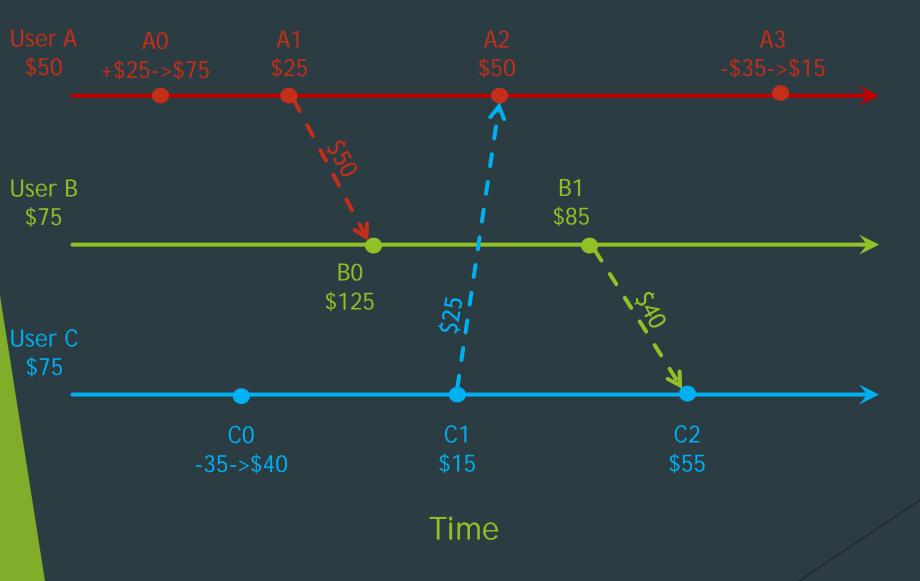
Distributed Snapshots - Lecture 1

Causal Consistency

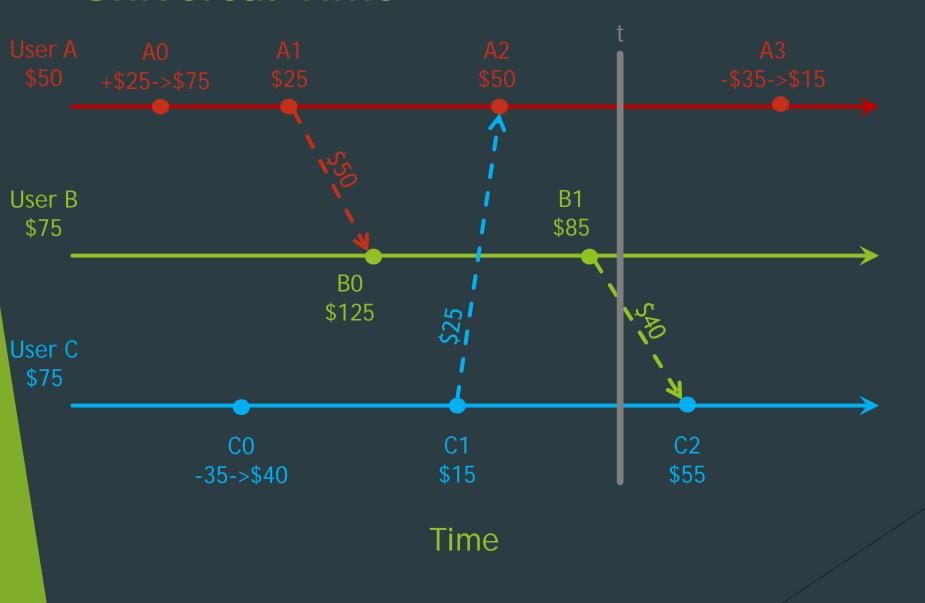
Assumptions

- Failures
 - ▶ No failures.
- Network
 - ▶ Asynchronous -> A message might take arbitrary time to be delivered.
 - Reliable -> Messages cannot be lost or duplicated while in transit.
 - ▶ FIFO -> A network channel maintains the order of messages (e.g. If node A sends message 1 and 2 in that order to B, then B is going to receive them in the same order).
- Clock Synchronization
 - Adjusted to the presentation needs.

