
Lecture 5: Memory and 
Concurrent Access
Based on material from Chapter 5, Specifying Systems by Leslie Lamport



Today’s plan

• Review TLA+
• Specify a memory interface
• Specify linearizable memory
• Implement a linearizable cache on top of linearizable memory
• Review refinement



TLA+ review



Defini>on: State

• A state is an assignment of values to (all) variables
• TLA+ notaFon: 𝑣𝑎𝑟$ = 𝑣𝑎𝑙𝑢𝑒$, 𝑣𝑎𝑟* = 𝑣𝑎𝑙𝑢𝑒*,⋯



Defini>on: Behavior

• A behavior is a sequence of states
• NotaFon: 𝑠𝑡𝑎𝑡𝑒$ → 𝑠𝑡𝑎𝑡𝑒* → 𝑠𝑡𝑎𝑡𝑒/ → ⋯
• Example: ℎ𝑟 = 11 → ℎ𝑟 = 12 → ℎ𝑟 = 1



Defini>on: Step

• A step consists of two consecuFve states in a behavior
• aka transi.on
• NotaFon: 𝑠𝑡𝑎𝑡𝑒$ → 𝑠𝑡𝑎𝑡𝑒*
• Example: ℎ𝑟 = 3 → ℎ𝑟 = 4



Defini>on: Specifica.on

• A specifica.on is a set of all possible behaviors
• Consists of at least two parts

1. Set of all possible ini.al states
2. A “next-state” relaFon that describes the ways a state may change in a step

• i.e., the set of all possible pairs of states

• May also contain a liveness condiFon and some theorems



Set of Ini.al States

• Example: HCini ≜ ℎ𝑟 ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• A set of states can oTen be succinctly described by a predicate
• Example: HCini ≜ ℎ𝑟 ∈ ℕ ⋀1 ≤ ℎ𝑟 ⋀ℎ𝑟 ≤ 12



Defini>on: Ac.on

• An ac.on is a predicate over a pair of states in a step
• Example: HCnxt ≜ ℎ𝑟′ = ℎ𝑟 % 12 + 1
• ℎ𝑟′ is the value of hr in the new state; ℎ𝑟 is the value in the old state



Defini>on: Stu7ering steps

• A stuVering step keeps (certain) state variable unchanged
• Example:

[ℎ𝑟C = ℎ𝑟 % 12 + 1]DE ≜ (ℎ𝑟C = ℎ𝑟 % 12 + 1) ⋁ (ℎ𝑟C = ℎ𝑟) 



Defini>on: State Func.on/Predicate

• A state func.on is a first-order logic expression
• A state predicate is a Boolean state funcFon



Defini>on: Temporal Formula

• A temporal formula 𝐹 assigns a Boolean value to a behavior 𝜎
• 𝜎 ⊨ 𝐹 means that 𝐹 holds over 𝜎
• If 𝑃 is a state predicate, then 𝜎 ⊨ 𝑃 means that 𝑃 holds over the first 

state in 𝜎
• If 𝐴 is an acFon, then 𝜎 ⊨ 𝐴 means that 𝐴 holds over the first 

two states in 𝜎
• If 𝐴 is an acFon, then 𝜎 ⊨ 𝐴 V means that the first step in 𝜎 is an 𝐴

step or a stuVering step with respect to 𝑣



☐Always

• 𝜎 ⊨ ☐𝐹 means that 𝐹 holds over every suffix of 𝜎
• More formally
• Let 𝜎WX be 𝜎 with the first 𝑛 states removed
• Then 𝜎 ⊨ ☐𝐹 ≜ ∀𝑛 ∈ ℕ: 𝜎WX ⊨ 𝐹



Example specifica>on: hardware clock

Module HourClock
• VARIABLE ℎ𝑟
• HCini ≜ ℎ𝑟 ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• HCnxt ≜ ℎ𝑟′ = ℎ𝑟 mod 12 + 1
• HC ≜ HCini ⋀◻[HCnxt]DE



Defini>on: Theorem

• A theorem is a temporal formula that holds over every behavior of 
the specificaFon
• Example:  HC ⇒◻ ℎ𝑟 ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• That is, HC ⇒◻ HCini



Defini>on: Invariant

• If 𝑆 is a specificaFon and 𝐼 is a predicate and 𝑆 ⇒ ☐𝐼 is a theorem 
then we call 𝐼 an invariant of 𝑆.



