Lecture 4: Refinement

Based on material from Section 10.8, Specifying Systems by Leslie Lamport

You ask for:

Specification

You ask for:

You get:

Implementation

[^0]
You ask for:

You get:

Implementation
Specification
Is every behavior of the implementation also a behavior of the specification?

You ask for:

You get:

Specification

Is every behavior of the implementation also a behavior of the specification?

External/internal variables of a state

- A specification has certain external variables that can be observed and/or manipulated
- It may also have internal variables that are used to describe behaviors but that cannot be observed
- Example: FIFO
- External variables: in, out
- Internal variable: buffer
channels

Externally visible vs complete behavior

A system may exhibit externally visible behavior

$$
e_{1} \rightarrow e_{2} \rightarrow e_{3} \rightarrow e_{4} \rightarrow \ldots
$$

if there exists a complete behavior

$$
\left(e_{1}, y_{1}\right) \rightarrow\left(e_{2}, y_{2}\right) \rightarrow\left(e_{3}, y_{3}\right) \rightarrow\left(e_{4}, y_{4}\right) \rightarrow
$$

that is allowed by the specification

Here e_{i} is some externally visible state (for example, in and out channels) and y_{i} is internal state (for example, the buffer)

Stuttering Steps

A specification should allow changes to the internal state that does not change the externally visible state.
For example:

$$
\left(e_{1}, y_{1}\right) \rightarrow\left(e_{2}, y_{2}\right) \rightarrow\left(e_{2}, y_{2}^{\prime}\right) \rightarrow\left(e_{3}, y_{3}\right) \rightarrow\left(e_{4}, y_{4}\right) \rightarrow
$$

leads to external behavior

$$
e_{1} \rightarrow e_{2} \rightarrow e_{2} \rightarrow e_{3} \rightarrow e_{4} \rightarrow \ldots
$$

which should be identical to

$$
e_{1} \rightarrow e_{2} \rightarrow e_{3} \rightarrow e_{4} \rightarrow \ldots
$$

Proving that an implementation meets the specification

- First note that an implementation is just a specification
- We call the implementation the "lower-level" specification

We need to prove that if an implementation allows the complete behavior

$$
\left(e_{1}, z_{1}\right) \rightarrow\left(e_{2}, z_{2}\right) \rightarrow\left(e_{3}, z_{3}\right) \rightarrow\left(e_{4}, z_{4}\right) \rightarrow
$$

then there exists a complete behavior

$$
\left(e_{1}, y_{1}\right) \rightarrow\left(e_{2}, y_{2}\right) \rightarrow\left(e_{3}, y_{3}\right) \rightarrow\left(e_{4}, y_{4}\right) \rightarrow
$$

allowed by the specification
A mapping from low-level complete behaviors to high-level complete behaviors is called a "refinement mapping"
Note, there may be multiple possible refinement mappings---you only need to show one

Recall: Module HourClock

module HourClock

```
EXTENDS Naturals
VARIABLE \(h r\)
HCini \(\triangleq h r \in(1 \ldots 12)\)
HCnxt \(\triangleq h r^{\prime}=\) IF \(h r \neq 12\) THEN \(h r+1\) ELSE 1
\(H C \triangleq H C i n i \wedge \square[H C n x t]_{h r}\)
THEOREM \(H C \Rightarrow \square H C i n i\)
```


Implementation

- Suppose we wanted to replace hr by a 4-bit binary value
- We need a way to represent n-bit binary values
- We also need a function of n-bit binary values to numbers

Functions in TLA+

- A function f has a domain, written DOMAIN f
- f assigns to each $x \in \operatorname{DOMAIN} f$ a value $f[x]$
- TLA+ uses array notation (square brackets) rather than parentheses
- $f \equiv g$ iff

$$
\text { DOMAIN } f=\text { DOMAIN } g \wedge \forall x \in \operatorname{DOMAIN} f: f[x]=g[x]
$$

