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Course Overview



Course Outline

• Some lectures by me
• specifica7on, Hoare logic, Dafny tutorial, refinement

• Paper reading by us
• Addi7onal lectures by you
• Brand new course: shared learning experience for all of us
• Research projects
• Assignments
• Course remains under construc7on



Topics

• How to specify systems
• How to verify systems (refinement, “simula7on”, Hoare logic)
• Survey verified systems
• Survey systems for proving and model checking



What is formal verificaBon?

• Does soKware correctly implement a specifica7on?
• Does soKware have desired proper7es (safety, liveness, other)?
• Is a par7cular op7miza7on correct (equivalence, bi-simula7on)?

Formal tools are used to check the above



Three parts to formal verificaBon

• Soundness
• If the formal verifier reports no bug, then the system does not fail

• Completeness
• If the formal verifier reports a bug, then the system can fail

• Termina7on
• The formal verifier terminates



Two types of formal verifiers

• Provers
• Reason based on axioms and rules of inference
• Automa7c proof checking

• but proof crea7on can be at least partly manual

• Model checkers
• Manually create a model
• Automa7cally explore the state space of the model



Why formally verify soDware systems?

• Modern soKware is very large (and thus hard to understand fully)
• A car model may have over 100M lines of code

• NIST: soKware bugs cost $60B annually
• Vulnerable soKware in

• Safety-cri7cal systems (transporta7on etc.)
• Privacy-cri7cal systems (healthcare, etc.)
• Money-cri7cal systems (banking, etc.)

• Finding errors early may decrease development cost
• May make certain requirements possible

Tes7ng or pen-and-paper verifica7on may not suffice



Why not formally verify systems?

• Increases 7me-to-market
• May provide a false sense of safety

• Verifica7on validates an abstrac7on (or model) of a system, not the actual system
• Finding the right abstrac7on level is a challenge

• Specifica7on may have bugs in it
• May have missing requirements
• May make inappropriate assump7ons
• Not all proper7es may have been checked

• May decrease safety
• Verified systems may be prone to over-simplifica7on

• May slow down adding new features
• Or perhaps it’ll help?

• Is too difficult in many cases



First few weeks

• Specifica7on
• Hoare Logic
• Dafny
• Refinement



Textbook?

• Leslie Lamport – Specifying Systems
• Available on-line at h`ps://lamport.azurewebsites.net/tla/book-02-08-08.pdf

• More TBD

https://lamport.azurewebsites.net/tla/book-02-08-08.pdf


ADer that: your turn

• Give a presenta7on on
• Some systems topic related to verifica7on
• Some verifica7on tool or survey of tools



Possible Systems to Present

Verifica7on and
• Opera7ng Systems
• File Systems
• Networks
• Distributed Systems
• Concurrent Systems
• Secure Systems



Projects on Verified OperaBng Systems

• “Safe Kernel Extensions Without Run-Time Checking”, George Necula
et al. (CMU), OSDI 1996
• “Comprehensive Formal Verifica7on of an OS Microkernel” (seL4), 

Gerwin Klein et al. (NICTA), TOCS 2014
• “Safe to the Last Instruc7on: Automated Verifica7on of a Type-Safe 

Opera7ng System” (Verve), Jean Yang et al. (MSR), PLDI 2010
• “Cer7KOS: An extensible architecture for building cer7fied concurrent 

OS kernels”, Ronghui Gu et al. (Yale), OSDI 2016
• “Hyperkernel: Push-Bu`on Verifica7on of an OS Kernel”, Luke Nelson 

et al. (UW), SOSP 2017



Projects on Verified File Systems

• “Using Crash Hoare Logic for Cer7fying the FSCQ File System”, 
Haogang Chen et al. (MIT), SOSP 2015
• “Push-Bu`on Verifica7on of File Systems via Crash Refinement”, Helgi 

Sigurbjarnarson et al. (UW), OSDI 2016
• Cogent: “Verifying High-Assurance File System Implementa7ons”, 

Sidney Amani et al. (NICTA), ASPLOS 2016
• “Verifying a high-performance crash-safe file system using a tree 

specifica7on”, Haogang Chen et al. (MIT), SOSP 2017
• “Using Concurrent Rela7onal Logic with Helpers for Verifying the 