Modeling Shared Memory



(naïve) aHempt: func>on [Address ↦ Value]

• CONSTANTS	𝐴𝑑𝑟, 𝑉𝑎𝑙
• VARIABLE	𝑚𝑒𝑚
• TypeInvariant ≜ 𝑚𝑒𝑚 ∈ [𝐴𝑑𝑟 → 𝑉𝑎𝑙]
• Read 𝑎 ≜ 𝑚𝑒𝑚[𝑎]
• Write 𝑎, 𝑣 ≜ 𝑚𝑒𝑚C = [𝑚𝑒𝑚 EXCEPT ! 𝑎 = 𝑣]



(naïve) aHempt 1: func>on [Address ↦ Value]

• CONSTANTS	𝐴𝑑𝑟, 𝑉𝑎𝑙
• VARIABLE	𝑚𝑒𝑚
• TypeInvariant ≜ 𝑚𝑒𝑚 ∈ [𝐴𝑑𝑟 → 𝑉𝑎𝑙]
• Read 𝑎 ≜ 𝑚𝑒𝑚[𝑎]
• Write 𝑎, 𝑣 ≜ 𝑚𝑒𝑚C = [𝑚𝑒𝑚 EXCEPT ! 𝑎 = 𝑣]

Ignores how processes interact with memory
Ignores memory coherence proper.es



A Memory System

An abstract memory interface





param
eters





A Memory System

Mreq

Val for reads
NoVal for writes





A Linearizable Memory System



Linearizability [Herlihy & Wing 1990]
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LinearizaFon Step





Behaviors

𝑐𝑡𝑙[𝑝] = ”𝑟𝑑𝑦”
𝑏𝑢𝑓[𝑝] = …
𝑚𝑒𝑚[𝑎] = …

|}~(�)
𝑐𝑡𝑙[𝑝] = ”𝑏𝑢𝑠𝑦”
𝑏𝑢𝑓[𝑝] = 𝑟𝑒𝑞
𝑚𝑒𝑚[𝑎] = …

��(�)
𝑐𝑡𝑙[𝑝] = ”𝑑𝑜𝑛𝑒”
𝑏𝑢𝑓[𝑝] = 𝑁𝑜𝑉𝑎𝑙
𝑚𝑒𝑚[𝑎] = 𝑣

|��(�)
𝑐𝑡𝑙[𝑝] = ”𝑟𝑑𝑦”
𝑏𝑢𝑓[𝑝] = 𝑁𝑜𝑉𝑎𝑙
𝑚𝑒𝑚[𝑎] = 𝑣

𝑟𝑒𝑞 ≡ 𝑜𝑝 ↦ ”𝑊𝑟”, 𝑎𝑑𝑟 ↦ 𝑎, 𝑣𝑎𝑙 ↦ 𝑣

𝑐𝑡𝑙[𝑝] = ”𝑟𝑑𝑦”
𝑏𝑢𝑓[𝑝] = …
𝑚𝑒𝑚[𝑎] = …

|}~(�)
𝑐𝑡𝑙[𝑝] = ”𝑏𝑢𝑠𝑦”
𝑏𝑢𝑓[𝑝] = 𝑟𝑒𝑞
𝑚𝑒𝑚[𝑎] = 𝑣

��(�)
𝑐𝑡𝑙[𝑝] = ”𝑑𝑜𝑛𝑒”
𝑏𝑢𝑓[𝑝] = 𝑣
𝑚𝑒𝑚[𝑎] = …

|��(�)
𝑐𝑡𝑙[𝑝] = ”𝑟𝑑𝑦”
𝑏𝑢𝑓[𝑝] = 𝑣
𝑚𝑒𝑚[𝑎] = …

𝑟𝑒𝑞 ≡ 𝑜𝑝 ↦ ”𝑅𝑑”, 𝑎𝑑𝑟 ↦ 𝑎



𝑐𝑡𝑙[𝑝] = ”𝑟𝑑𝑦”
𝑏𝑢𝑓[𝑝] = …
𝑚𝑒𝑚[𝑎] = …

|}~(�)
𝑐𝑡𝑙[𝑝] = ”𝑏𝑢𝑠𝑦”
𝑏𝑢𝑓[𝑝] = 𝑟𝑒𝑞
𝑚𝑒𝑚[𝑎] = …

��(�)



𝑐𝑡𝑙[𝑝] = ”𝑏𝑢𝑠𝑦”
𝑏𝑢𝑓[𝑝] = 𝑟𝑒𝑞
𝑚𝑒𝑚[𝑎] = …

��(�)
𝑐𝑡𝑙[𝑝] = ”𝑑𝑜𝑛𝑒”
𝑏𝑢𝑓[𝑝] = 𝑁𝑜𝑉𝑎𝑙
𝑚𝑒𝑚[𝑎] = 𝑣
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𝑐𝑡𝑙[𝑝] = ”𝑑𝑜𝑛𝑒”
𝑏𝑢𝑓[𝑝] = 𝑁𝑜𝑉𝑎𝑙
𝑚𝑒𝑚[𝑎] = 𝑣

|��(�)
𝑐𝑡𝑙[𝑝] = ”𝑟𝑑𝑦”
𝑏𝑢𝑓[𝑝] = 𝑁𝑜𝑉𝑎𝑙
𝑚𝑒𝑚[𝑎] = 𝑣





Note, this is a “specificaFon” describing behaviors of linearizable 
memory more than an “implementaFon” (mapping onto physical 
hardware).  Of course, both can be described by TLA+ formulas.



