
Lecture 4: Refinement
Based on material from Section 10.8, Specifying Systems by Leslie Lamport

You ask for:

Specification

You ask for: You get:

Specification
Implementation

You ask for: You get:

Specification
Implementation

Is every behavior of the implementation also a behavior of the specification?

You ask for: You get:

Specification
Implementation

Is every behavior of the implementation also a behavior of the specification?

Refinement
Mapping

External/internal variables of a state

• A specification has certain external variables that can be observed
and/or manipulated
• It may also have internal variables that are used to describe behaviors

but that cannot be observed
• Example: FIFO
• External variables: in, out
• Internal variable: buffer

buffer
in out

channels

Externally visible vs complete behavior

A system may exhibit externally visible behavior
!" → !$ → !% → !& → …

if there exists a complete behavior
!", (" → !$, ($ → !%, (% → !&, (& →

that is allowed by the specification

Here !) is some externally visible state (for example, in and out
channels) and () is internal state (for example, the buffer)

Stuttering Steps

A specification should allow changes to the internal state that does not
change the externally visible state.
For example:

!", $" → !&, $& → !&, $&' → !(, $(→ !), $) →
leads to external behavior

!" → !& → !& → !(→ !) → …
which should be identical to

!" → !& → !(→ !) → …

Proving that an implementation meets the specification
• First note that an implementation is just a specification
• We call the implementation the “lower-level” specification

We need to prove that if an implementation allows the complete behavior
!", $" → !&, $& → !', $' → !(, $(→

then there exists a complete behavior
!",)" → !&,)& → !',)' → !(,)(→

allowed by the specification

A mapping from low-level complete behaviors to high-level complete
behaviors is called a “refinement mapping”
Note, there may be multiple possible refinement mappings---you only need to
show one

Recall: Module HourClock

Implementation

• Suppose we wanted to replace hr by a 4-bit binary value
• We need a way to represent n-bit binary values
• We also need a function of n-bit binary values to numbers

Functions in TLA+

• A function f has a domain, written DOMAIN f
• f assigns to each ! ∈ DOMAIN f a value) !
• TLA+ uses array notation (square brackets) rather than parentheses

• f ≡ + iff
DOMAIN) = DOMAIN + ∧ ∀! ∈ DOMAIN):) ! = + !

• The range of f is) ! ! ∈ DOMAIN) }
• 0 → 2 is de7ined to be the set of functions whose domain is 0 and

whose range is a subset of 2

Function values

• ! ∈ # ↦ % is defined to be the function & with domain # such that
∀! ∈ #: & ! = % // ! is a free variable in %

• For example
• *+,, ≜ . ∈ 1. . 12 ↦ IF . = 12 THEN 1 ELSE . + 1
• ;<=> ≜ ! ∈ ?%@A, C ∈ ?%@A ↦ ! ∗ C
• >=+EA% ≜ ! ∈ ?%@A ↦ ;<=>[!][2]

• Similar to lambda expressions

Cool: Records are functions

["#$ ⟼ 42,)*+ ⟼ 1, #-. ⟼ 0] is equivalent to
[1 ∈ ”val”, “rdy”, “ack” ⟼

IF 1 = “val” THEN 42

ELSE IF 1 = ”rdy” THEN 1

ELSE 0 //	must	be	“ack”	due	to	DOMAIN
]

Choose Operator
CHOOSE !: #

expression that evaluates to some (possibly unspecific) value !
that satisfies # // ! is a free variable in #

CHOOSE ! ∈ %: # ≜ CHOOSE !: ! ∈ % ∧ #

Undefined if no such ! exists

Example: ()!(%) ≜ CHOOSE ! ∈ %: ∀- ∈ %: ! ≥ -
the maximum element of % // undefined if % is empty

Choose Operator, cont’d
CHOOSE !: # always evaluates to the same value. That is,

≡ % ⇒ (CHOOSE !: #) = (CHOOSE !: %)
Also

((= CHOOSE !: #) ∧ (* = CHOOSE !: #) ⇒ (= *
However, the value of (is unspecified

Q1: what behaviors are allowed by
(! = CHOOSE +: + ∈ -./) ∧☐[!′ = CHOOSE +: + ∈ -./]2 ?

Choose Operator, cont’d
CHOOSE !: # always evaluates to the same value. That is,

≡ % ⇒ (CHOOSE !: #) = (CHOOSE !: %)
Also

((= CHOOSE !: #) ∧ (* = CHOOSE !: #) ⇒ (= *
However, the value of (is unspecified

Q1: what behaviors are allowed by
(! = CHOOSE +: + ∈ -./) ∧☐[!′ = CHOOSE +: + ∈ -./]2 ?