AtomFS File System”,  Mo Zou et al. (SJTU),  SOSP 2019



Projects on Verified Networks

• “NetKAT: seman7c founda7ons for networks”, Carolyn Anderson et al. 
(Cornell), POPL 2014
• “Efficient Synthesis of Network Updates”, Jedidiah McClurg et al. (CU 

Boulder, Cornell), PLDI 2015
• “A General Approach to Network Configura7on Verifica7on”, Ryan Becke` 

et al. (Princeton), SIGCOMM 2017
• “Correct by Construc7on Networks Using Stepwise Refinement”, Leonid 

Ryzhyk et al. (*), NSDI 2017
• “p4v: Prac7cal Verifica7on for Programmable Data Planes”, Jed Liu et al. 

(*), SIGCOMM 2018
• “Verifying SoKware Network Func7ons with No Verifica7on Exper7se”, 

Arseniy Zaostrovnykh et al. (EPFL), SOSP 2019



Projects on Verified Distributed Systems

• “Developing Correctly Replicated Databases Using Formal Tools”, Vincent 
Rahli et al. (Cornell), DSN 2014
• “IronFleet: Proving Prac7cal Distributed Systems Correct”, Chris Hawblitzel

et al. (MSR), SOSP 2015
• “Verdi: A Framework for Implemen7ng and Formally Verifying Distributed 

Systems”, James R. Wilcox et al. (UW), PLDI 2015
• “How Amazon Web Services Uses Formal Methods”, Chris Newcombe et al. 

(Amazon), Comm. ACM 58(4), 2015
• “Model Checking at Scale: Automated Air Traffic Control Design Space 

Explora7on”, Marco Gario et al. (JPL), CAV 2016
• “Grapple: A Graph System for Sta7c Finite-State Property Checking of 

Large-Scale Systems Code”, Zhiqiang Zuo et al. (Nanjing U., UCLA). Eurosys
2019



Projects on Verified Concurrent Systems

• “GPS: Naviga7ng Weak Memory with Ghosts, Protocols, and 
Separa7on”, Aaron Turon et al. (MPI-SWS), OOPSLA 2014
• “Automated and modular refinement reasoning for concurrent 

programs”, Chris Hawblitzel et al (MSR)., CAV 2015
• “Verifying Read-Copy-Update in a Logic for Weak Memory”, Joseph 

Tassaroq et al. (MPI-SWS, CMU), PLDI 2015
• “Proving the correct execu7on of concurrent services in zero-

knowledge”, Srinath Se`y et al. (MSR), OSDI 2018
• “Verifying Concurrent, Crash-safe Systems with Perennial”, Tej Chajed

et al. (MIT), SOSP 2019



Projects on Verified Secure Systems

• “RockSalt: Be`er, Faster, Stronger SFI for the x86”, Greg Morrise` et 
al. (Harvard), PLDI 2012
• “Verifying Security Invariants in ExpressOS”, Haohui Mai et al. (UIUC), 

ASPLOS 2013
• “Implemen7ng TLS with Verified Cryptographic Security”, Karthikeyan 

Bhargavan et al. (INRIA, MSR), Oakland 2013
• “Ironclad Apps: End-to-End Security via Automated Full-System 

Verifica7on”, Chris Hawblitzel et al. (MSR, Cornell, …), OSDI 2014
• “Proving confiden7ality in a file system using DiskSec”, Atalay Ileri et 

al. (MIT), OSDI 2018



Possible PresentaBons on
Provers and Model Checkers
• NuPrl,
• TLA+
• ACL2
• Coq
• Dafny
• Ivy
• Chalice
• Isabelle/HOL
• Verdi
• Z3
• Boogie
• SPIN
• MaceMC, MoDist
• …



Your ParBcipaBon

• Read all assigned chapters/papers and par7cipate in discussions
• There will be ”programming” assignments
• Present survey on some class of systems or a tutorial on some 

technique or tool for formally verifying systems
• E.g., verifying concurrent systems, modular verifica7on, …
• May become standard part of future version of this course

• Do a non-trivial formal verifica7on task
• Verify some ”system” (possibly part of your own research project)
• Or develop some tool for system verifica7on



