Lecture 4: Refinement

Based on material from Section 10.8, Specifying Systems by Leslie Lamport

You ask for:

Specification

You ask for: You get:

Implementation

Specification

You ask for: You get:

Implementation

Specification

Is every behavior of the implementation also a behavior of the specification?

You ask for: You get:

Refinement

Mapping

Implementation
Specification

Is every behavior of the implementation also a behavior of the specification?

External/internal variables of a state

* A specification has certain external variables that can be observed
and/or manipulated

* It may also have internal variables that are used to describe behaviors
but that cannot be observed

channels
* Example: FIFO
e External variables: in, out
* Internal variable: buffer
N out

> buffer

Externally visible vs complete behavior

A system may exhibit externally visible behavior
€1 > €y, > €3 ey > ..
if there exists a complete behavior

(elJyl) - (6’2»3’2) - (63' yS) - (84,y4) -
that is allowed by the specification

Here e; is some externally visible state (for example, in and out
channels) and y; is internal state (for example, the buffer)

Stuttering Steps

A specification should allow changes to the internal state that does not
change the externally visible state.

For example:

(e1,¥1) = (e2,¥2) — (e2,y2) = (e3,y3) = (€4, Y4) —
leads to external behavior

€1 D€y > ey D> E3 > ey > ...
which should be identical to

e > €, D> e3 >ey > ..

Proving that an implementation meets the specification

* First note that an implementation is just a specification

* We call the implementation the “lower-level” specification

We need to prove that if an implementation allows the complete behavior
(e1,21) = (e2,23) — (e3,23) = (€4,24) —

then there exists a complete behavior
(31; yl) - (82' yZ) - (63'3/3) - (64' y4) -

allowed by the specification

A mapping from low-level complete behaviors to high-level complete
behaviors is called a “refinement mapping”

Note, there may be multiple possible refinement mappings---you only need to
show one

Recall: Module HourClock

| MODULE HourClock
EXTENDS Naturals
VARIABLE hr
HCini = hre(1..12)
HCnat = hr' = 1F hr # 12 THEN hr+1 ELSE 1

A

HC = HCini N O[HCnat)p,

|

|
THEOREM HC = OHCin
|

Implementation

e Suppose we wanted to replace hr by a 4-bit binary value
* We need a way to represent n-bit binary values
* We also need a function of n-bit binary values to numbers

Functions in TLA+

* A function f has a domain, written DOMAIN f
* fassigns to each x € DOMAIN f a value f|x]

e TLA+ uses array notation (square brackets) rather than parentheses
o f =giff
DOMAIN f = DOMAIN g A Vx € DOMAIN f: f|x] = glx]

* The range of fis { f[x] | x € DOMAIN f }

* [S — T]is defined to be the set of functions whose domain is S and
whose range is a subset of T

Function values

* [x € S — e] is defined to be the function f with domain S such that
Vx €S: flx] =e // x is a free variable in e

* For example
esucc 2 In€1..12-»1Fn=12THEN 1 ELSEn + 1]
* prod £ |x € Real,y € Real » x * y]
* double £ [x € Real » prod[x][2]]

* Similar to lambda expressions

Cool: Records are functions

| val — 42,rdy — 1, ack — 0] is equivalent to
[x € {"val”, “rdy”, “ack” } +—
[F x = “val” THEN 42
ELSE IF x = "rdy” THEN 1
ELSE 0 // must be “ack” due to DOMAIN

Choose Operator

CHOOSE x: F
expression that evaluates to some (possibly unspecific) value x
that satisfies F // x is a free variable in F

CHOOSEX ES: F 2ACHOOSEX: x ESAF
Undefined if no such x exists

Example: max(S) £CHOOSEX ES: VY ES:x =y
the maximum element of S // undefined if S is empty

Choose Operator, cont’d

CHOOSE x: F always evaluates to the same value. That is,
F = G = (CHOOSE x: F) = (CHOOSE x:)
Also
(V=CHOOSE x: F) A(W=CHOOSEXx: F)=>v=w
However, the value of v is unspecified

Q1: what behaviors are allowed by
(x = CHOOSE n:n € Nat) A [x' = CHOOSE n:n € Nat], ?

