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What is formal verification?

• Does so&ware correctly implement a specifica3on?
• Does so&ware have desired proper3es (safety, liveness, other)?
• Is a par3cular op3miza3on correct (equivalence, bi-simula3on)?

Formal tools are used to check the above



Three parts to formal verification

• Soundness
• If the formal verifier reports no bug, then the system does not fail

• Completeness
• If the formal verifier reports a bug, then the system can fail

• Termination
• The formal verifier terminates



Two types of formal verifiers

• Provers
• Reason based on axioms and rules of inference
• Automatic proof checking

• but proof creation can be at least partly manual
• Difficult

• Model checkers
• Manually create a model
• Automatically explore the state space of the model
• Relatively simple



Recall TLA+

• A state is an assignment of values to all variables
• A step is a pair of states
• A stu'ering step wrt some variable leaves the variable unchanged
• An ac.on is a predicate over a pair of states
• If x is a variable in the old state, then x’ is the same variable in the new state

• A behavior is an infinite sequence of states (with an ini=al state)
• A specifica.on characterizes the ini=al state and ac=ons



Some more terms

• A state func*on is a first-order logic expression
• A state predicate is a Boolean state func6on
• A temporal formula is an asser6on about behaviors
• A theorem of a specifica6on is a temporal formula that holds over 

every behavior of the specifica6on
• If ! is a specifica6on and " is a predicate and ! ⇒ ☐" is a theorem 

then we call " an invariant of !.



Temporal Formula
Based on Chapter 8 of Specifying Systems

• A temporal formula ! assigns a Boolean value to a behavior "
• " ⊨ ! means that ! holds over "
• If $ is a state predicate, then " ⊨ $ means that $ holds over the first 

state in "
• If % is an action, then " ⊨ % means that % holds over the first 

two states in "
• i.e., the first step in " is an % step
• note that a state predicate is simply an action without primed variables

• If % is an action, then " ⊨ % . means that the first step in " is an %
step or a stuttering step with respect to /



☐Always

• ! ⊨ ☐# means that # holds over every suffix of !
• More formally
• Let !$% be ! with the first & states removed
• Then ! ⊨ ☐# ≜ ∀& ∈ ℕ: !$% ⊨ #



Not every temporal formula is a TLA+ formula
• TLA+ formulas are temporal formulas that are invariant under stu,ering
• They hold even if you add or remove stu7ering steps



Eventually an ! step occurs…

◇ ! " ≜ ¬☐ ¬! "



HourClock with liveness
clock that never stops

Module HourClock
• Variable ℎ"
• HCini ≜ ℎ" ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• HCnxt ≜ ℎ"′ = ℎ" mod 12 + 1
• HC ≜ HCini ⋀◻[HCnxt]78
• LiveHC ≜ HC ⋀☐(◇ HCnxt 78)



Weak Fairness as a liveness condi,on

• ENABLED ⟨(⟩* means action A is possible in some state
• +,* ( ≜ ☐(☐ENABLED ( * ⇒ ◇⟨(⟩*)

• HourClock: +,01(23456)



Strong Fairness
• !"# $ ≜ ◇☐ ¬ENABLED $ # ∨☐◇⟨$⟩#

• $ is eventually disabled forever or infinitely many $ steps occur

!"# $ : an $ step must occur if $ is con6nually enabled
0"# $ : an $ step must occur if $ is con6nuously enabled

As always, better to make the weaker assumption if you can



How important is liveness?

• Liveness rules out behaviors that have only stuttering steps
• Add non-triviality of a specification

• In practice, “eventual” is often not good enough
• Instead, need to specify performance requirements
• Service Level Objectives (SLOs)
• Usually done quite informally



What is Model Checking?

• Check whether a finite state machine sa0sfies certain proper0es
• More generally: check whether the set of behaviors of one 

specifica0on is a subset of the behaviors of another
• Or even check whether two different specs are equivalent

• By exploring all possible execu0ons of the FSM
• Suffers from combinatorial explosion
• But s0ll useful for “small” models

• Very successful for hardware designs



Turing Awards

• Amir Pnueli received the 1996 Turing award for "seminal work 
introducing temporal logic into computing science”

• Led to checking models where the specification is given by a temporal logic
formula

• Edmund Clarke (Cornell Ph.D. 1976), Allen Emerson, and Joseph Sifaki
received to 2007 Turing award for their seminal work founding and 
developing the field of model checking

• Leslie Lamport received the 2013 Turing award for imposing clear, 
well-defined coherence on the seemingly chaotic behavior of 
distributed computing systems […]

• And the development of TLA+ and TLC can be considered part of this



Basic Concept

System Model

Property

Model satisfies 
Property

Counter-Example

Model
Checkerand or



TLC Model Checker

• Model:   !"#$ ≜ &'() ∧☐ +#,) -./0 ∧ 1#2"3456
• TLC checks for
• ”Silliless errors”:   1/0, 1/”string”, 1, 2, 3 10 , …  (things that are undefined)
• Deadlock: states where +#,) is not enabled
• User-specified properties

• Two modes:
• Model check: explore all states
• Simulate: explore randomly generated behaviors