First Assignment

• Read Chapters 1-4 from Specifying Systems
• Create a TLA+ spec that generates all and only prime numbers in 

order star7ng at 2
• Desired behavior: 𝑝 = 2 → 𝑝 = 3 → 𝑝 = 5 → …

• Challenge: create a TLA+ spec for distributed consensus
• Agreement: if two processes decide, they decide the same value
• Validity: if a process decides a value, the value has been proposed by some 

process
• Hint: specify, not implement

• Think about what you’d like to prepare and present



Specifying Systems (using TLA+)
Based on Leslie Lamport’s book “Specifying Systems”



DefiniBon: State

• Defini7on: A state is an assignment of values to (all) variables
• TLA+ nota7on: 𝑣𝑎𝑟* = 𝑣𝑎𝑙𝑢𝑒*, 𝑣𝑎𝑟/ = 𝑣𝑎𝑙𝑢𝑒/,⋯
• Meaning: a state in which 𝑣𝑎𝑟* has value 𝑣𝑎𝑙𝑢𝑒*, ⋯
• Order is immaterial

• Example: ℎ𝑟 = 3
• Meaning: a state in which ℎ𝑟 = 3

• The values of other variables are not specified
• There can be many infinitely many states in which ℎ𝑟 = 3

• e.g. [ℎ𝑟 = 3. t𝑒𝑚𝑝 = 62], [ℎ𝑟 = 3. t𝑒𝑚𝑝 = 68], …
• Models perhaps the hour hand being 3 on some hour clock HC



DefiniBon: Behavior

• Defini7on 1: A behavior is a func7on of 7me to state
Computer systems can be thought of as execu7ng in steps, so
• Defini7on 2: A behavior is a sequence of states
• Nota7on: 𝑠𝑡𝑎𝑡𝑒* → 𝑠𝑡𝑎𝑡𝑒/ → 𝑠𝑡𝑎𝑡𝑒9 → ⋯
• Example: ℎ𝑟 = 11 → ℎ𝑟 = 12 → ℎ𝑟 = 1



DefiniBon: Step

• Defini7on: A step consists of two consecu7ve states in a behavior
• aka transi6on
• Nota7on: 𝑠𝑡𝑎𝑡𝑒* → 𝑠𝑡𝑎𝑡𝑒/
• Example: ℎ𝑟 = 3 → ℎ𝑟 = 4



DefiniBon: Specifica.on

• A specifica6on is a set of all possible behaviors
• Consists of two parts

1. Set of all possible ini6al states
2. A “next-state” rela7on that describes the ways a state may change in a step

• i.e., the set of all possible pairs of states



Set of Ini.al States

• Example: HCini ≜ ℎ𝑟 ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• Or, informally, HCini ≜ ℎ𝑟 ∈ { 1, ⋯ , 12 }
• HCini is simply a name given to the predicate

• A set of states can oKen be succinctly described by a predicate
• Example: HCini ≜ ℎ𝑟 ∈ ℕ ⋀1 ≤ ℎ𝑟 ⋀ℎ𝑟 ≤ 12

• Note again that these describe not 12 but an infinite set of states



DefiniBon: Next-State Rela.on

• A next-state rela6on is a rela7on between pairs of successive states
• 𝑠𝑡𝑎𝑡𝑒*

DEF, 𝑠𝑡𝑎𝑡𝑒*
DGHI , 𝑠𝑡𝑎𝑡𝑒/

DEF, 𝑠𝑡𝑎𝑡𝑒/
DGHI ,⋯

• Example: 
• HCnxt ≜ { ( ℎ𝑟 = 11 , ℎ𝑟 = 12 ), ( ℎ𝑟 = 12 , ℎ𝑟 = 1 ), ⋯ }



DefiniBon: Ac.on

• A next-state rela7on can oKen be more succinctly described by a predicate
• Defini7on 1: an ac6on is a predicate over a pair of states
• Example: HCnxt ≜ ℎ𝑟′ = ℎ𝑟 % 12 + 1 (% is the “modulo” operator)

• or, HCnxt2 ≜ ℎ𝑟′ = IF ℎ𝑟 = 12 THEN 1 ELSE ℎ𝑟 + 1
• But note that HCnxt2 ≢ HCnxt