- The range of f is $\{f[x] \mid x \in \operatorname{DOMAIN} f\}$
- $[S \rightarrow T]$ is defined to be the set of functions whose domain is S and whose range is a subset of T

Function values

- $[x \in S \mapsto e]$ is defined to be the function f with domain S such that $\forall x \in S: f[x]=e \quad / / x$ is a free variable in e
- For example
- succ $\triangleq[n \in 1 . .12 \mapsto \mathrm{IF} n=12$ THEN 1 ELSE $n+1]$
- prod $\triangleq[x \in \operatorname{Real}, y \in \operatorname{Real} \mapsto x * y]$
- double $\triangleq[x \in \operatorname{Real} \mapsto \operatorname{prod}[x][2]]$
- Similar to lambda expressions

Cool: Records are functions

[val $\mapsto 42, r d y \mapsto 1, a c k \mapsto 0]$ is equivalent to
$[x \in\{" v a l ", "$ rdy", "ack" $\} \mapsto$
IF $x=$ "val" THEN 42
ELSE IF $x=$ "rdy" THEN 1
ELSE 0 // must be "ack" due to DOMAIN
]

Choose Operator

CHOOSE x : F
expression that evaluates to some (possibly unspecific) value x that satisfies F
$/ / x$ is a free variable in F

CHOOSE $x \in S: F \triangleq$ CHOOSE $x: x \in S \wedge F$

Undefined if no such x exists

Example: $\quad \max (S) \triangleq$ CHOOSE $x \in S: \forall y \in S: x \geq y$
the maximum element of $S \quad / /$ undefined if S is empty

Choose Operator, cont'd

CHOOSE x : F always evaluates to the same value. That is,

$$
F \equiv G \Rightarrow(\text { CHOOSE } x: F)=(\text { CHOOSE } x: G)
$$

Also

$$
(v=\text { CHOOSE } x: F) \wedge(w=\text { CHOOSE } x: F) \Rightarrow v=w
$$

However, the value of v is unspecified

Q1: what behaviors are allowed by

$$
(x=\text { CHOOSE } n: n \in N a t) \wedge \square\left[x^{\prime}=\text { CHOOSE } n: n \in N a t\right]_{x} \text { ? }
$$

Choose Operator, cont'd

CHOOSE x : F always evaluates to the same value. That is,

$$
F \equiv G \Rightarrow(\text { CHOOSE } x: F)=(\text { CHOOSE } x: G)
$$

Also

$$
(v=\text { CHOOSE } x: F) \wedge(w=\text { CHOOSE } x: F) \Rightarrow v=w
$$

However, the value of v is unspecified

Q1: what behaviors are allowed by

$$
(x=\text { CHOOSE } n: n \in N a t) \wedge \square\left[x^{\prime}=\text { CHOOSE } n: n \in N a t\right]_{x} \text { ? }
$$

Answer: x is always the same (but unspecified) natural number

Choose Operator, cont'd

CHOOSE x : F always evaluates to the same value. That is,

$$
F \equiv G \Rightarrow(\text { CHOOSE } x: F)=(\text { CHOOSE } x: G)
$$

Also

$$
(v=\text { CHOOSE } x: F) \wedge(w=\text { CHOOSE } x: F) \Rightarrow v=w
$$

However, the value of v is unspecified

Q1: what behaviors are allowed by

$$
(x=\text { CHOOSE } n: n \in N a t) \wedge \square\left[x^{\prime}=\text { CHOOSE } n: n \in N a t\right]_{x} \text { ? }
$$

Answer: x is always the same (but unspecified) natural number
Q2: what behaviors are allowed by

$$
(x \in N a t) \wedge \square\left[x^{\prime} \in N a t\right]_{x} ?
$$

Choose Operator, cont'd

CHOOSE x : F always evaluates to the same value. That is,

$$
F \equiv G \Rightarrow(\text { CHOOSE } x: F)=(\text { CHOOSE } x: G)
$$

Also

$$
(v=\text { CHOOSE } x: F) \wedge(w=\text { CHOOSE } x: F) \Rightarrow v=w
$$

However, the value of v is unspecified

Q1: what behaviors are allowed by

$$
(x=\text { CHOOSE } n: n \in N a t) \wedge \square\left[x^{\prime}=\text { CHOOSE } n: n \in N a t\right]_{x} \text { ? }
$$

