CS6480:
Systems and Formal Methods

Robbert van Renesse

Cornell University

Course QOverview

Course Outline

* Some lectures by me
* specification, Hoare logic, Dafny tutorial, refinement

* Paper reading by us

* Additional lectures by you

* Brand new course: shared learning experience for all of us
e Research projects

* Assignments

* Course remains under construction

Topics

* How to specify systems
* How to verify systems (refinement, “simulation”, Hoare logic)
 Survey verified systems

 Survey systems for proving and model checking

What is formal verification?

* Does software correctly implement a specification?
* Does software have desired properties (safety, liveness, other)?
* |s a particular optimization correct (equivalence, bi-simulation)?

Formal tools are used to check the above

Three parts to formal verification

e Soundness
* |f the formal verifier reports no bug, then the system does not fail

 Completeness
* |f the formal verifier reports a bug, then the system can fail

e Termination
* The formal verifier terminates

Two types of formal verifiers

* Provers
e Reason based on axioms and rules of inference
* Automatic proof checking

* but proof creation can be at least partly manual
* Model checkers

* Manually create a model
* Automatically explore the state space of the model

Why formally verity software systems?

 Modern software is very large (and thus hard to understand fully)
* A car model may have over 100M lines of code

* NIST: software bugs cost S60B annually

* Vulnerable software in
« Safety-critical systems (transportation etc.)
 Privacy-critical systems (healthcare, etc.)
* Money-critical systems (banking, etc.)

* Finding errors early may decrease development cost
 May make certain requirements possible

Testing or pen-and-paper verification may not suffice

Why not formally verity systems?

* Increases time-to-market

* May provide a false sense of safety

 Verification validates an abstraction (or model) of a system, not the actual system
* Finding the right abstraction level is a challenge

Specification may have bugs in it

May have missing requirements

May make inappropriate assumptions
Not all properties may have been checked

* May decrease safety
* Verified systems may be prone to over-simplification

* May slow down adding new features
e Or perhaps it’ll help?

* |s too difficult in many cases

First few weeks

* Specification
* Hoare Logic
* Dafny

* Refinement

Textbook?

* Leslie Lamport — Specifying Systems
e Available on-line at https://lamport.azurewebsites.net/tla/book-02-08-08.pdf

* More TBD

https://lamport.azurewebsites.net/tla/book-02-08-08.pdf

After that: your turn

* Give a presentation on
* Some systems topic related to verification
* Some verification tool or survey of tools

Possible Systems to Present

Verification and

* Operating Systems
* File Systems

* Networks

* Distributed Systems
* Concurrent Systems
* Secure Systems

Projects on Verified Operating Systems

“Safe Ker

nel Extensions Without Run-Time Checking”, George Necula

et al. (CMU), OSDI 1996

“Compre
Gerwin K

nensive Formal Verification of an OS Microkernel” (selL4),
ein et al. (NICTA), TOCS 2014

“Safetot

ne Last Instruction: Automated Verification of a Type-Safe

Operating System” (Verve), Jean Yang et al. (MSR), PLDI 2010

“CertiKOS: An extensible architecture for building certified concurrent
OS kernels”, Ronghui Gu et al. (Yale), OSDI 2016

“Hyperke

rnel: Push-Button Verification of an OS Kernel”, Luke Nelson

et al. (UW), SOSP 2017

Projects on Verified File Systems

* “Using Crash Hoare Logic for Certifying the FSCQ File System”,
Haogang Chen et al. (MIT), SOSP 2015

* “Push-Button Verification of File Systems via Crash Refinement”, Helgi
Sigurbjarnarson et al. (UW), OSDI 2016

* Cogent: “Verifying High-Assurance File System Implementations”,
Sidney Amani et al. (NICTA), ASPLOS 2016

» “Verifying a high-performance crash-safe file system using a tree
specification”, Haogang Chen et al. (MIT), SOSP 2017

* “Using Concurrent Relational Logic with Helpers for Verifying the
AtomFS File System”, Mo Zou et al. (SJTU), SOSP 2019

