6, 8): directed graph of states. Edge from s -> s’ if s’ is reachable from s through the

Next rela9on
• : ⊆ 6: set of states whose next states have not yet been computed

• Ini9aliza9on: compute set of ini9al states and add them to 6and :
• Much like compu9ng Next states
• Indeed, simply compute Init’ essen9ally

• while : ≠ ∅:
• Select s in :
• Compute >: set of next states from s
• If > = ∅ report deadlock
• Add > \ 6 to :
• Remove s from :
• Add > to 6 and add edges from s to the states in > to 8

• Add self-edges to each state in 6

TLC algorithm to compute all behaviors
(including infinite ones)

• State	of	TLC	model	checker:
• 3 = (6, 8): directed graph of states. Edge from s -> s’ if s’ is reachable from s through the

Next relation
• : ⊆ 6: set of states whose next states have not yet been computed

• Initialization: compute set of initial states and add them to 6and :
• Much like computing Next states
• Indeed, simply compute Init’ essentially

• while : ≠ ∅:
• Select s in :
• Compute >: set of next states from s
• If > = ∅ report deadlock
• Add > \ 6 to :
• Remove s from :
• Add > to 6 and add edges from s to the states in > to 8

• Add self-edges to each state in 6
Resulting 3 is a “Kripke Structure”

Checking properties

• Check safety (invariant) properties in each state that is computed
• Property of the form ☐!, where ! is a state predicate
• If property is violated, report shortest path from an initial state to the state

that violates the safety property
• Check liveness (fairness) properties, for example:
• For ◇!, check that a state satisfying ! is reachable from any initial state
• For ◇☐!, check that a state satisfying ! is reachable from any initial state,

and that any state reachable from there satisfies ! as well
• For ☐◇!, check that a state satisfying ! is reachable from any state

Leveraging Symmetry

• Recall Peterson: the two processes have identical specs
• Hence swapping the processes doesn’t change anything
• In general, it is often the case in concurrent algorithms that

permuting a set of processes doesn’t change anything
• You can tell TLC this: SYMMETRY Permutations(Procs)
• If there are n processes, reduces the state space by n! (n factorial)
• There are often other symmetries, such as the set of memory

addresses
• Other model checkers also leverage symbolic execution for improved

efficiency

“Be suspicious of success”

• Try out properties that should not hold and see if TLC finds the bug
• A finite model may have properties not held by the actual

implementation, which might have an infinite number of states
• In theory, TLC can find any safety violation; you must just pick a model large

enough to find it
• Not so for liveness violations

PlusPy

• RVR’s TLA+ interpreter in Python

• Why an interpreter?
• Can test models that TLC can’t (fewer restrictions)
• Can be used for safety-critical code (no hand translation)

• Why Python?
• In some way like TLA+

• Big integers
• No types
• No expectation that it’ll be fast J

Distributed PlusPy

• Distributed (and concurrent) specs usually written like this:
• Init == …
• Proc(p) == …
• Next == \E p \in Processes: Proc(p)
• Spec == Init /\ [][Next]

• Processes communicate through “interface variable”
• Like the queue in FIFO

• PlusPy has option to only evaluate Proc(p) for one specific p
• PlusPy supports “distributed interface variables”

Distributed PlusPy Illustrated

P1 P2 P3

Distributed PlusPy Illustrated

P1 P2 P3

P1 P2 P3 P1 P2 P3 P1 P2 P3

Distributed PlusPy Illustrated

P1 P2 P3

P1 P2 P3 P1 P2 P3 P1 P2 P3