Choose Operator, cont’d

CHOOSE x: F always evaluates to the same value. That is,
F = G = (CHOOSE x: F) = (CHOOSE x:)
Also
(V=CHOOSE x: F) A(W=CHOOSEXx: F)=>v=w
However, the value of v is unspecified

Q1: what behaviors are allowed by
(x = CHOOSE n:n € Nat) A [x' = CHOOSE n:n € Nat], ?
Answer: x is always the same (but unspecified) natural number

Choose Operator, cont’d

CHOOSE x: F always evaluates to the same value. That is,
F = G = (CHOOSE x: F) = (CHOOSE x: G)
Also
(V=CHOOSE x: F) A(W=CHOOSEX: F)=>v=w
However, the value of v is unspecified

Q1: what behaviors are allowed by
(x = CHOOSE n:n € Nat) A [x" = CHOOSE n: n € Nat], ?
Answer: x is always the same (but unspecified) natural number
Q2: what behaviors are allowed by
(x € Nat) AO[x" € Nat], ?

Choose Operator, cont’d

CHOOSE x: F always evaluates to the same value. That is,
F = G = (CHOOSE x: F) = (CHOOSE x: G)
Also
(V=CHOOSE x: F) A(W=CHOOSEX: F)=>v=w
However, the value of v is unspecified

Q1: what behaviors are allowed by
(x = CHOOSE n:n € Nat) A [x" = CHOOSE n: n € Nat], ?
Answer: x is always the same (but unspecified) natural number
Q2: what behaviors are allowed by
(x € Nat) AO[x" € Nat], ?
Answer: x can be a different natural number in every state

Recursive functions

e fact 2 [n € Nat » IFn = 0THEN 1 ELSEn * fact[n — 1]]
is illegal because fact is not defined in the expression on the right

Instead:
e fact 2 CHOOSE f: [n € Nat » IFn=0THEN 1ELSEn * f[n — 1]]

Shorthand:
* fact[n € Nat] £ IFx = 0 THEN 1 ELSEn * fact[n — 1]

Aside: Scoping Definitions in TLA+

IN

* Split complicated formulas into smaller chunks
* Leverage common subexpressions

Representing an n-bit value

* We can represent an n-bit value by a function
b2|xe0..(n—1)+0..1]

* For example, if b represents 0101 (i.e., 5) then
0] =

1] =
2] =
3]=0

and b corresponds to the number

b[0] * 2° + b[1] =21 + b[2] = 2% + b[3] = 2°

e o o o
S-S o o ™

Finally: function of n-bit value b to number

BitArrayVal(b) £
LET
n = CHOOSE m € Nat: DOMAINb = 0..(m —1)
flx €0..(n —1)] £
IF x = 0 THEN b[0] ELSE b[x] *2* + f|x — 1]
IN
fln—1]

BinaryHourClock: (broken) attempt 1

I MODULE BinaryHourClock |
EXTENDS Naturals
VARIABLE bits

BitArrayVal(b) =
LET
n = CHOOSE m € Nat : DOMAIN b=0..(m — 1)
A

fle €0..(n—1)] = 1F £ =0 THEN b[0] ELSE b[z] * 2* + f[z — 1]
IN f[n—1]

Substitute
B = INSTANCE HourClock WITH hr < BitArrayVal(bits BitArrayVal(bits) for hr

Spec = B!HC

What’s the (subtle) issue?

* BitArrayVal(b) is undefined unless b is a function b with domain
0.n — 1forsomen

* BitArrayVal(“Fred”) is undefined

* Perhaps BitArrayVal(“Fred”) = 7. If so, “Fred” would be an allowed
initial value of bits. Probably not what we intended to specify

Fix: HourVal(b) ZIFbe [(0..3) — (0..1)] THEN BitArrayVal(b) ELSE

B = INSTANCE HourClock WITH hr < HourVal(bits)

Any value

Spec = BVHC but 1..12

Because HC is never satisfied by a state in which hr = 13, bits has to be in [0..3 = 0..1]

