Lecture 5: Memory and
Concurrent Access

Based on material from Chapter 5, Specifying Systems by Leslie Lamport



Today’s plan

* Review TLA+
e Specify a memory interface
 Specify linearizable memory

* Implement a linearizable cache on top of linearizable memory
* Review refinement



TLA+ review



Definition: State

* A state is an assignment of values to (all) variables
* TLA+ notation: [var, = value,,var, = value,, |



Definition: Behavior

* A behavior is a sequence of states
* Notation: state, — state, — state; — -

* Example: [hr = 11] - [hr = 12] - [hr = 1]



Definition: Step

* A step consists of two consecutive states in a behavior
* aka transition

* Notation: state; — state,

* Example: |[hr = 3] -» |hr = 4]



Definition: Specification

* A specification is a set of all possible behaviors

* Consists of at least two parts
1. Set of all possible initial states

2. A “next-state” relation that describes the ways a state may change in a step
* i.e., the set of all possible pairs of states

* May also contain a liveness condition and some theorems



Set of Initial States

* Example: HCini 2 hr € {1,2,3,4,5,6,7,8,9,10,11,12 }

* A set of states can often be succinctly described by a predicate
e Example: HCini2 hr e NA1 < hr Ahr <12



Definition: Action

* An action is a predicate over a pair of states in a step
* Example: HCnxt 2 hr' = hr % 12 + 1
* hr' is the value of hr in the new state; hr is the value in the old state



Definition: Stuttering steps

A stuttering step keeps (certain) state variable unchanged

* Example:
[hr" =hr %124+ 1), 2 (hr'=hr% 124+ 1) V (hr' = hr)



Definition: State Function/Predicate

e A state function is a first-order logic expression
* A state predicate is a Boolean state function



Definition: Temporal Formula

* A temporal formula F assigns a Boolean value to a behavior o
* 0 = F means that F holds over o

* If P is a state predicate, then o = P means that P holds over the first
statein o

* If A is an action, then 0 E A means that A holds over the first
two statesin o

* If A is an action, then o E [A], means that the first stepin o isan A
step or a stuttering step with respect to v



Always

* 0 = LJF means that F holds over every suffix of o

* More formally
e Let 0™ be g with the first n states removed
e Theno EF 2 VneN: gt "EF




Example specification: hardware clock

Module HourClock

* VARIABLE hr

* HCini2 hr € {1,2,3,4,5,6,7,8,9,10,11,12 }
* HCnxt 2 hr' = hr mod 12 + 1

* HC =& HCini A O[HCnxt];,.-



Definition: Theorem

* A theorem is a temporal formula that holds over every behavior of
the specification
 Example: HC= 0O hr €{1,2,3,4,5,6,7,8,9,10,11,12 }
 Thatis, HC = O HCini



Definition: Invariant

* If S is a specification and [ is a predicate and S = LI is a theorem
then we call I an invariant of S.




Modeling Shared Memory



(naive) attempt: function [Address + Value]

* CONSTANTS Adr,Val

* VARIABLE mem

* Typelnvariant £ mem € [Adr — Val]

* Read(a) £ mem|a]

* Write(a,v) £ mem' = [mem EXCEPT ! |a] = v]



(naive) attempt 1: function [Address = Value]

* CONSTANTS Adr,Val

* VARIABLE mem

* Typelnvariant £ mem € [Adr — Val]

* Read(a) £ mem|a]

* Write(a,v) £ mem' = [mem EXCEPT ! |a] = v]

Ignores how processes interact with memory
Ignores memory coherence properties



A Memory System

Processor

Processor

memlint

An abstract memory interface

IO HZ




MODULE Memorylnterface

VARIABLE memlint
CONSTANTS Send(_, _ = _), A Send(p, d, memiInt, memlInt') step represents processor p
sending value d to the memory.

Reply(_, _ — _), A Reply(p, d, memlInt, memlint') step represents the memory
sending value d to processor p.

InitMemlint, The set of possible initial values of memInt.

Proc, The set of processor identifiers.
Adr, The set of memory addresses.
Val The set of memory values.

ASSUME VY p, d, miOld, miNew : A Send(p,d, miOld, miNew) € BOOLEAN
A Reply(p.d, miOld, miNew) € BOOLEAN




MODULE Memorylnterface

VARIABLE memlint

CONSTANTS Send(_, _ = _), A Send(p, d, memiInt, memlInt') step represents processor p

sending value d to the memory.

Reply(_, _ — _), A Reply(p, d, memlInt, memlint') step represents the memory

InitMemlnt,
Proc,

Adr,

Val

sending value d to processor p.
The set of possible initial values of memliInt.
The set of processor identifiers.
The set of memory addresses.
The set of memory values.