Projects on Verified Networks

* “NetKAT: semantic foundations for networks”, Carolyn Anderson et al.
(Cornell), POPL 2014

e “Efficient Synthesis of Network Updates”, Jedidiah McClurg et al. (CU
Boulder, Cornell), PLDI 2015

* “A General Approach to Network Configuration Verification”, Ryan Beckett
et al. (Princeton), SIGCOMM 2017

e “Correct by Construction Networks Using Stepwise Refinement”, Leonid
Ryzhyk et al. (*), NSDI 2017

. ”£4v: Practical Verification for Programmable Data Planes”, Jed Liu et al.
(*), SIGCOMM 2018

* “Verifying Software Network Functions with No Verification Expertise”,
Arseniy Zaostrovnykh et al. (EPFL), SOSP 2019

Projects on Verified Distributed Systems

* “Developing Correctly Replicated Databases Using Formal Tools”, Vincent
Rahli et al. %Cornell), DSN 2014

* “IronFleet: Proving Practical Distributed Systems Correct”, Chris Hawblitzel
et al. (MSR), SOSP 2015

* “Verdi: A Framework for Implementing and Formally Verifying Distributed
Systems”, James R. Wilcox et al. (UW), PLDI 2015

 “How Amazon Web Services Uses Formal Methods”, Chris Newcombe et al.
(Amazon), Comm. ACM 58(4), 2015

* “Model Checking at Scale: Automated Air Traffic Control Design Space
Exploration”, Marco Gario et al. (JPL), CAV 2016

* “Grapple: A Graph System for Static Finite-State Property Checking of
E%rlgge-Scale Systems Code”, Zhigiang Zuo et al. (Nanjing U., UCLA). Eurosys

Projects on Verified Concurrent Systems

* “GPS: Navigating Weak Memory with Ghosts, Protocols, and
Separation”, Aaron Turon et al. (MPI-SWS), OOPSLA 2014

e “Automated and modular refinement reasoning for concurrent
programs”, Chris Hawblitzel et al (MSR)., CAV 2015

» “Verifying Read-Copy-Update in a Logic for Weak Memory”, Joseph
Tassarotti et al. (MPI-SWS, CMU), PLDI 2015

* “Proving the correct execution of concurrent services in zero-
knowledge”, Srinath Setty et al. (MSR), OSDI 2018

* “Verifying Concurrent, Crash-safe Systems with Perennial”, Tej Chajed
et al. (MIT), SOSP 2019

Projects on Verified Secure Systems

* “RockSalt: Better, Faster, Stronger SFl for the x86”, Greg Morrisett et
al. (Harvard), PLDI 2012

* “Verifying Security Invariants in ExpressOS”, Haohui Mai et al. (UIUC),
ASPLOS 2013

* “Implementing TLS with Verified Cryptographic Security”, Karthikeyan
Bhargavan et al. (INRIA, MSR), Oakland 2013

* “Ironclad Apps: End-to-End Security via Automated Full-System
Verification”, Chris Hawblitzel et al. (MSR, Cornell, ...), OSDI 2014

* “Proving confidentiality in a file system using DiskSec”, Atalay lleri et
al. (MIT), OSDI 2018

Possible Presentations on

Provers and Model Checkers

* NuPrl,

* TLA+
 ACL2

* Coq

* Dafny

* |vy

e Chalice

* Isabelle/HOL
e Verdi

e 73

* Boogie

* SPIN

* MaceMC, MoDist

Your Participation

* Read all assigned chapters/papers and participate in discussions
* There will be “programming” assignments

* Present survey on some class of systems or a tutorial on some
technique or tool for formally verifying systems

e E.g., verifying concurrent systems, modular verification, ...
* May become standard part of future version of this course

* Do a non-trivial formal verification task

* Verify some "system” (possibly part of your own research project)
* Or develop some tool for system verification

First Assignment

* Read Chapters 1-4 from Specifying Systems

* Create a TLA+ spec that generates all and only prime numbers in
order starting at 2

* Desired behavior: [p =2]->[p=3]->[p=5]-..
* Challenge: create a TLA+ spec for distributed consensus