• ℎ𝑟′ is the value of hr in the new state; ℎ𝑟 is the value in the old state
• Defini7on 2: an ac6on is a predicate containing both primed and unprimed 

variables
• An ordinary predicate and does not have to be of the form “x’ = f(x)”

• Example: HCnxt ≜ ℎ𝑟V − ℎ𝑟 = 1 mod 12



Steps versus Ac.ons versus Execu.on

• A step is a pair of states
• An ac6on 𝒜 is a predicate over steps
• We call a step that sa7sfies 𝒜 an 𝒜 step
• Example: a step that sa7sfies HCnxt is an HCnxt step

• We some7mes informally say that HCnxt is executed



Example specificaBon: hour clock
(in complete isolaBon)

Module HourClock
• Variable hr
• HCini ≜ ℎ𝑟 ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• HCnxt ≜ ℎ𝑟′ = ℎ𝑟 mod 12 + 1
• HC ≜ HCini ⋀◻HCnxt

Temporal logic formula ◻P means that predicate P always holds
(thus HCnxt is invariant in HC)

Note:
1. All three statements are defini7ons, but the last one happens to cons7tute the full 

specifica7on of the hour clock)
2. There is no conven7onal naming in TLA+, so pick names that are descrip7ve



DefiniBon: Stu=ering steps

• Clocks are usually part of a larger system
• They have more state variables than just the hour hand of the clock
• State changes must allow for hour hand not to change
• Example: [ℎ𝑟= 3. t𝑒𝑚𝑝 = 62] → [ℎ𝑟 = 3. t𝑒𝑚𝑝 = 63]

• This is called a stu>ering step of the clock
• i.e., ℎ𝑟V = ℎ𝑟



Final specificaBon: hardware clock

Module HourClock
• Variable ℎ𝑟
• HCini ≜ ℎ𝑟 ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• HCnxt ≜ ℎ𝑟′ = ℎ𝑟 mod 12 + 1
• HC ≜ HCini ⋀◻(HCnxt ⋁ (ℎ𝑟V = ℎ𝑟))

The la`er can be abbreviated using the following TLA+ nota7on

HC ≜ HCini ⋀◻[HCnxt]^E

([HCnxt]^E is pronounced ”square HCnxt sub hr”)



DefiniBon: theorem

• Defini7on: in TLA+, a theorem of a specifica7on is a temporal formula 
that holds over every behavior of the specifica7on
• Example:  HC ⇒◻ ℎ𝑟 ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• That is, HC ⇒◻ HCini

• Proof: by induc7on on #steps



A note on variables and types

• Variables in TLA+ are untyped
• However, if one can prove  SPEC ⇒◻ 𝑣 ∈ 𝑆 for some variable 𝑣 and 

constant set 𝑆, then one can call 𝑆 the type of 𝑣 in SPEC
• Example: the type of ℎ𝑟 in HC is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• It is useful to specify the types in a specifica7on
• Example:   HCtypeInvariant ≜ ℎ𝑟 ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
• Note, in this case HCtypeInvariant ≡ HCini



A note on states and behaviors

• Recall
• A state is an assignment of values to variables
• A behavior is a sequence of states

• Thus
• ℎ𝑟 = 13 is s7ll a state, and so is ℎ𝑟 = ”𝑏𝑙𝑢𝑒”
• ℎ𝑟 = 4 → ℎ𝑟 = 3 is s7ll a behavior

• However, they are not in specifica7on HC



HourClock SpecificaBon in Dafny

class HourClock {
var hr: nat

method nxt()
modifies this
ensures hr == old(hr) % 12 + 1

constructor(ihr: nat)
requires 1 <= ihr <= 12

{
hr := ihr;

}
}



HourClock ImplementaBon in Dafny

class {:autocontracts} HourClock {

var hr: nat

predicate Valid() { 1 <= hr <= 12 } // class invariant

method nxt()

modifies this

ensures hr == old(hr) % 12 + 1

{

hr := hr % 12 + 1;