ASSUME VY p, d, miOld, miNew : A Send(p,d, miOld, miNew) € BOOLEAN

A Reply(p, d, miOld, miNew) € BOOLEAN

sJ9laweled




MODULE Memorylnterface

VARIABLE memlint
CONSTANTS Send(_, _ = _), A Send(p, d, memiInt, memlInt') step represents processor p
sending value d to the memory.

Reply(_, _ — _), A Reply(p, d, memlInt, memlint') step represents the memory
sending value d to processor p.

InitMemlint, The set of possible initial values of memInt.

Proc, The set of processor identifiers.
Adr, The set of memory addresses.
Val The set of memory values.

ASSUME VY p, d, miOld, miNew : A Send(p,d, miOld, miNew) € BOOLEAN
A Reply(p, d, miOld, miNew) € BOOLEAN

/
MReq = [op:{“Rd”}, adr:Adr] U [op:{“Wr’}, adr: Adr, val : Val]

The set of all requests; a read specifies an address, a write specifies an address and a value.




A Memory System

Processor

Processor

memlint

Val for reads

" NoVal for writes

<TOZHEZ




MODULE Memorylnterface

VARIABLE memlint

CONSTANTS Send(_, _ = _), A Send(p, d, memiInt, memlInt') step represents processor p

sending value d to the memory.

Reply(_, _ — _), A Reply(p, d, memlInt, memlint') step represents the memory
sending value d to processor p.

InitMemlint, The set of possible initial values of memInt.

Proc, The set of processor identifiers.
Adr, The set of memory addresses.
Val The set of memory values.

ASSUME VY p, d, miOld, miNew : A Send(p,d, miOld, miNew) € BOOLEAN

A Reply(p, d, miOld, miNew) € BOOLEAN

MReq

NoVal

A

lop : {“Rd”}, adr : Adr] U [op:{“Wr”}, adr: Adr, val : Val]

The set of all requests; a read specifies an address, a write specifies an address and a value.

CHOOSE v : v ¢ Val An arbitrary value not in Val.




A Linearizable Memory System



Linearizability [Herlihy & Wing 1990]

Req(Pz Do(p) Rsp(pz

Linearization Step




I MODULE InternalMemory

EXTENDS Memorylnterface
VARIABLES mem, ctl, buf

IInit =  The initial predicate
A mem € [Adr — Val] Initially, memory locations have any values in Val,
A ctl = [p € Proc — “rdy”] each processor is ready to issue requests,
A buf = [p € Proc — NoVal] each buf[p] is arbitrarily initialized to No Val,

A memlint € InitMemliInt and memlint is any element of InitMemlint.
Typelnvariant = The type-correctness invariant.
A mem € [AdT‘ — Val] mem is a function from Adr to Val.

A ctl € [Proc — {“rdy”, “busy”, “done”}|  ctl[p] equals “rdy”, “busy”, or “done”.
A buf € [PT‘OC — MReq U Val U {NO Val}] buf[p] is a request or a response.



Behaviors

req = lop » "Wr”,adr » a,val » v]

ctllp] = Trdy” Req(®) ctllp] = Tbusy” Do(®) ctllp] = Tdone” () ctllp] = Trdy”
bufp] = .. |—|buflp] = req |— | buf[p] = NoVal|—— | buf[p] = NoVal
memla] = memla] = memla] = % memla] = v
req = [op » "Rd”, adr ~ a]
ctllp] = Trdy” . ctllp] = Tbusy” . ctllp] = Tdone” . ctllp] = Trdy”
l bufp] = ] Iﬂz buf[p] = req ] D—(m> l bufp] = 1% ] RL@ l bufp] = % ]
mem|a] = memla] = % memla] = memla] =




N -
Req(p) = Processor p issues a request.
A ctl[p] = “rdy” Enabled iff p is ready to issue a request.
A dreq € MReq :  For some request req:

A Send(p, req, memlInt, memlInt')  Send req on the interface.
A buf' = [buf EXCEPT ![p] = req] Set buf[p] to the request.
A ctl' = [ctl EXCEPT ![p] = “busy”| Set cti[p] to “busy”.

A UNCHANGED mem

"rdy” - ctl[p]

2| bufip)
‘mem/|a]

- ctl[p]

buf|p]
‘mem/|a]

busy Do(p)
req |—

l




Do(p) =

Perform p’s request to memory.

A ctl [p] = “busy” Enabled iff p’s request is pending.