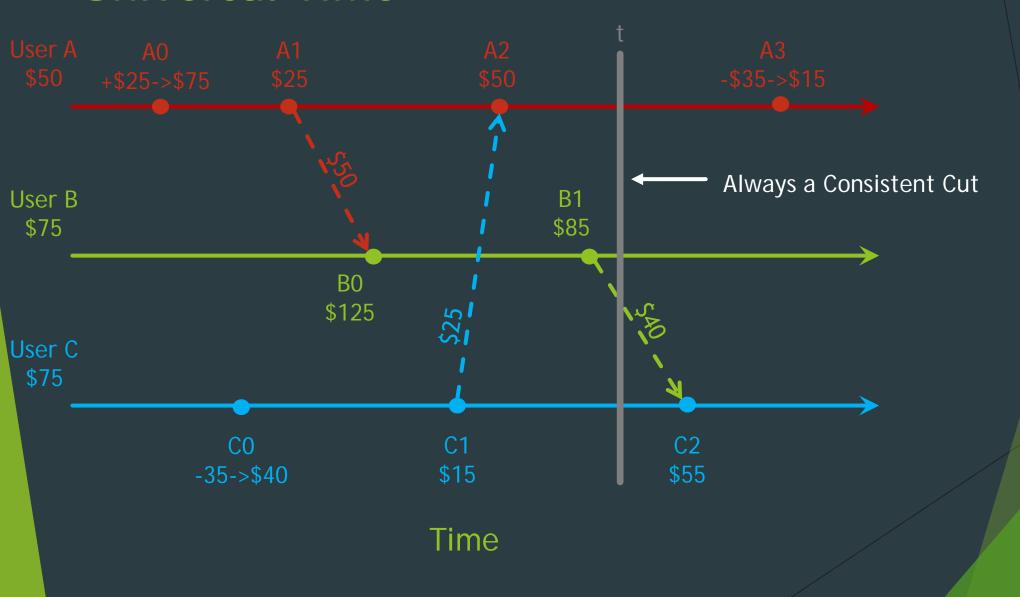
Example - Bank Accounts

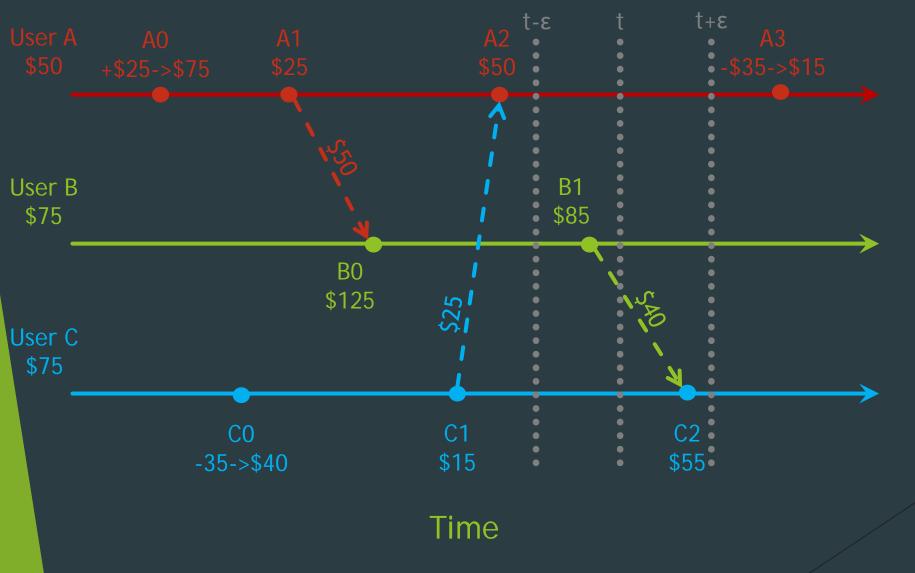


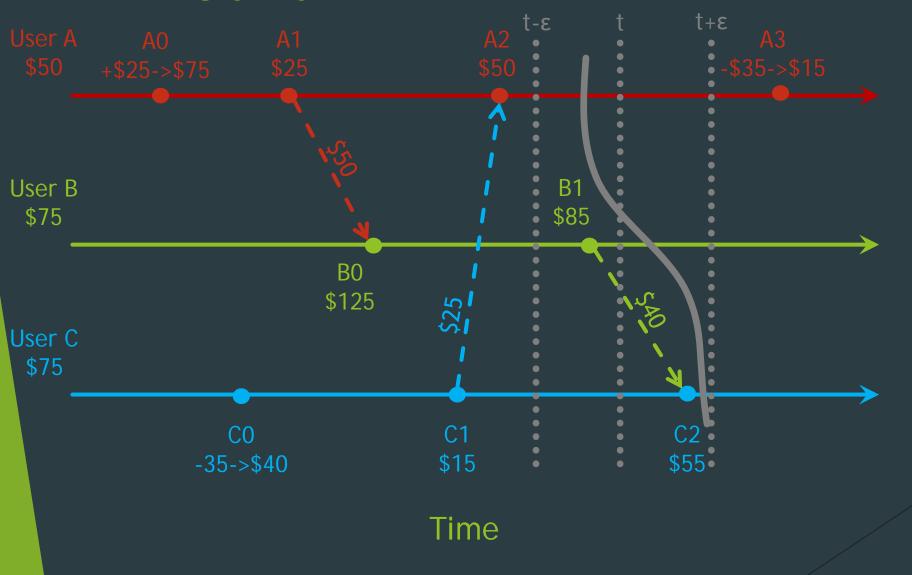