Answer: x is always the same (but unspecified) natural number
Q2: what behaviors are allowed by
$(x \in N a t) \wedge \square\left[x^{\prime} \in N a t\right]_{x}$?
Answer: x can be a different natural number in every state

Recursive functions

- fact $\triangleq[n \in N a t \mapsto \operatorname{IF} n=0$ THEN 1 ELSE $n *$ fact $[n-1]]$
is illegal because fact is not defined in the expression on the right Instead:
- fact $\triangleq \operatorname{CHOOSE} f:[n \in$ Nat $\mapsto \operatorname{IF} n=0$ THEN 1 ELSE $n * f[n-1]]$

Shorthand:

- $\operatorname{fact}[n \in N a t] \triangleq \operatorname{IF} x=0$ THEN 1 ELSE $n *$ fact $[n-1]$

Aside: Scoping Definitions in TLA+

LET

$$
\begin{aligned}
& d_{1} \triangleq e_{1} \\
& d_{2} \triangleq e_{2}
\end{aligned}
$$

IN

- Split complicated formulas into smaller chunks
- Leverage common subexpressions

Representing an n-bit value

- We can represent an n-bit value by a function

$$
b \triangleq[x \in 0 . .(n-1) \mapsto 0 . .1]
$$

- For example, if b represents 0101 (i.e., 5) then
- $b[0]=1$
- $b[1]=0$
- $b[2]=1$
- $b[3]=0$
and b corresponds to the number

$$
b[0] * 2^{0}+b[1] * 2^{1}+b[2] * 2^{2}+b[3] * 2^{3}
$$

Finally: function of n-bit value b to number

BitArrayVal $(b) \triangleq$
LET

$$
\begin{aligned}
& n \triangleq \text { CHOOSE } m \in N a t: \text { DOMAIN } b=0 . .(m-1) \\
& f[x \in 0 . .(n-1)] \triangleq \\
& \quad \text { IF } x=0 \text { THEN } b[0] \text { ELSE } b[x] * 2^{x}+f[x-1]
\end{aligned}
$$

IN

$$
f[n-1]
$$

BinaryHourClock: (broken) attempt 1

EXTENDS Naturals

VARIABLE bits

BitArrayVal(b) \triangleq
LET

$$
\begin{aligned}
& n \triangleq \text { ChOOSE } m \in \text { Nat }: \text { DOMAIN } b=0 \ldots(m-1) \\
& f[x \in 0 \ldots(n-1)] \triangleq \text { IF } x=0 \text { THEN } b[0] \text { ELSE } b[x] * 2^{x}+f[x-1]
\end{aligned}
$$

$$
\text { IN } \quad f[n-1]
$$

$B \triangleq$ instance HourClock with $h r \leftarrow$ BitArrayVal(bits)_BitArrayVal(bits) for hr

Spec $\triangleq B!H C$

What's the (subtle) issue?

- BitArrayVal (b) is undefined unless b is a function b with domain 0..n-1 for some n
- BitArrayVal("Fred") is undefined
- Perhaps BitArrayVal("Fred") = 7. If so, "Fred" would be an allowed initial value of bits. Probably not what we intended to specify
Fix:

$$
\begin{aligned}
& \text { HourVal }(b) \triangleq \mathrm{IF} b \in[(0 \ldots 3) \rightarrow(0 \ldots 1)] \text { THEN } \operatorname{BitArray} \operatorname{Val}(b) \text { ELSE } 13 \\
& B \triangleq \text { InSTANCE HourClock } \text { with } h r \leftarrow \text { HourVal }(\text { bits }) \\
& \text { Spec } \triangleq B!H C
\end{aligned}
$$