Answer: ! is always the same (but unspecified) natural number

Choose Operator, cont’d
CHOOSE !: # always evaluates to the same value. That is,

≡ % ⇒ (CHOOSE !: #) = (CHOOSE !: %)
Also

((= CHOOSE !: #) ∧ (* = CHOOSE !: #) ⇒ (= *
However, the value of (is unspecified

Q1: what behaviors are allowed by
(! = CHOOSE +: + ∈ -./) ∧☐[!′ = CHOOSE +: + ∈ -./]2 ?
Answer: ! is always the same (but unspecified) natural number

Q2: what behaviors are allowed by
(! ∈ -./) ∧☐[!′ ∈ -./]2 ?

Choose Operator, cont’d
CHOOSE !: # always evaluates to the same value. That is,

≡ % ⇒ (CHOOSE !: #) = (CHOOSE !: %)
Also

((= CHOOSE !: #) ∧ (* = CHOOSE !: #) ⇒ (= *
However, the value of (is unspecified

Q1: what behaviors are allowed by
(! = CHOOSE +: + ∈ -./) ∧☐[!′ = CHOOSE +: + ∈ -./]2 ?
Answer: ! is always the same (but unspecified) natural number

Q2: what behaviors are allowed by
(! ∈ -./) ∧☐[!′ ∈ -./]2 ?
Answer: ! can be a different natural number in every state

Recursive functions

• !"#$ ≜ & ∈ ("$ ↦ IF & = 0 THEN 1 ELSE & ∗ !"#$[& − 1]
is illegal because !"#$ is not defined in the expression on the right

Instead:
• !"#$ ≜ 9:;;<= !: & ∈ ("$ ↦ IF & = 0 THEN 1 ELSE & ∗ ![& − 1]

Shorthand:
• !"#$ & ∈ ("$ ≜ IF ? = 0 THEN 1 ELSE & ∗ !"#$[& − 1]

Aside: Scoping Definitions in TLA+

LET
!" ≜ $"
!% ≜ $%
…

IN
…

• Split complicated formulas into smaller chunks
• Leverage common subexpressions

Representing an n-bit value

• We can represent an n-bit value by a function
! ≜ # ∈ 0. . ((− 1) ↦ 0. . 1

• For example, if ! represents 0101 (i.e., 5) then
• ![0] = 1
• ![1] = 0
• ![2] = 1
• ![3] = 0

and ! corresponds to the number
![0] ∗ 21 + ![1] ∗ 23 + ![2] ∗ 24 + ![3] ∗ 26

Finally: function of n-bit value b to number

!"#$%%&'(&)(+) ≜

LET
. ≜ CHOOSE m ∈ 0&#: DOMAIN + = 0. . (; − 1)

>[@ ∈ 0. . (. − 1)] ≜

IF @ = 0 THEN +[0] ELSE +[@] ∗ 2J + > @ − 1

IN
>[. − 1]

BinaryHourClock: (broken) attempt 1

Substitute
BitArrayVal(bits) for hr

What’s the (subtle) issue?
• !"#$%%&'(&)(+) is undefined unless b is a function + with domain

0..- − 1 for some -
• !"#$%%&'(&)(“Fred”) is undefined
• Perhaps !"#$%%&'(&)(“Fred”) = 7. If so, “Fred” would be an allowed

initial value of +"#5. Probably not what we intended to specify
Fix:

Any value
but 1..12

Because HC is never satisfied by a state in which hr = 13, bits has to be in [0..3 à 0..1]

A little more elegant solution

A better way of doing it (instead of substitution)

bits and hr keep the same time
(IR stands for Interface Refinement)

Hide hr

Discussion

• Here we composed two specifications:
• An HourClock with values from the set 1..12
• A BinaryHourClock with values from the set [(0..3) à (0..1)]

• Composition is a conjunction of specifications
• A behavior of the composition is a behavior of each of the components

• !"(ℎ%) asserts that '()* is always the 4-bit value representing ℎ%
• !"(ℎ%) ∧ ,(ℎ%)! ,. asserts that ℎ% and '()* keep the same time