A mem' = 1F buf|p].op = “Wr”
THEN [mem EXCEPT

Hbuf[p|.adr] = buf|p|.val]

ELSE mem Leave mem unchanged on a “Rd” request.

A buf' = [buf EXCEPT

p| = 1F buf[p].op = “Wr”
THEN NoVal

ELSE mem/[buf[p].adr]]

A ctl' = [ctl EXCEPT ![p] = “done”]

A UNCHANGED memlint

- ctl[p]
buf[p]

‘mem|a]

Write to memory on a
“Wr” request.

Set buf[p] to the response:

NoVal for a write;

nbuSyn'
req

Do(p)

- ctl[p]
buf|p]

‘'mem|a]

the memory value for a read.
Set ctl[p] to “done”.

ndanen'
NoVal

Rsp(p)



A
Rsp(p) = Return the response to p’s request.

A ctl [p] = “done” Enabled iff req. is done but resp. not sent.
A Reply(p, buf[p], memInt, memint’') Send the response on the interface.
A ctl' = [ctl EXCEPT ![p] = “rdy”] Set ctl[p] to “rdy”.

A UNCHANGED (mem, buf )

- ctl[p] = "done” Rsp() ctli[p] = rdy”]
buf|p] = NoVal|—— | buf|p] = NoVal
memla] = v memla] = v




| MODULE InternalMemory

EXTENDS Memorylnterface
VARIABLES mem, ctl, buf

IInit = The initial predicate

A mem € [Adr — Val] Initially, memory locations have any values in Val,
A ctl = [p € Proc — “rdy”] each processor is ready to issue requests,

A buf = [p € Proc — NoVal] each buf[p] is arbitrarily initialized to No Val,

A memliInt € InitMemlint and memlint is any element of InitMemlint.

D777/

INext = 3p € Proc : Req(p)V Do(p) V Rsp(p) The next-state action.

A

ISpec = IInit A D[INemt](memInt,mem,ctl,buf) The specification.

THEOREM ISpec = O Typelnvariant
| |




MODULE Memory

EXTENDS Memorylnterface

Inner(mem, ctl, buf) = INSTANCE InternalMemory
A

Spec = A mem, ctl, buf : Inner(mem, ctl, buf)! ISpec

Note, this is a “specification” describing behaviors of linearizable
memory more than an “implementation” (mapping onto physical
hardware). Of course, both can be described by TLA+ formulas.



Implementing a Write-Through Cache

Implements the linearizable memory
interface (on top of another)



Same memory
interface

memlint

cache[p]

T

Processor p |«

gﬂf [p]

ctl[p]

bus

Memory sitting here

-

mem()

wmem




| MODULE Write ThroughCache

EXTENDS Naturals, Sequences, Memorylnterface
VARIABLES wmem, ctl, buf, cache, mem()
CONSTANT ()Len

ASSUME (QLen € Nat) A (QLen > 0)

M = INSTANCE InternalMemory WITH mem < wmem

mem renamed for clarity

Init =  The initial predicate
A M IInit wmem, buf, and ctl are initialized as in the internal memory spec.
A cache = All caches are initially empty (cache[p][a] = NoVal for all p, a).

[p € Proc — [a € Adr +— NoVal]]
A mem() = () The queue memQ@ is initially empty.

New ctl state "waiting” added

. A
Typelnvariant = The type invariant.

A wmem € [Adr — Val]
A ctl € [Proc — {“rdy”, “busy”, “waiting”, “done”}]
A buf € [Proc - MReqU Val U {NoVal}]
A cache € [Proc — [Adr — Val U {NoVal}]]

A mem() € Seq(Proc x MReq) mem@ is a sequence of (proc., request) pairs.




Note

In TLA+
* Sequences and tuples are functions [[1 ... ] =2 values]

* Recall: records are functions [String = values]



| MODULE Write ThroughCache

EXTENDS Naturals, Sequences, Memorylnterface
VARIABLES wmem, ctl, buf, cache, mem()
CONSTANT ()Len

ASSUME (QLen € Nat) A (QLen > 0)

M = INSTANCE InternalMemory WITH mem < wmem

mem renamed for clarity

Init =  The initial predicate
A M IInit wmem, buf, and ctl are initialized as in the internal memory spec.
A cache = All caches are initially empty (cache[p][a] = NoVal for all p, a).

[p € Proc — [a € Adr +— NoVal]]
A mem() = () The queue memQ@ is initially empty.

New ctl state "waiting” added

. A
Typelnvariant = The type invariant.