Because $H C$ is never satisfied by a state in which $h r=13$, bits has to be in [0.. $3 \rightarrow 0 . .1$]

A little more elegant solution

```
EXTENDS Naturals
vARIABLE bits
BitArrayVal(b)\triangleq
    LET
        n\triangleq ChOOSE m\inNat: DOMAIN b=0.. (m-1)
        f[x\in0..(n-1)]\triangleq IF x = 0 THEN b[0] ELSE b[x]* 2 }\mp@subsup{2}{}{x}+f[x-1
    IN f[n-1]
ErrorVal \triangleq CHOOSE v:v\not\in1..12
HourVal(b)\triangleq IF b [ [(0..3)->(0.. 1)] THEN BitArrayVal(b) ELSE ErrorVal
B\triangleq Instance HourClock with hr}\leftarrowHourVal(bits
Spec \triangleqB!HC
```


A better way of doing it (instead of substitution)

```
EXTENDS Naturals
variABLE bits
H(hr)\triangleq InsTANCE HourClock
BitArrayVal(b) \triangleq
    LET
            n\triangleq CHOOSE m}\in\mathrm{ Nat: DOMAIN b=0.. (m-1)
            f[x\in0..(n-1)]\triangleq IF x=0 THEN b[0] ELSE b[x]*2x+f[x-1]
        IN f[n-1]
ErrorVal \triangleq CHOOSE v:v\not\in1..12
HourVal(b)\triangleq IF b [ [(0..3)->(0.. 1)] THEN BitArrayVal(b) ElSE ErrorVal
B\triangleq Instance HourClock wITH hr \leftarrowHourVal(bits)
IR(h)\triangleq ロ(h=HourVal(bits))

\section*{Discussion}
- Here we composed two specifications:
- An HourClock with values from the set \(1 . .12\)
- A BinaryHourClock with values from the set \([(0 . .3) \rightarrow(0 . .1)]\)
- Composition is a conjunction of specifications
- A behavior of the composition is a behavior of each of the components
- IR(hr) asserts that bits is always the 4-bit value representing \(h r\)
- \(I R(h r) \wedge H(h r)!H C\) asserts that \(h r\) and bits keep the same time

More precisely:
- IR(hr) defines \(h r\) as a function of bits, but does not constrain bits
- IR \((h r) \wedge H(h r)!H C\) constrains behaviors involving bits by requiring that they have to map to behaviors involving \(h r\)

\section*{Interface Refinement}
- BinaryHourClock is an implementation of HourClock
- One has to exhibit a mapping from the "low-level" implementation to the "high-level" specification
- Map the low-level state to the high-level state: \(h r=\operatorname{HourVal}\) (bits)
- Map each low-level step to a high-level step or to a high-level stuttering step
- In the case of the BinaryHourClock, the low-level and high-level steps are the same
- If so, that is a special case of interface refinement called "Data Refinement"
- (leaving out liveness for now)
- Each behavior of the implementation is also a behavior of the specification

\section*{We already saw an example of data refinement}

\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Extends Naturals \\
constant Data \\
VARIABLE chan \\
TypeInvariant \(\triangleq\) chan \(\in[\) val \(:\) Data, rdy: \(\{0,1\}\), ack \(:\{0,1\}]\)
\end{tabular} \\
\hline \[
\begin{aligned}
\text { Init } \triangleq & \wedge \text { TypeInvariant } \\
& \wedge \text { chan.ack }=\text { chan } . \text { rdy }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\operatorname{Send}(d) \triangleq & \wedge \text { chan.rdy }=\text { chan.ack } \\
& \wedge \text { chan }=[\text { chan EXCEPT }!. v a l=d,!. r d y=1-@]
\end{aligned}
\] \\
\hline \[
\begin{aligned}
\text { Rcv } \quad \triangleq & \wedge \text { chan.rdy } \neq \text { chan.ack } \\
& \wedge \text { chan } n^{\prime}=[\text { chan } \text { EXCEPT }!. a c k=1-@]
\end{aligned}
\] \\
\hline Next \(\triangleq(\exists d \in \operatorname{Data}: \operatorname{Send}(\mathrm{d})) \vee \mathrm{Rcv}\) \\
\hline Spec \(\triangleq\) Init \(\wedge \square[N e x t]_{\text {chan }}\) \\
\hline THEOREM Spec \(\Rightarrow \square\) TypeInvariant \\
\hline
\end{tabular}

\section*{Interface Refinement with multiple steps}
- Suppose we wanted a channel that sends values from \(1 . .12\)
- And implement it over a channel that sends individual bits
\(\qquad\)
High-level channel:
instance Channel with Data \(\leftarrow 1 . .12\)

Low-level channel:
instance Channel with Data \(<0 . .1\)