* Agreement: if two processes decide, they decide the same value

 Validity: if a process decides a value, the value has been proposed by some
process

* Hint: specify, not implement

* Think about what you’d like to prepare and present

Specifying Systems (using TLA+)

Based on Leslie Lamport’s book “Specifying Systems”

Definition: State

* Definition: A state is an assignment of values to (all) variables

* TLA+ notation: [var; = value;, var, = value,, - |
* Meaning: a state in which vary has value valuey, -
e Order is immaterial

* Example: [hr = 3]
* Meaning: a state in which hr = 3
* The values of other variables are not specified
* There can be many infinitely many states in which hr = 3
* e.g. [hr =3.temp = 62], [hr = 3. temp = 68], ...
* Models perhaps the hour hand being 3 on some hour clock HC

Definition: Behavior

* Definition 1: A behavior is a function of time to state
Computer systems can be thought of as executing in steps, so
e Definition 2: A behavior is a sequence of states

* Notation: state, — state, — state; — -
* Example: |[hr = 11| - [hr = 12] - [hr = 1]

Definition: Step

* Definition: A step consists of two consecutive states in a behavior
* aka transition

* Notation: state; — state,

* Example: |[hr = 3] -» |hr = 4]

Definition: Specification

* A specification is a set of all possible behaviors

* Consists of two parts
1. Set of all possible initial states

2. A “next-state” relation that describes the ways a state may change in a step
* i.e., the set of all possible pairs of states

Set of Initial States

* Example: HCini 2 hr € {1,2,3,4,5,6,7,8,9,10,11,12 }
e Or, informally, HCini2 hr e{1,--,12}
* HCini is simply a name given to the predicate

* A set of states can often be succinctly described by a predicate
e Example: HCini2 hr e NA1 < hr Ahr <12

* Note again that these describe not 12 but an infinite set of states

Definition: Next-State Relation

* A next-state relation is a relation between pairs of successive states

» {(stateP™®, stateP**"), (statel™®, statel?*"), .-}

* Example:
 HCnxt £ {(|hr = 11], [hr = 12]), (lhr = 12], |hr = 1]),--- }

Definition: Action

* A next-state relation can often be more succinctly described by a predicate
* Definition 1: an action is a predicate over a pair of states

e Example: HCnxt 2 hr' = hr % 12+ 1 (% is the “modulo” operator)
* or, HCnxt, 2 hr' = IF hr = 12 THEN 1 ELSE hr + 1
* But note that HCnxt, # HCnxt

* hr' is the value of hr in the new state; hr is the value in the old state

* Definition 2: an action is a predicate containing both primed and unprimed
variables

* An ordinary predicate and does not have to be of the form “x’ = f(x)”
* Example: HCnxt £ hr' — hr = 1 mod 12

Steps versus Actions versus Execution

* A step is a pair of states
* An action A is a predicate over steps

* We call a step that satisfies <A an A step
* Example: a step that satisfies HCnxt is an HCnxt step

* We sometimes informally say that HCnxt is executed

Example specification: hour clock
(in complete isolation)

Module HourClock

* Variable hr

 HCini2 hr € {1,2,3,4,5,6,7,8,9,10,11,12 }
e HCnxt £ hr' = hr mod 12 + 1

* HC £ HCini A OHCnxt

Temporal logic formula OP means that predicate P always holds
(thus HCnxt is invariant in HC)

Note:

1. All three statements are definitions, but the last one happens to constitute the full
specification of the hour clock)

2. Thereis no conventional naming in TLA+, so pick names that are descriptive

Definition: Stuttering steps

* Clocks are usually part of a larger system
* They have more state variables than just the hour hand of the clock

* State changes must allow for hour hand not to change
* Example: [hr=3.temp = 62] - [hr = 3. temp = 63]

* This is called a stuttering step of the clock
e j.e., hr' = hr

Final specification: hardware clock

Module HourClock
e Variable hr

 HCini 2 hr € {1,2,3,4,5,6,7,8,9,10,11,12 }

e HCnxt £ hr' = hr mod 12 + 1

e HC £ HCini A O(HCnxt V (hr’ = hr))