More precisely:
• !"(ℎ%) defines ℎ% as a function of '()*, but does not constrain '()*
• !"(ℎ%) ∧ ,(ℎ%)! ,. constrains behaviors involving '()* by requiring that they

have to map to behaviors involving ℎ%

Interface Refinement

• BinaryHourClock is an implementation of HourClock
• One has to exhibit a mapping from the ”low-level” implementation to

the “high-level” specification
• Map the low-level state to the high-level state: ℎ" = $%&"'()(+,-.)
• Map each low-level step to a high-level step or to a high-level stuttering step

• In the case of the BinaryHourClock, the low-level and high-level steps are the same
• If so, that is a special case of interface refinement called “Data Refinement”

• (leaving out liveness for now)
• Each behavior of the implementation is also a behavior of the

specification

We already saw an example of data refinement

Interface Refinement with multiple steps
• Suppose we wanted a channel that sends values from 1..12

• And implement it over a channel that sends individual bits

High-level channel:

INSTANCE Channel WITH Data ß 1..12

Low-level channel:

INSTANCE Channel WITH Data ß 0..1

Represent each high-level value by
sequence of four low-level bits

Channel Refinement

Sending 5 (= 0101):

Channel Refinement

Sending 5 (= 0101):

Corresponds to
!! #$%&(5)

Corresponds to
!!*+,

Interface Refinement

Recall	definition	of	-. for	BinaryHourClock a	few	slides	ago:
• -. will specify ℎ as a function of ;, but does not constrain ;

Then, if <=>?@ is a high-level spec of the system, we can write the low-
level spec as

Note: standard TLA+ spec

ℎ is a function of "

constrains "#ℎ$%

on previous page

Other examples of refinement

Class Queue
class {:autocontracts} Queue {

ghost var Contents: seq<int>;
var a: array<int>;
var hd: int, tl: int;

predicate Valid() { // class invariant
a.Length > 0 && 0 <= tl <= hd <= a.Length && Contents == a[tl..hd]

}

constructor () ensures Contents == []
{

a, tl, hd, Contents := new int[10], 0, 0, [];
}

}

Class Queue: continued
method Enqueue(d: int) ensures Contents == old(Contents) + [d] {

if hd == a.Length {

var b := a;
if tl == 0 { b := new int[2 * a.Length]; } // a is full
forall (i | 0 <= i < hd – tl) { b[i] := a[tl + i]; } // shift
a, tl, hd := b, 0, hd – tl;

}
a[hd], hd, Contents := d, hd + 1, Contents + [d];

}

method Dequeue() returns (d: int)
requires Contents != []
ensures d == old(Contents)[0] && Contents == old(Contents)[1..];

{
d, tl, Contents := a[tl], tl + 1, Contents[1..];

}

It’s not always possible to get a refinement L

Binary Consensus, Specification

Only 0
proposed

0 and 1
proposed

Only 1
proposed

0
chosen

1
chosen

0
learned

1
learned

Paxos

• Value is chosen if a quorum of proposers have all accepted the value
on the same ballot
• This suggest an easy mapping of the Paxos state to the consensus

state

Problem 1: lack of history

• Unfortunately, Paxos acceptors only remember the latest value they
accepted
• So while there may exists a majority that have all accepted the value

at time t, that majority may no longer exist at time t+1
• Even though it is guaranteed that no other value will ever be chosen

Fix 1: add history variables

• We can add a “ghost variable” to each acceptor that remembers all
(value, ballot) pairs it has ever accepted
• “ghost” means that it does not actually have to be realized

• With this “history variable”, we can exhibit a state mapping

Problem 2: outrunning the specification

• A refinement mapping maps each step of the low-level specification
to either one step of the high-level specification or a stuttering step of
the high-level specification
• In Paxos, when f=1 and n=3, the following scenario is possible:
• Leader proposes a (value, ballot)
• Some acceptor accepts (value, ballot)
• In that one step:

• The value is chosen
• The acceptor learns that the value is chosen (decided)

• However, our high-level consensus spec requires two steps:
• From undecided to chosen and from chosen to learned

Fix 2: two possibilities

• Change the high-level spec to include a “choose + learn” step
• i.e., speed up the high-level spec
• complicates the high-level specification
• changing the specification may not be allowed

• Add a ghost “prophecy variable” to the low-level specification
• slow down the low-level spec
• artificially insert a step between accepting and learning by changing the

prophecy variable
• does not change either the implementation or the high-level spec

Completeness

• If S1 implements S2 then, possibly by adding history and prophecy
variables, there exists a refinement mapping from S2 to S1 (under
certain reasonable assumptions)

See Martin Abadi and Leslie Lamport, “The Existence of Refinement
Mappings”