A wmem € [Adr — Val]
A ctl € [Proc — {“rdy”, “busy”, “waiting”, “done”}]
A buf € [Proc - MReqU Val U {NoVal}]
A cache € [Proc — [Adr — Val U {NoVal}]]

A mem() € Seq(Proc x MReq) mem@ is a sequence of (proc., request) pairs.




Cache Coherence

A
Coherence = Asserts that if two processors’ caches both have copies

\v4 P, q € PT’OC, a € Adr - of an address, then those copies have equal values.
(NoVal ¢ {cache|p]|a], cache[q][a]}) = (cache[p][a] = cache|q][a])



External Interface is the same

Req ( p) = Processor p issues a request.

M'!Req(p) N UNCHANGED (cache, mem())

A
Rsp ( p) = The system issues a response to processor p.

M!Rsp(p) A UNCHANGED (cache, mem())

ctl[p] "rdy”

lbuf [p]

—_ VP27 buf[p]

rdy ] Req(p) Rsp(p) l ctllp]




A
DoWr(p) = Write to p’s cache, update other caches, and enqueue memory update.

LET r = buf[p] Processor p’s request.

IN

A (ctl[p] = “busy”) A (r.op = “Wr”) Enabled if write request pending
A Len(mem(@)) < QQLen and mem( is not full.

A cache’ = Update p’s cache and any other cache that has a copy.

(q € Proc v+ 1F (p = q) V (cachelq][r.adr] # NoVal)
THEN [cache[q] EXCEPT ![r.adr] = r.val]
ELSE cache|q]]

A mem@Q' = Append(mem@Q, (p, 1)) Enqueue write at tail of memQ.
A buf' = [buf EXCEPT ![p] = NoVal] Generate response.

A ctl' = [ctl EXCEPT ![p] = “done”] Set ctl to indicate request is done.
A UNCHANGED (memlint, wmem)



A
Mem@QWr = Perform write at head of mem@ to memory.

LET r = Head (mem@)[2] The request at the head of mem@.
IN A (mem@ # ()) A (r.op = “Wr”) Enabled if Head(mem@Q) a write.

A wmem' = Perform the write to memory.
lwmem EXCEPT ![r.adr| = r.val]
A mem@Q' = Tail(memQ)) Remove the write from memQ@.

A UNCHANGED (memlint, buf, ctl, cache)



: A
RdMiss(p) = Enqueue a request to write value from memory to p’s cache.

A (ctl[p] = “busy”) A (buf[p].op = “Rd”) Enabled on a read request when
A cache|p||buf[p].adr] = NoVal the address is not in p’s cache
A Len(mem()) < (QLen and mem@ is not full.

A mem@Q' = Append(mem@, (p, buf[p])) Append (p,request) to memQ.

A ctl' = [ctl EXCEPT ![p] = “waiting”] Set ctl[p] to “waiting”.

A UNCHANGED (memlInt, wmem, buf, cache)

DoRd(p) = Perform a read by p of a value in its cache.

A ctl[p] € {“busy”, “waiting”} Enabled if a read

A buf|pl.op = “Rd” request is pending and
A cache(pl|lbuf[p].adr| # NoVal address is in cache.

A buf' = [buf EXCEPT ![p| = cache|p][buf[p].adr]] Get result from cache.
A ctl' = [ctl EXCEPT ![p] = “done”] Set ctl[p] to “done”.

A UNCHANGED (memlInt, wmem, cache, mem())



A . o
vmem = The value wmem will have after all the writes in mem() are performed.

LET f[i € 0 .. Len(memQ@)] = The value wmem will have after the first
IF 2 = (0 THEN wmem ¢ writes in mem@ are performed.

ELSE IF mem@|:][2].op = “Rd”
THEN f[i — 1]
ELSE [f[i — 1] EXCEPT ![memQ|i][2].adr]| =
memQ[i][2].val]

IN  f[Len(memQ@)]

A
Mem@Rd = Perform an enqueued read to memory.

LET p = Hea (memQ)[l] The requesting processor.
r = Hea d(mem())[2] The request at the head of memQ.

IN A (memQ # ()) A (r.op = “Rd”) Enabled if Head(mem@) is a read.
A memQ' = Tail(memQ) Remove the head of mem@.

A cache' =  Put value from memory or mem() in p’s cache.

[cache EXCEPT ![p][r.adr] = vmem/|r.adr]]
A UNCHANGED (memliInt, wmem, buf, ctl)



Completing the spec

A

Evict(p, a)
A (ctl[p] = “waiting”) = (buf|p].adr # a) Can’t evict a if it was just read

A cache' = [cache EXCEPT ![p][a] — No Val] into cache from memory.
A UNCHANGED (memlInt, wmem, buf, ctl, memQ)

Remove address a from p’s cache.