Represent each high-level value by sequence of four low-level bits

\section*{Channel Refinement}
\[
\begin{aligned}
& H \triangleq \text { INSTANCE Channel WITH chan } \leftarrow h, \text { Data } \leftarrow 1 \ldots 12 \\
& L \triangleq \text { INSTANCE Channel WITH chan } \leftarrow l, \text { Data } \leftarrow\{0,1\}
\end{aligned}
\]

Sending 5 (= 0101):
\[
\begin{gathered}
s_{0} \stackrel{L!\operatorname{Send}(0)}{\longrightarrow} s_{1} \xrightarrow{L!R c v} s_{2} \xrightarrow{L!\operatorname{Send}(1)} s_{3} \xrightarrow{L!R c v} s_{4} \xrightarrow{L!\operatorname{Send}(0)} \\
\\
s_{5} \xrightarrow{L!R c v} s_{6} \xrightarrow{L!\operatorname{Send}(1)} s_{7} \xrightarrow{L!R c v} s_{8} \longrightarrow
\end{gathered}
\]

\section*{Channel Refinement}
\[
\begin{aligned}
& H \triangleq \text { INSTANCE Channel WITH chan } \leftarrow h, \text { Data } \leftarrow 1 \ldots 12 \\
& L \triangleq \text { INSTANCE Channel WITH chan } \leftarrow l, \text { Data } \leftarrow\{0,1\}
\end{aligned}
\]

Sending 5 (= 0101):


\section*{Interface Refinement}

Recall definition of \(I R\) for BinaryHourClock a few slides ago:
- IR will specify \(h\) as a function of \(l\), but does not constrain \(l\)

Then, if HSpec is a high-level spec of the system, we can write the lowlevel spec as
\[
\exists h: I R \wedge H S p e c
\]

Extends Naturals, Sequences
VARIABLES \(h, l\)
ErrorVal \(\triangleq\) CHOOSE \(v: v \notin[v a l: 1 \ldots 12, r d y:\{0,1\}\), ack \(:\{0,1\}]\)
BitSeqToNat \([s \in \operatorname{Seq}(\{0,1\})] \triangleq \operatorname{BitSeqToNat}\left[\left\langle b_{0}, b_{1}, b_{2}, b_{3}\right\rangle\right]=b_{0}+2 *\left(b_{1}+2 *\left(b_{2}+2 * b_{3}\right)\right)\)
IF \(s=\langle \rangle\) THEN 0 ELSE \(\operatorname{Head}(s)+2 * \operatorname{BitSeqToNat[Tail(s)]}\)
\(H \triangleq\) INSTANCE Channel WITH chan \(\leftarrow h\), Data \(\leftarrow 1 \ldots 12\)
\(L \triangleq\) instance Channel with chan \(\leftarrow l\), Data \(\leftarrow\{0,1\}\)
\(H\) is a channel for sending numbers in \(1 \ldots 12 ; L\) is a channel for sending bits.

\section*{MODULE Inner}

VARIABLE bitsSent The sequence of the bits sent so far for the current number.
\[
\begin{aligned}
\text { Init } \triangleq & \wedge \text { bitsSent }=\langle \rangle \\
& \wedge \text { IF } L!\text { Init THEN } H!\text { Init } \quad \text { ELSE } h=\text { ErrorVal }
\end{aligned} \quad \text { Defines the initial value of } h \text { as a function of } l .
\]
\[
\text { SendBit } \triangleq \exists b \in\{0,1\}: \quad \text { Sending one of the first three bits }
\]
\[
\wedge L!\operatorname{Send}(b)
\]
\[
\wedge \text { IF } \operatorname{Len}(\text { bitsSent })<3
\]
\[
\text { THEN } \wedge \text { bitsSent }^{\prime}=\langle b\rangle \circ \text { bitsSent }
\]
\[
\wedge \text { UNCHANGED } h
\]
\(\begin{aligned} & \text { RcvBit } \triangleq \wedge \text { L!Rcv } \\ & \wedge \text { IF bitsSent }=\langle \rangle \text { THEN } H!R c v \\ & \text { ELSE UNCHANGED } h\end{aligned}\)
\(\wedge\) UNCHANGED bitsSent

A Rcv action on \(l\) causes a \(R c v\) action on \(h\) iff it follows the sending of the fourth bit.
\[
\begin{aligned}
\text { Error } \triangleq & \wedge l^{\prime} \neq l \\
& \wedge \neg((\exists b \in\{0,1\}: L!\operatorname{Send}(b)) \vee L!R c v) \\
& \wedge h^{\prime}=\text { ErrorVal }
\end{aligned}
\]

Next \(\triangleq\) SendBit \(\vee\) RcvBit \(\vee\) Error
InnerIR \(\triangleq\) Init \(\wedge \square[N e x t]_{\langle l, h, \text { bitsSent }\rangle}\)
An illegal action on \(l\) sets \(h\) to ErrorVal. on \(l\) prepends it to the front of bitsSent and leaves \(h\) unchanged; sending the fourth bit resets bitsSent and sends the complete number on \(h\).
\[
\begin{aligned}
\mathrm{ELSE} & \wedge \text { bitsSent }^{\prime}=\langle \rangle \\
& \wedge H!\text { Send }(\text { BitSeqToNat }[\langle b\rangle \circ \text { bitsSent }])
\end{aligned}
\]
Note: standard TLA+ spec
```