}

}



Asynchronous FIFO Channel SpecificaBon

Sender Receiver

val
rdy

ack

Send ≜ ∧ rdy = ack
∧ val’ ∈ 𝐷𝑎𝑡𝑎
∧ rdy’ = 1 – rdy
∧ ack’ = ack

Rcv ≜ ∧ rdy ≠ ack
∧ ack’ = 1 – ack
∧ val’ = val
∧ rdy’ = rdy



Asynchronous FIFO Channel SpecificaBon

Send ≜ ∧ rdy = ack
∧ val’ ∈ 𝐷𝑎𝑡𝑎
∧ rdy’ = 1 – rdy
∧ ack’ = ack

Rcv ≜ ∧ rdy ≠ ack
∧ ack’ = 1 – ack
∧ val’ = val
∧ rdy’ = rdy

Init ≜ ∧ val ∈ 𝐷𝑎𝑡𝑎
∧ rdy ∈ { 0, 1 }
∧ ack = rdy

TypeInvariant ≜∧ val ∈ 𝐷𝑎𝑡𝑎
∧ rdy ∈ { 0, 1 }
∧ ack ∈ { 0, 1 }

Next ≜ 𝑆𝑒𝑛𝑑 ⋁𝑅𝑒𝑐𝑣 Spec ≜ Init ⋀◻[Next] Emn,opq,ros



Asynchronous FIFO Channel SpecificaBon
introducing operators with arguments

Send ≜ ∧ rdy = ack
∧ val’ ∈ 𝐷𝑎𝑡𝑎
∧ rdy’ = 1 – rdy
∧ ack’ = ack

Next ≜

Send(d) ≜∧ rdy = ack
∧ val’ = 𝑑
∧ rdy’ = 1 – rdy
∧ ack’ = ack

Next ≜ ∨ ∃𝑑 ∈ 𝐷𝑎𝑡𝑎: 𝑆𝑒𝑛𝑑 𝑑
∨ Recv

∨ 𝑆𝑒𝑛𝑑
∨ Recv



Asynchronous FIFO Channel SpecificaBon
introducing records

Send(d) ≜ 𝑐ℎ𝑎𝑛.rdy = 𝑐ℎ𝑎𝑛.ack ∧ chan’ =
[ 𝑣𝑎𝑙 ⟼ 𝑑, 𝑟𝑑𝑦 ⟼ 1 − 𝑐ℎ𝑎𝑛. 𝑟𝑑𝑦, 𝑎𝑐𝑘 ⟼ 𝑐ℎ𝑎𝑛. 𝑎𝑐𝑘 ]

Init ≜ 𝑐ℎ𝑎𝑛.val ∈ 𝐷𝑎𝑡𝑎 ∧ 𝑐ℎ𝑎𝑛.rdy ∈ 0, 1 ∧ 𝑐ℎ𝑎𝑛.ack = 𝑐ℎ𝑎𝑛.rdy

TypeInvariant ≜ 𝑐ℎ𝑎𝑛 ∈ 𝑣𝑎𝑙: 𝐷𝑎𝑡𝑎, 𝑟𝑑𝑦: 0,1 , 𝑎𝑐𝑘: {0,1}

Next ≜ ∃𝑑 ∈ 𝐷𝑎𝑡𝑎: 𝑆𝑒𝑛𝑑 𝑑 ∨ Recv

Spec ≜ Init⋀◻[Next]p^o|

R𝑒𝑐𝑣 ≜ 𝑐ℎ𝑎𝑛.rdy ≠ 𝑐ℎ𝑎𝑛.ack ∧ chan’ =
[ 𝑣𝑎l ⟼ 𝑐ℎ𝑎𝑛. 𝑣𝑎𝑙, 𝑟𝑑𝑦 ⟼ 𝑐ℎ𝑎𝑛. 𝑟𝑑𝑦, 𝑎𝑐𝑘 ⟼ 1 − 𝑐ℎ𝑎𝑛. 𝑎𝑐𝑘 ]



First Assignment

• Read Chapters 1-4 from Specifying Systems
• Create a TLA+ spec that generates all and only prime numbers in 

order star7ng at 2
• Desired behavior: 𝑝 = 2 → 𝑝 = 3 → 𝑝 = 5 → …

• Challenge: create a TLA+ spec for distributed consensus
• Agreement: if two processes decide, they decide the same value
• Validity: if a process decides a value, the value has been proposed by some 

process
• Hint: specify, not implement

• Think about what you’d like to prepare and present