A little more elegant solution

| MODULE BinaryHourClock
EXTENDS Naturals
VARIABLE bits

BitArrayVal(b) =

LET

n = CHOOSE m € Nat : DOMAIN b=0..(m — 1)

fl €0..(n—1)] = IF 2 =0 THEN b[0] ELSE b[z] % 2% + f[z — 1]
IN f[n—1]

ErrorVal = CHOOSE v:v ¢ 1..12

HourVal(b) = 1 b€ [(0..3) — (0..1)] THEN BitArrayVal(b) ELSE| ErrorVal

B = INSTANCE HourClock WITH hr < HourVal(bits)

Spec = BV'HC

A better way of doing it (instead of substitution)

MODULE BinaryHourClock |

EXTENDS Naturals
VARIABLE bits

A

H(hr) = INSTANCE HourClock

BitArrayVal(b) =
LET
n = CHOOSE m € Nat : DOMAIN b =0 .. (m — 1)
flt €0..(n—1)] = IF 2 =0 THEN b[0] ELSE b[z] * 2% + f[z — 1]
IN f[n—1]

ErrorVal = CHOOSE v:v ¢ 1..12
HourVal(b) = 1r b e [(0..3) — (0..1)] THEN BitArrayVal(b) ELSE ErrorVal
B = INSTANCE HourClock WITH hr < HourVal(bits)

IR(h) = O(h = HourVal(bits))

bits and hr keep the same time

Spec 2 Ahr: IR(hr) A H(hr)! HC (IR stands for Interface Refinement)

Discussion

* Here we composed two specifications:
* An HourClock with values from the set 1..12
* A BinaryHourClock with values from the set [(0..3) > (0..1)]

* Composition is a conjunction of specifications
* A behavior of the composition is a behavior of each of the components

* [R(hr) asserts that bits is always the 4-bit value representing hr
* IR(hr) AN H(hr)! HC asserts that hr and bits keep the same time

More precisely:
* [R(hr) defines hr as a function of bits, but does not constrain bits

* [R(hr) A H(hr)! HC constrains behaviors involving bits by requiring that they
have to map to behaviors involving hr

Interface Refinement

* BinaryHourClock is an implementation of HourClock

* One has to exhibit a mapping from the "low-level” implementation to
the “high-level” specification
* Map the low-level state to the high-level state: hr = HourVal(bits)

* Map each low-level step to a high-level step or to a high-level stuttering step
* In the case of the BinaryHourClock, the low-level and high-level steps are the same
* |f so, that is a special case of interface refinement called “Data Refinement”

* (leaving out liveness for now)

* Each behavior of the implementation is also a behavior of the
specification

We already saw an example of data refinement

I

EXTENDS Naturals
CONSTANT Data
VARIABLES wval, rdy, ack

TypeInvariant = A val € Data

A rdy € {0,1}
A ack € {0,1}

MODULE Asynchlnterface

L

Inat

112

>>2> >>>> >>>

Send

A
Rev =

Neaxt
Spec

A
A

val € Data

rdy € {0,1}

ack = rdy

rdy = ack

val' € Data

rdy’ =1 — rdy
UNCHANGED ack

rdy # ack

ack' =1 — ack
UNCHANGED (wval, rdy)
Send V Recv

Init A O[Next](yat,rdy,ack)

I

|

THEOREM Spec = OTypelnvariant

| MODULE Channel

EXTENDS Naturals

CONSTANT Data

VARIABLE chan

Typelnvariant = chan € [val : Data, rdy:{0,1}, ack : {0,1}]

|

Init =

A Typelnvariant
A chan.ack = chan.rdy
Send(d) = A chan.rdy = chan.ack
A chan' = [chan EXCEPT !.val =d, !.rdy =1 — @]
Rev = A chan.rdy # chan.ack

A chan' = [chan EXCEPT !.ack =1 — Q]
Next = (3d € Data : Send(d)) V Recv
&

Spec Init A O[Next| han

I

THEOREM Spec = O Typelnvariant
|

Interface Refinement with multiple steps

e Suppose we wanted a channel that sends values from 1..12

* And implement it over a channel that sends individual bits

High-level channel:

INSTANCE Channel wiTH Data < 1..12

Low-level channel:

INSTANCE Channel witH Data < 0..1

Represent each high-level value by
sequence of four low-level bits

MODULE Channel

l

|

EXTENDS Naturals
CONSTANT Data
VARIABLE chan

Typelnvariant = chan € [val : Data, rdy:{0,1}, ack :{0,1}]

Init =

Send(d)

Rev

Next
Spec

A
a

A Typelnvariant
A chan.ack = chan.rdy
A

A chan.rdy = chan.ack

A chan' = [chan EXCEPT !.val =d, !.rdy =1 — @]
A chan.rdy # chan.ack

A chan' = [chan EXCEPT !.ack =1 — Q]

(dd € Data : Send(d)) V Rcv

Init A O[Next)chan

|
THEOREM Spec = O Typelnvariant

Channel Refinement

A - §
H = INSTANCE Channel WITH chan < h, Data < 1 .. 12

L = INSTANCE Channel WITH chan + I, Data + {0, 1}

Sending 5 (= 0101):

L!Send(0) L! Rev L!Send(1) L! Rev L!Send(0)
50 — $51 —2 89 — S3 —2 84 —

L! Rcv L!Send(1) L!Rcv
S5 — 8¢ — §7 —> 8y —

Channel Refinement

1L

H

L = INSTANCE Channel WITH chan « I, Data + {0, 1}

INSTANCE Channel WiTH chan < h, Data < 1 .. 12

Sending 5 (= 0101):

L!Send(0) L! Recv L!'Send(1) L! Recv L!Send(0)

50 — 51 — 89 — S93 — 84 —

L!Rcv L!Send(1) L!'Rcv
S5 — 8¢ — St —> Sg§ —> -

Corresponds to Corresponds to
H!Send(5) H!Rcv

Interface Refinement

Recall definition of IR for BinaryHourClock a few slides ago:
* |R will specify h as a function of [, but does not constrain [

Then, if HSpec is a high-level spec of the system, we can write the low-
level spec as

35 : IR N HSpec

| MODULE ChannelRefinement

EXTENDS Naturals, Sequences
VARIABLES h, [

ErrorVal = CHOOSE v : v ¢ [val:1 .. 12, rdy:{0,1}, ack : {0, 1}]

BitSeqToNat[s € Seq({0,1})] = BitSeqToNat[(bo, b1, b2, ba)] = bo + 2 * (by + 2 * (ba + 2 * bs))
IF s = () THEN 0 ELSE Head(s) + 2 x BitSeqToNat|Tail(s)]

A

H = INSTANCE Channel WITH chan < h, Data < 1 .. 12 H is a channel for sending numbers

in1..12; L is a channel for sending
L = INSTANCE Channel WITH chan < I, Data + {0,1} pis.

MODULE Inner

VARIABLE bitsSent The sequence of the bits sent so far for the current number.

Init = A bitsSent = ()

A IF L!Init THEN H!Init Defines the initial value of h as a function of [.
ELSE h = ErrorVal
SendBit = 3b € {0,1} : Sending one of the first three bits

A L!Send(b) on [prepends it to the front of

. bitsSent and leaves h unchanged;
A 1F Len(bitsSent) < 3 . :

) ,) sending the fourth bit resets
THEN A bitsSent’ = (b) o bitsSent bitsSent and sends the complete
A UNCHANGED h number on h.

ELSE A bitsSent’ = ()
N H'!Send(BitSeqToNat[(b) o bitsSent])

RevBit = A L'Rev A Recv action on [causes a Rcv
A IF bitsSent = () THEN H!Rewv action on h iff it follows the
ELSE UNCHANGED h sending of the fourth bit.

A UNCHANGED bitsSent

Error = Al # 1 An illegal action on [sets h to ErrorVal.
A =((3b € {0,1} : L!Send(b)) V L! Rev)
A h' = ErrorVal

Nexzt = SendBit V RcvBit V Error
A _ Note: standard TLA+ spec
AnnerlR = Init A O[Next] i, n, bitsSent)

MODULE ChannelRefinement

| MODLULE Inner

VARIABLE bitsSent The sequence of the bits sent so far for the current number.