VARIABLE bitsSent The sequence of the bits sent so far for the current number.
InnerIR }\triangleq Init \wedge \square[Next [<l,h,\mathrm{ bitsSent }
on previous page

```
\(I(\) bitsSent \() \triangleq\) instance Inner
\(I R \triangleq \exists\) bitsSent \(: I(\) bitsSent \()!\) InnerIR
                                MODULE LowerSpec

VARIABLE lchan

\section*{CONSTANT Data}

HS (hchan \() \triangleq\) INSTANCE Channel WITH chan \(\leftarrow\) hchan, Data \(\leftarrow 1 \ldots 12\)
\(C R(h) \triangleq\) INSTANCE ChannelRefinement WITH \(l \leftarrow l\) chan
LSpec \(\triangleq \exists h: C R(h)!I R \wedge H S(h)!H S p e c \quad\) constrains lchan

Other examples of refinement
```

Class Queue
class {:autocontracts} Queue {
ghost var Contents: seq<int>;
var a: array<int>;
var hd: int, tl: int;
predicate Valid() { // class invariant
a.Length > 0 \&\& 0<= tl <= hd <= a.Length \&\& Contents == a[tl..hd]
}
constructor () ensures Contents == []
{
a, tl, hd, Contents := new int[10], 0, 0, [];
}
}

```

\section*{Class Queue: continued}
```