The latter can be abbreviated using the following TLA+ notation

HC £ HCini A O[HCnxt],

([HCnxt];, is pronounced “square HCnxt sub hr”)

Definition: theorem

* Definition: in TLA+, a theorem of a specification is a temporal formula
that holds over every behavior of the specification

 Example: HC= 0O hr €{1,2,3,4,5,6,7,8,9,10,11,12 }
 Thatis, HC = O HCini

* Proof: by induction on #steps

A note on variables and types

 Variables in TLA+ are untyped

* However, if one can prove SPEC= O v € S for some variable v and
constant set S, then one can call S the type of v in SPEC

* Example: the type of hrinHCis {1, 2,3,4,5,6,7,8,9,10,11,12 }

* It is useful to specify the types in a specification

* Example: HCtypelnvariant 2 hr € {1,2,3,4,5,6,7,8,9,10,11,12 }
* Note, in this case HCtypelnvariant = HCini

A note on states and behaviors

* Recall
* A state is an assignment of values to variables
* A behavior is a sequence of states

e Thus

o [hr = 13] is still a state, and so is [hr = "blue”]
o |[hr = 4] - |hr = 3] is still a behavior

* However, they are not in specification HC

HourClock Specification in Dafny

class HourClock {
var hr: nat

method nxt ()
modifies this
ensures hr == old(hr) % 12 + 1

constructor (i1hr: nat)
requires 1 <= ihr <= 12

hr := ihr;

HourClock Implementation in Datny

class {:autocontracts} HourClock {

var hr: nat

predicate Valid() { 1 <= hr <= 12 } // class invariant

method nxt ()
modifies this

ensures hr == old(hr) % 12 + 1

Asynchronous FIFO Channel Specification

Sender

val

rdy

>

<

ack

>

Send £ Ardy=ack

Aval € Data
Ardy =1-rdy
N ack’ = ack

Receiver

Rcv = A rdy # ack

Nack’ =1-ack
A val =val
A rdy’ =rdy

Asynchronous FIFO Channel Specification

Typelnvariant = A val € Data Init = Aval € Data
Ardye{0,1} Ardye{0,1}
Nacke {0,1} A ack = rdy
Send = A rdy=ack Rcv = A rdy + ack
Aval € Data AN ack’ =1 —-ack
Ardy =1-rdy A val =val
A ack’ = ack A rdy’ =rdy

Next 2 Send \ Recv Spec £ |nit A

[NeXt](rdy,ack,val)

Asynchronous FIFO Channel Specification

introducing operators with arguments

Send & A rdy = ack » Send(d) £ A rdy = ack

Aval € Data Avall =d
Ardy =1-rdy Ardy =1-rdy
N ack’ = ack N ack’ = ack
Next & V Send m) Next2 v3id € Data: Send(d)

V Recv V Recv

Asynchronous FIFO Channel Specification
introducing records

Typelnvariant £ chan € |val: Data,rdy:{0,1}, ack: {0,1}]
Init 2 chan.val € Data A chan.rdy € { 0,1 } A chan.ack = chan.rdy

Send(d) £ chan.rdy = chan.ack A\ chan’ =
| val — d,rdy — 1 — chan.rdy, ack — chan. ack |

Recv £ chan.rdy # chan.ack A chan’ =
| val — chan.val,rdy — chan.rdy,ack — 1 — chan. ack |

Next 2 3d € Data: Send(d) V Recv

Spec £ Init/\ O[Next] pan

First Assignment

* Read Chapters 1-4 from Specifying Systems

* Create a TLA+ spec that generates all and only prime numbers in
order starting at 2

* Desired behavior: [p =2]->[p=3]->[p=5]-..
* Challenge: create a TLA+ spec for distributed consensus

* Agreement: if two processes decide, they decide the same value

 Validity: if a process decides a value, the value has been proposed by some
process

* Hint: specify, not implement

* Think about what you’d like to prepare and present