[InnerIR = Init A O[Next](1 p.bitsSent)

I(bitsSent) = INSTANCE Inner , ,
N , ' | h is a function of [
AR = 3bitsSent : I(bitsSent)! InnerlR

| MODULE LowerSpec |
VARIABLE [chan

CONSTANT Data

on previous page

HS(hchan) = INSTANCE Channel WITH chan < hchan, Data < 1 .. 12

CR(h) = INSTANCE ChannelRefinement WITH | < Ichan

LSpec 2 3h: CR(h)!IR A HS(h)! HSpec
|

Other examples of refinement

Class Queue

class {:autocontracts} Queue {
ghost var Contents: seg<int>;
var a: array<int>;
var hd: int, tl: int;

predicate Valid() { // class invariant
a.Length > 0 && 0 <= tl <= hd <= a.Length && Contents == a[tl..hd]

}

constructor () ensures Contents == []

{
a, tl, hd, Contents := new int[10], O, O, [];

}
}

Class Queue: continued

method Enqueue(d: int) ensures Contents == old(Contents) + [d] {
if hd == a.Length {

var b := a;
iftl==0{b :=newint[2 * a.Length]; } // ais full
forall (i | 0<=i<hd—-tl) {b[i]:=a[tl+i]; } // shift
a, tl, hd :=b, 0, hd —tl;
}
alhd], hd, Contents :=d, hd + 1, Contents + [d];

}

method Dequeue() returns (d: int)
requires Contents !=[]
ensures d == old(Contents)[0] && Contents == old(Contents)[1..];

d, tl, Contents := a[tl], tl + 1, Contents[1..];
}

Chain Replication for Supporting
High Throughput and Availability

Robbert van Renesse
rvrfics.cornelledu

Fred B. Schneider
fhafkes.cornelledu

FAST Search & Transfer ASA
Tromsg, Norway
and
Department of Computer Science

Cornell University
Ithaca, New York 14855

Abstract

Chain replication 18 a new approach to coordinating
clusters of fail-stop storage servers. The approach is
intended for supporting large-scale storage services
that exhibit high thronghput and availability with-
out sacrificing strong consistency guarantees. Be-
sides outlining the chain replication protocols them-
selves, simulation experiments explore the perfor-
mance characteristics of a prototype Implementa-
tion. Throughput, availability, and several object-
placement strategies (including schemes based on
distributed hash table routing) are discussed.

1 Introduction

A storage system typically implements operations
=0 that clients can store, retrieve, and/or change
data. File systems and database systems are per-
haps the best known examples. With a file system,
operations (read and write) access a single file and
are idempotent; with a database system, operations
(transactions) may each access multiple objects and
are serializable.

This paper is concerned with storage systems that
sit somewhere between file systems and database
systems. In particular, we are concerned with stor-
age systems, henceforth called storage services, that

store ofgects (of an unspecified nature),

support guery operations to return a value de-
rived from a single object, and

-

support update operations to atomically change
the state of a single object according to some

pre-programmed, possibly non-deterministic,
computation involving the prior state of that
object.

A file system write 18 thus a special case of our stor-
age service update which, in turn, is a special case
of a database transaction.

Increasingly, we see on-line vendors (like Ama-
zon.com), search engines (like Google’s and
FAST's), and a host of other information-intensive
services provide value by connecting large-scale stor-
age systems to networks. A storage service is the
appropriate compromise for such applications, when
a database system would be too expensive and a file
aystem lacks rich enough semantics.

One challenge when building a large-scale stor-
age service is maintaining high availability and
high throughput despite failures and concomitant
changes to the storage service's configuration, as
faulty components are detected and replaced.

Consistency guarantees also can be crucial. But
even when they are not, the construction of an appli-
cation that fronts a storage service is often simpli-
fied given stromg consistency guarantees, which as-
sert that (i) operations to query and update indi-
vidual objects are executed in some sequential order
and (ii) the effects of update operations are necessar-
ily reflected in results returned by subsequent guery
operations.