Next = V 3p € Proc : V Req(p) V Rsp(p)
V RdMiss(p) V DoRd(p) V DoWr(p)
V da € Adr : Evict(p, a)
V MemQWrV MemQRd

A .
Spec = Init A D[Next](memlnt, wmem, buf, ctl, cache, memQ@Q)



Theorems

THEOREM Spec = OTypelnvariant
THEOREM Spec = OCoherence

More like lemmas

LM = INSTANCE Memory
THEOREM Spec = LM ! Spec




Inductive Invariants

THEOREM Typelnvariant A Next = Typelnvariant’

Typelnvariant is an invariant of the next-state action

Thus, if Typelnvariant holds over initial states, by induction
it holds over all states



Coherence is hot an inductive invariant

* Consider a state in which:

* cache|pl]la] =1

* V(q,b): cache|q]|b] = NoVal

« wmem|a] = 2

* memQ = ((pZ, lop » "Rd”, adr — a]))
* Now take the MemQRd step:

* cache|pl]la] =1

* cache|p2]la] = 2

} Coherence satisfied

} Coherence violated

Need to prove an inductive invariant that implies Coherence
Suggestions?



A proposed stronger invariant

 Recall that function vmem represents current state of memory

* Inductive Invariant:
Vp € Proc,a € Adr: (cache|p]la] = NoVal)V(cache[p]la] = vmem|a])

* Implies Coherence



Proving Spec = LM! Spec

By definition of LM! Spec, we need to prove
THEOREM Spec = I mem, ctl, buf : LM 'Inner(mem, ctl, buf)! ISpec

Which means we have to find “witnesses” for mem, ctl and buf: this is
called a refinement mapping

Any guesses?



Proving Spec = LM! Spec

By definition of LM! Spec, we need to prove
THEOREM Spec = I mem, ctl, buf : LM !Inner(mem, ctl, buf)!ISpec

Which means we have to find “witnesses” for mem, ctl and buf: this is
called a refinement mapping:

omem = vmem
octl = [p € Proc — 1F ctl[p] = “waiting” THEN “busy” ELSE ctl[p]]
obuf = buf



| MODULE InternalMemory

EXTENDS Memorylnterface
VARIABLES mem, ctl, buf

IInit = The initial predicate

A mem € [Adr — Val] Initially, memory locations have any values in Val,
A ctl = [p € Proc — “rdy”] each processor is ready to issue requests,

A buf = [p € Proc — NoVal] each buf[p] is arbitrarily initialized to No Val,

A memliInt € InitMemlint and memlint is any element of InitMemlint.

D777/

INext = 3p € Proc : Req(p)V Do(p) V Rsp(p) The next-state action.

A

ISpec = IInit A D[INemt](memInt,mem,ctl,buf) The specification.

THEOREM ISpec = O Typelnvariant
| |




Proving refinement

* If I is a formula of module InternalMemory (the high-level spec), let

« F = LM!Inner(omem, octl, obuf)
* That is: F with omem, octl, and obuf substituted for mem, ctl, and buf

* Then we need to prove that Spec = [Spec
* Replacing definitions, we need to prove:

Inat A D[cht] (memlint, wmem, buf, ctl, cache, memQ )
= IInit N O[INext]

(memlint, mem, ctl, buf )

* Find an invariant Inv: A Init = IInit
A Inv A Next = V INext
V UNCHANGED (memlint, mem, ctl, buf)

step simulation

Show every step of WriteThroughCache is a step of InternalMemory or a stuttering step of InternalMemory



About memory

* Real memory is not linearizable

* Linearizability is not strong enough for modern processors that submit
multiple requests to memory

* If a processor submits a write and, before completion, a read to the same address,
linearizability would allow the second operation to be ordered before the first

* Linearizability is too strong for concurrent processing

* If p1 submits operation 01 and p2 submits operation 02 and 01 completes before 02, we
do not need to require that ol is ordered before 02 (use locks if you need that)

* Sequential Consistency is more realistic and easier to implement
* Serializability: result of execution same as some total order of operations
* Local ordering: operations of a process ordered in submission order

* See Figure 11.7 in Specifying Systems



Final words

* We use TLA+ to model a system. You get to choose a level of
abstraction. Choose it too high and you won’t reveal problems.
Choose it too low and you get stuck in the weeds.

* Choosing the level of abstraction involves choosing what constitutes
(atomic) steps: grain of atomicity

 Also involves how accurately to model the state (data structures).
Consider where you are trying to reveal problems.