Finite State Models

• Model Checkers can only check finite state models
• Many specs are not finite state
• Recall “FIFO” spec: allows for arbitrarily long queues

• Need to add constraints on allowable states
• Recall “BoundedFIFO” spec, where we bounded the size of the queue

q
in out



If it is a BufRcv step, 
then !"# $ < &



Other limita+ons

• CONSTANTS must all be specific
• Although can support “model values”, e.g.:  !"#" ← %1, %2, %3
• Model values are any identifiers

• Does not support unbounded quantification or CHOOSE

• Does not support ∃ (the temporal existential quantifier)
• See previous page
• Must model check InnerFIFO instead

• Variables can only contain “TLC values”
• See next page



TLC values

• Primitive values: Boolean, Integers, Strings, …
• Model values: d1, d2, …
• Finite sets of TLC values

• But have to be “comparable”: { “x”, 1 } is not allowed

• Functions whose domains and ranges are TLC values
• Includes tuples

• !"# is not a TLC value
• Therefore $ ∈ !"# → $ + 1 is not a TLC value
• However, it will turn out that $ ∈ !"# → $ + 1 3 can be evaluated and 

renders the TLC value 4



Example: HourClock

VARIABLE ℎ"
HCini ≜ ℎ" ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
HCnxt ≜ ℎ"′ = ℎ" % 12 + 1
HC ≜ HCini ⋀◻[HCnxt]56 ⋀☐(◇ HCnxt 56)
HCTypeInvariant ≜◻ HCini

• No constants
• Variable can only contains integers
• State space is bounded



TLA+ is a macro preprocessor

VARIABLE ℎ"
HC ≜ ℎ" ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ⋀

◻[ℎ"′ = ℎ" % 12 + 1]56 ⋀☐(◇ ℎ"′ = ℎ" % 12 + 1 56)
HCTypeInvariant ≜◻ ℎ" ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

• When done, all subsAtuAons have been performed:
• There are no “calls” to operators in expressions
• There are no references to constants
• There are no LET expressions
• There are no INSTANCE calls to other modules

• SemanAcs of each of these are described in book (and rather complicated), 
but not really needed



Evalua&ng (non-primed, non-temporal) expressions

• Mostly done “left to right”
• !"#$% + !"#$'

• First evaluates !"#$% then !"#$' the adds the results
• IF !"#$% THEN !"#$' ELSE !"#$(

• First evaluates !"#$%, then evaluates !34ℎ!$ !"#$' or !"#$(
• Why does it matter?
• 1/0 is not a TLC value, and 1/0 would throw an error
• IF " ≠ 0 THEN 1/x ELSE −1 does not throw an error if " = 0
• Similarly, " ≠ 0 ∧ 1/" < 3 simply evaluates to FALSE if " = 0
• But mathematically equivalent 1/" < 3 ∧ " ≠ 0 throws an error in TLC!



Evalua&ng primed expressions

• !" = 3 evaluates to TRUE iff !" does not have a value or if !" = 3 already
• In the first case, !" receives the value 3

• In all other cases, !" throws an error iff !" does not have a value
• Note that mathematically equivalent !" = 3 and 3 = !" behave 

differently if !" does not have a value
• Note that !" = ! (aka UNCHANGED !) always evaluates to TRUE, but 

assigns !" its former value ! if it did not yet have a value



Quiz

What is the value of evalua.ng !"#$% ∧ '′ = 3 ⋁ ,-.% ∧ '′ = 4 and 
what is the effect on the value of '′?

'′ before !"#$% ∧ '′ = 3 ⋁
,-.% ∧ '′ = 4

'′ after

3
4
5

unassigned



Recall: Asynchronous FIFO Channel Specifica8on

Send ≜ ∧ rdy = ack
∧ val’ ∈ $%&%
∧ rdy’ = 1 – rdy
∧ ack’ = ack

Rcv ≜ ∧ rdy ≠ ack
∧ ack’ = 1 – ack
∧ val’ = val
∧ rdy’ = rdy

Init ≜ ∧ val ∈ $%&%
∧ rdy ∈ { 0, 1 }
∧ ack = rdy

TypeInvariant ≜∧ val ∈ $%&%
∧ rdy ∈ { 0, 1 }
∧ ack ∈ { 0, 1 }

Next ≜ -./0 ⋁2.34 Spec ≜ Init ⋀◻[Next] 678,9:;,<9=



Quiz

What is the value of evalua.ng ("# = 2 ∨ "# = 3) ∧ "# = 3 and 
what is the effect on the value of "′?

"′ before ("# = 2 ∨ "# = 3) ∧ "# = 3 "′ after
2
3
4

unassigned



Compu&ng States

• TLC evaluates disjunctions in primed formulas in a different way
• ! ∨ #
• ∃! ∈ &: ( !
• ! ⇒ # ≡ ¬! ∨ #
• x’ ∈ S    ≡ ∃# ∈ &: !, = #

• It evaluates all branches even if one branch evaluates to TRUE
• Each may lead to a different state
• Computing next states is SAT solving…



Example

! = 1
$ = 2, 3

!( = )*+,,-.*/0
$( = )*+,,-.*/0



Example

! = 1
$ = 2, 3

!( = )*+,,-.*/0
$( = )*+,,-.*/0

!( ∈ 1, 2
$( = 233/*0( 3 , x’)



Example !" = 1
%" = 3, 1

!" ∈ 1, 2
%" = *++,-.( 3 , x’)

! = 1
% = 2, 3

!" = 1-23345-,.
%" = 1-23345-,.