method Enqueue(d: int) ensures Contents == old(Contents) + [d] {
if hd == a.Length {
var b := a;
if tl == 0 {b:= new int[2 * a.Length];} // a is full
forall (i| 0 <= i < hd - tl) {b[i]:= a[tl + i];} // shift
a, tl, hd := b, 0, hd - tl;
}
a[hd], hd, Contents := d, hd + 1, Contents + [d];
}
method Dequeue() returns (d: int)
requires Contents != []
ensures d == old(Contents)[0] \&\& Contents == old(Contents)[1..];
{
d, tl, Contents := a[tl], tl + 1, Contents[1..];
}

```

Chain Replication for Supporting High Throughput and Availability
\[
\begin{array}{cc}
\text { Robbert van Renesse } & \text { Fred B. Schneider } \\
\text { rvracs.cormell.edu } & \text { fbsacs.cornell.edu }
\end{array}
\]

> FAST Search \& Transfer ASA
> Tromsø, Norway
> and
> Department of Computer Science
> Cornell University
> Ithaca, New York 14853

\section*{Abstract}

Chain replication is a new approach to coordinating clusters of fail-stop storage servers. The approach is intended for supporting large-scale storage services that exhibit high throughput and availability without sacrining strong consistency guarantees. Besides outlining the chain replication protocols themselves, simulation experiments explore the performance characteristics of a prototype implementa-
tion. Throughput, availability, and several objectplacement strategies (including schemes based on distributed hash table routing) are discussed.

\section*{1 Introduction}

A storage system typically implements operations so that clients can store, retrieve, and/or change data. File systems and database systems are perhaps the best known examples. With a file system operations (read and write) access a single file and are idempotent; with a database system, operations are serializable.
This paper is concerned with storage systems that sit somewhere between file systems and database systems. In particular, we are concerned with storage systems, henceforth called storage services, that
- store objects (of an unspecified nature),
- support query operations to return a value derived from a single object, and
support update operations to atomically change
the state of a single object according to some
pre-programmed, possibly non-deterministic, computation involving the prior state of that object.

A file system write is thus a special case of our stor age service update which, in turn, is a special cas o a database transaction
Increasingly, we see on-line vendors (like Ama zon.com), search engines (like Google's an services provide value by connecting large-scale stor age systems to networks. A storage service is the appropriate compromise for such applications, when a database system would be too expensive and a file ystem lacks rich enough semantics.
One challenge when building a largescale storage service is maintaining high availability and
high throughput despite failures and concomitant changes to the storage service's configuration, as faulty components are detected and replaced.
Consistency guarantees also can be crucial. But even when they are not, the construction of an appli cation that fronts a storage service is often simplified given strong consistency guarantees, which as
sert that (i) operations to query and update indisert that (i) operations to query and update indi-
vidual objects are executed in some sequential order and (ii) the effects of update operations are necessa diy reflected in results returned by subsequent query operations.
Strong consistency guarantees are often though to be in tension with achieving high throughpat and high availability. So system designers, reluctant to sacrifice system throughput or availability, regutees. The Google File System (GFS) illustrates this thinking [11]. In fact, strong consistency guarantees

\section*{State is:}

Hist \(_{\text {objID }}\) : update request sequence
Pending \({ }_{o b j I D}\) : request set

\section*{Transitions are:}

T1: Client request \(r\) arrives:
Pending \(_{o b j I D}:=\) Pending \(_{o b j I D} \cup\{r\}\)
T2: Client request \(r \in\) Pending \(_{\text {objID }}\) ignored:
Pending \(_{o b j I D}:=\) Pending \(_{o b j I D}-\{r\}\)
T3: Client request \(r \in\) Pending \(_{o b j I D}\) processed:
Pending \(_{\text {objID }}:=\) Pending \(_{\text {objID }}-\{r\}\)
if \(r=\) query \((o b j I d, o p t s)\) then