Strong consistency guarantees are often thought
to be in tension with achieving high throughput
and high availability. So system designers, reluctant
to sacrifice system throughput or availability, regu-
larly decline to support strong consistency guaran-
tees. The Google File System (GFS) illustrates this
thinking [11]. In fact, strong consistency guarantees

USENIX Association OSDI "04: 6th Symposium on Operating Systems Design and Implementation

91

State is:
Histopjip : update request sequence
Pending ,,1p : request set

Transitions are:
T1: Client request r arrives:
Pending ,p;ip = Pending ,p;ip U {r}

T2: Client request r € Pending ,;;;p ignored:
Pending ,,;;p := Pending ,;;p — {7}

T3: Client request r € Pending,;;;p processed:
Pending ,,;1p := Pending ,;;p — {r}
if r = query(objld, opts) then
reply according options opts based
on H‘I;Stobﬂp
else if r = update(objld, newVal, opts) then
Histopjip := Histopjip - T
reply according options opts based
on Histopjip

Figure 1: Client’s View of an Object.

3.1 Protocol Details

Clients do not directly read or write variables
Hist opj;p and Pending ,,;p of Figure 1, so we are
free to implement them in any way that is conve-
nient. When chain replication is used to implement
the specification of Figure 1:

e Hist,pjip is defined to be H?Jstgbjm, the value
of Hist,pip stored by tail T" of the chain, and

e Pending ,;;;p is defined to be the set of client
requests received by any server in the chain and
not yet processed by the tail.

The chain replication protocols for query processing
and update processing are then shown to satisfy the
specification of Figure 1 by demonstrating how each
state transition made by any server in the chain is
equivalent either to a no-op or to allowed transitions

T1. T2, or T3.

State is:
Histopjip - update request sequence
Pending ,;;p : request set

Transitions are:
T1: Client request r arrives:

Pending ,;ip := Pending ,p;;p U {r}

T2: Client request r € Pending ,;;;p ignored:
Pending ,,;1p = Pending ,,;;p — {7}

T3: Client request r € Pending ,;;;p processed:
Pending ,,;1p = Pending ,,;;p — {7}
if r = query(objld, opts) then
reply according options opts based
on H’I:Stobﬂp

else if r = update(objld, newVal, opts) then
Histopjip = Histopjip - T
reply according options opts based
on Histopjip

Figure 1: Client’s View of an Object.

't’s not always possible to get a refinement ®

Binary Consensus, Specification

Only 0

proposed
: [:
learned
Oand 1 ‘
proposed
. — :
learned
Only 1 ‘II

proposed

Paxos

* Value is chosen if a quorum of proposers have all accepted the value
on the same ballot

* This suggest an easy mapping of the Paxos state to the consensus
state

Problem 1: [ack of history

* Unfortunately, Paxos acceptors only remember the latest value they
accepted

* So while there may exists a majority that have all accepted the value
at time t, that majority may no longer exist at time t+1
* Even though it is guaranteed that no other value will ever be chosen

Fix 1: add history variables

* We can add a “ghost variable” to each acceptor that remembers all
(value, ballot) pairs it has ever accepted

* “ghost” means that it does not actually have to be realized

* With this “history variable”, we can exhibit a state mapping

Problem 2: outrunning the specification

* A refinement mapping maps each step of the low-level specification
to either one step of the high-level specification or a stuttering step of
the high-level specification

* In Paxos, when f=1 and n=3, the following scenario is possible:
* Leader proposes a (value, ballot)
* Some acceptor accepts (value, ballot)

* |n that one step:
* The value is chosen
* The acceptor learns that the value is chosen (decided)

* However, our high-level consensus spec requires two steps:
* From undecided to chosen and from chosen to learned

Fix 2: two possibilities

* Change the high-level spec to include a “choose + learn” step
* i.e., speed up the high-level spec
* complicates the high-level specification
* changing the specification may not be allowed

* Add a ghost “prophecy variable” to the low-level specification
* slow down the low-level spec

e artificially insert a step between accepting and learning by changing the
prophecy variable

* does not change either the implementation or the high-level spec

Completeness

 If S1 implements S2 then, possibly by adding history and prophecy
variables, there exists a refinement mapping from S2 to S1 (under
certain reasonable assumptions)

See Martin Abadi and Leslie Lamport, “The Existence of Refinement
Mappings”