Example !" = 1
%" = 3, 1

!" ∈ 1, 2
%" = *++,-.( 3 , x’)

!" = 2
%" = 3, 2

! = 1
% = 2, 3

!" = 1-23345-,.
%" = 1-23345-,.



Example !" = 1
%" = 3, 1

!" ∈ 1, 2
%" = *++,-.( 3 , x’)

!" = 2
%" = 3, 2

!" = 2
%" = *++,-.( 2, 3 , 2)! = 1

% = 2, 3
!" = 1-23345-,.
%" = 1-23345-,.



Example !" = 1
%" = 3, 1

!" ∈ 1, 2
%" = *++,-.( 3 , x’)

!" = 2
%" = 3, 2

!" = 2
%" = *++,-.( 2, 3 , 2)

!" = 2
%" = 2, 3, 2

! = 1
% = 2, 3

!" = 1-23345-,.
%" = 1-23345-,.



Computing Next States

• Start with a completely unassigned next state
• Then recursively
• For each expression
• =,  ∧, and ∨ expressions are special

• And for each next state under consideration
• Evaluate possibly multiple resulting next states
• And for each such next state the value of the expression



TLC algorithm to compute all behaviors
(including infinite ones)

• State	of	TLC	model	checker:
• 3 = (6, 8): directed graph of states.  Edge from s -> s’ if s’ is reachable from s through the 

Next rela9on
• : ⊆ 6: set of states whose next states have not yet been computed

• Ini9aliza9on: compute set of ini9al states and add them to 6and :
• Much like compu9ng Next states
• Indeed, simply compute Init’ essen9ally

• while : ≠ ∅:
• Select s in :
• Compute >: set of next states from s
• If > = ∅ report deadlock
• Add > \ 6 to :
• Remove s from :
• Add > to 6 and add edges from s to the states in > to 8

• Add self-edges to each state in 6



TLC algorithm to compute all behaviors
(including infinite ones)

• State	of	TLC	model	checker:
• 3 = (6, 8): directed graph of states.  Edge from s -> s’ if s’ is reachable from s through the 

Next relation
• : ⊆ 6: set of states whose next states have not yet been computed

• Initialization: compute set of initial states and add them to 6and :
• Much like computing Next states
• Indeed, simply compute Init’ essentially

• while : ≠ ∅:
• Select s in :
• Compute >: set of next states from s
• If > = ∅ report deadlock
• Add > \ 6 to :
• Remove s from :
• Add > to 6 and add edges from s to the states in > to 8

• Add self-edges to each state in 6
Resulting 3 is a “Kripke Structure”



Checking properties

• Check safety (invariant) properties in each state that is computed
• Property of the form ☐!, where ! is a state predicate
• If property is violated, report shortest path from an initial state to the state

that violates the safety property
• Check liveness (fairness) properties, for example:
• For ◇!, check that a state satisfying ! is reachable from any initial state
• For ◇☐!, check that a state satisfying ! is reachable from any initial state, 

and that any state reachable from there satisfies ! as well
• For ☐◇!, check that a state satisfying ! is reachable from any state



Leveraging Symmetry

• Recall Peterson: the two processes have identical specs
• Hence swapping the processes doesn’t change anything
• In general, it is often the case in concurrent algorithms that 

permuting a set of processes doesn’t change anything
• You can tell TLC this: SYMMETRY Permutations(Procs)
• If there are n processes, reduces the state space by n!  (n factorial)
• There are often other symmetries, such as the set of memory 

addresses
• Other model checkers also leverage symbolic execution for improved 

efficiency



“Be suspicious of success”

• Try out properties that should not hold and see if TLC finds the bug
• A finite model may have properties not held by the actual 

implementation, which might have an infinite number of states
• In theory, TLC can find any safety violation; you must just pick a model large 

enough to find it
• Not so for liveness violations



PlusPy

• RVR’s TLA+ interpreter in Python

• Why an interpreter?
• Can test models that TLC can’t (fewer restrictions)
• Can be used for safety-critical code (no hand translation)

• Why Python?
• In some way like TLA+

• Big integers
• No types
• No expectation that it’ll be fast J



Distributed PlusPy

• Distributed (and concurrent) specs usually written like this:
• Init == …
• Proc(p) == …
• Next == \E p \in Processes: Proc(p)
• Spec == Init /\ [][Next]

• Processes communicate through “interface variable”
• Like the queue in FIFO

• PlusPy has option to only evaluate Proc(p) for one specific p
• PlusPy supports “distributed interface variables”



Distributed PlusPy Illustrated

P1 P2 P3
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Distributed PlusPy Illustrated
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