reply according options opts based on Hist \({ }_{o b j I D}\)
else if \(r=\) update \((o b j I d\), newVal, opts \()\) then
\(H i s t_{o b j I D}:=\) Hist \(_{\text {objID }} \cdot r\)
reply according options opts based on Hist \(_{\text {objID }}\)

Figure 1: Client's View of an Object.

\subsection*{3.1 Protocol Details}

Clients do not directly read or write variables Hist \(_{\text {objID }}\) and Pending \({ }_{\text {objID }}\) of Figure 1, so we are free to implement them in any way that is convenient. When chain replication is used to implement the specification of Figure 1:
- Hist \({ }_{\text {objID }}\) is defined to be Hist \(_{o b j I D}^{T}\), the value of Hist \({ }_{\text {objID }}\) stored by tail \(T\) of the chain, and
- Pending \({ }_{o b j I D}\) is defined to be the set of client requests received by any server in the chain and not yet processed by the tail.

The chain replication protocols for query processing and update processing are then shown to satisfy the specification of Figure 1 by demonstrating how each state transition made by any server in the chain is equivalent either to a no-op or to allowed transitions T 1 , T 2 , or T 3 .

\section*{State is:}

Hist \(_{\text {objID }}\) : update request sequence
Pending objID : request set

\section*{Transitions are:}

T1: Client request \(r\) arrives:
Pending objID \(:=\) Pending \(_{o b j I D} \cup\{r\}\)
T2: Client request \(r \in\) Pending \(_{\text {objID }}\) ignored:
Pending \(_{\text {objID }}:=\) Pending \(_{\text {objID }}-\{r\}\)
T3: Client request \(r \in\) Pending \(_{\text {objID }}\) processed:
Pending \(_{\text {objID }}:=\) Pending \(_{\text {objID }}-\{r\}\)
if \(r=\) query \((o b j I d, o p t s)\) then
reply according options opts based on Hist \(_{\text {objID }}\)
else if \(r=\) update (objId, newVal, opts) then
Hist \(_{\text {objID }}:=H i s t^{\text {objID }} \cdot r\)
reply according options opts based on Hist \({ }_{\text {objID }}\)

Figure 1: Client's View of an Object.

It's not always possible to get a refinement \(*\)

\section*{Binary Consensus, Specification}


\section*{Paxos}
- Value is chosen if a quorum of proposers have all accepted the value on the same ballot
- This suggest an easy mapping of the Paxos state to the consensus state

\section*{Problem 1: lack of history}
- Unfortunately, Paxos acceptors only remember the latest value they accepted
- So while there may exists a majority that have all accepted the value at time \(t\), that majority may no longer exist at time \(t+1\)
- Even though it is guaranteed that no other value will ever be chosen

\section*{Fix 1: add history variables}
- We can add a "ghost variable" to each acceptor that remembers all (value, ballot) pairs it has ever accepted
- "ghost" means that it does not actually have to be realized
- With this "history variable", we can exhibit a state mapping

\section*{Problem 2: outrunning the specification}
- A refinement mapping maps each step of the low-level specification to either one step of the high-level specification or a stuttering step of the high-level specification
- In Paxos, when \(\mathrm{f}=1\) and \(\mathrm{n}=3\), the following scenario is possible:
- Leader proposes a (value, ballot)
- Some acceptor accepts (value, ballot)
- In that one step:
- The value is chosen
- The acceptor learns that the value is chosen (decided)
- However, our high-level consensus spec requires two steps:
- From undecided to chosen and from chosen to learned

\section*{Fix 2: two possibilities}
- Change the high-level spec to include a "choose + learn" step
- i.e., speed up the high-level spec
- complicates the high-level specification
- changing the specification may not be allowed
- Add a ghost "prophecy variable" to the low-level specification
- slow down the low-level spec
- artificially insert a step between accepting and learning by changing the prophecy variable
- does not change either the implementation or the high-level spec

\section*{Completeness}
- If S1 implements S2 then, possibly by adding history and prophecy variables, there exists a refinement mapping from S2 to S1 (under certain reasonable assumptions)

See Martin Abadi and Leslie Lamport, "The Existence of Refinement Mappings"```


[^0]:    Specification