Implemen>ng a Write-Through Cache
Implements the linearizable memory 
interface (on top of another)



Same memory 
interface Memory si^ng here



mem renamed for clarity

New ctl state ”waiFng” added



Note

In TLA+
• Sequences and tuples are funcFons [[1 … ] à values]
• Recall: records are funcFons [String à values]



mem renamed for clarity

New ctl state ”waiFng” added



Cache Coherence



External Interface is the same

𝑐𝑡𝑙[𝑝] = ”𝑟𝑑𝑦”
𝑏𝑢𝑓[𝑝] = …

…

|}~(�)
? ? ? ? ? ? ? ?

|��(�) 𝑐𝑡𝑙[𝑝] = ”𝑟𝑑𝑦”
𝑏𝑢𝑓[𝑝] = …

…











Comple>ng the spec



Theorems

More like lemmas



Induc>ve Invariants

TypeInvariant is an invariant of the next-state acFon

Thus, if TypeInvariant holds over iniFal states, by inducFon 
it holds over all states



Coherence is not an induc>ve invariant

• Consider a state in which:
• 𝑐𝑎𝑐ℎ𝑒 𝑝1 𝑎 = 1
• ∀ 𝑞, 𝑏 : 𝑐𝑎𝑐ℎ𝑒 𝑞 𝑏 = 𝑁𝑜𝑉𝑎𝑙
• 𝑤𝑚𝑒𝑚 𝑎 = 2
• 𝑚𝑒𝑚𝑄 = 𝑝2, 𝑜𝑝 ↦ ”𝑅𝑑”, 𝑎𝑑𝑟 ↦ 𝑎

• Now take the MemQRd step:
• 𝑐𝑎𝑐ℎ𝑒 𝑝1 𝑎 = 1
• 𝑐𝑎𝑐ℎ𝑒 𝑝2 𝑎 = 2

Coherence saFsfied

Coherence violated

Need to prove an induc.ve invariant that implies Coherence
Sugges.ons?



A proposed stronger invariant

• Recall that funcFon 𝑣𝑚𝑒𝑚 represents current state of memory
• InducFve Invariant:

∀𝑝 ∈ 𝑃𝑟𝑜𝑐, 𝑎 ∈ 𝐴𝑑𝑟: 𝑐𝑎𝑐ℎ𝑒 𝑝 𝑎 = 𝑁𝑜𝑉𝑎𝑙 ⋁ 𝑐𝑎𝑐ℎ𝑒 𝑝 𝑎 = 𝑣𝑚𝑒𝑚 𝑎
• Implies Coherence



Proving 𝑆𝑝𝑒𝑐 ⇒ 𝐿𝑀! 𝑆𝑝𝑒𝑐

By definiFon of 𝐿𝑀! 𝑆𝑝𝑒𝑐, we need to prove

Which means we have to find “witnesses” for 𝑚𝑒𝑚, 𝑐𝑡𝑙 and 𝑏𝑢𝑓: this is 
called a refinement mapping

Any guesses?



Proving 𝑆𝑝𝑒𝑐 ⇒ 𝐿𝑀! 𝑆𝑝𝑒𝑐

By definiFon of 𝐿𝑀! 𝑆𝑝𝑒𝑐, we need to prove

Which means we have to find “witnesses” for 𝑚𝑒𝑚, 𝑐𝑡𝑙 and 𝑏𝑢𝑓: this is 
called a refinement mapping:





Proving refinement
• If 𝐹 is a formula of module InternalMemory (the high-level spec), let
• 𝐹 ≡ 𝐿𝑀! 𝐼𝑛𝑛𝑒𝑟(𝑜𝑚𝑒𝑚, 𝑜𝑐𝑡𝑙, 𝑜𝑏𝑢𝑓)
• That is: 𝐹 with 𝑜𝑚𝑒𝑚, 𝑜𝑐𝑡𝑙, and 𝑜𝑏𝑢𝑓 subsFtuted for 𝑚𝑒𝑚, 𝑐𝑡𝑙, and 𝑏𝑢𝑓

• Then we need to prove that 𝑆𝑝𝑒𝑐 ⇒ 𝐼𝑆𝑝𝑒𝑐
• Replacing definiFons, we need to prove:

• Find an invariant Inv:

step simulaFon

Show every step of WriteThroughCache is a step of InternalMemory or a stuVering step of InternalMemory



About memory

• Real memory is not linearizable
• Linearizability is not strong enough for modern processors that submit 

mulFple requests to memory
• If a processor submits a write and, before compleFon, a read to the same address, 

linearizability would allow the second operaFon to be ordered before the first
• Linearizability is too strong for concurrent processing

• If p1 submits operaFon o1 and p2 submits operaFon o2 and o1 completes before o2, we 
do not need to require that o1 is ordered before o2 (use locks if you need that)

• SequenFal Consistency is more realisFc and easier to implement
• Serializability: result of execuFon same as some total order of operaFons
• Local ordering: operaFons of a process ordered in submission order

• See Figure 11.7 in Specifying Systems



Final words

• We use TLA+ to model a system.  You get to choose a level of 
abstracFon.  Choose it too high and you won’t reveal problems.  
Choose it too low and you get stuck in the weeds.
• Choosing the level of abstracFon involves choosing what consFtutes 

(atomic) steps: grain of atomicity
• Also involves how accurately to model the state (data structures).

Consider where you are trying to reveal problems.