Universal Time

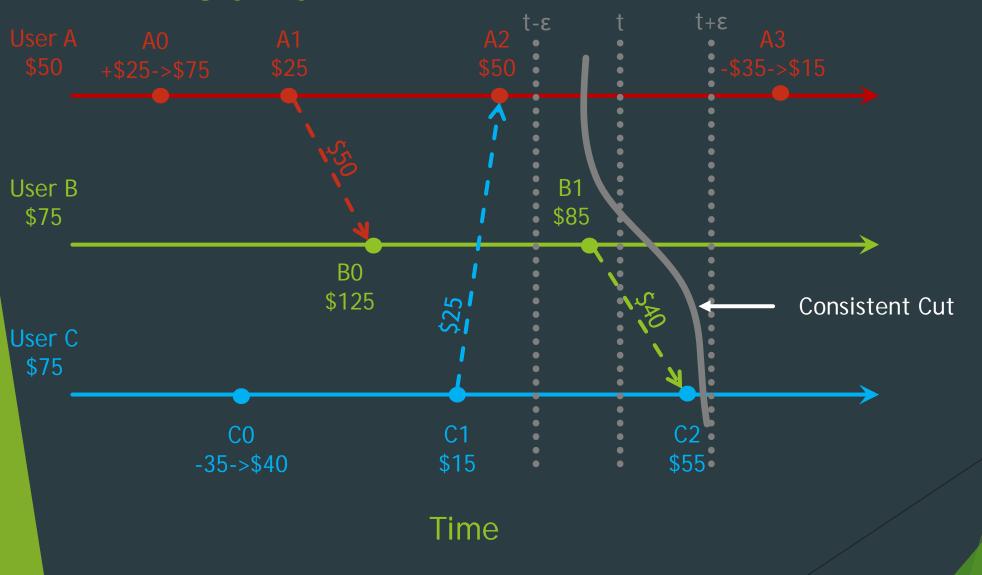


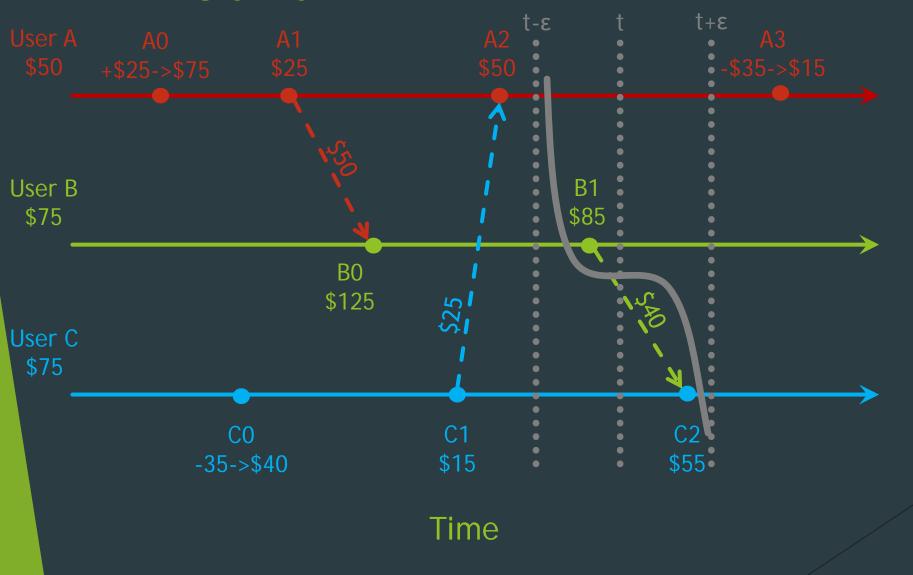
Universal Time

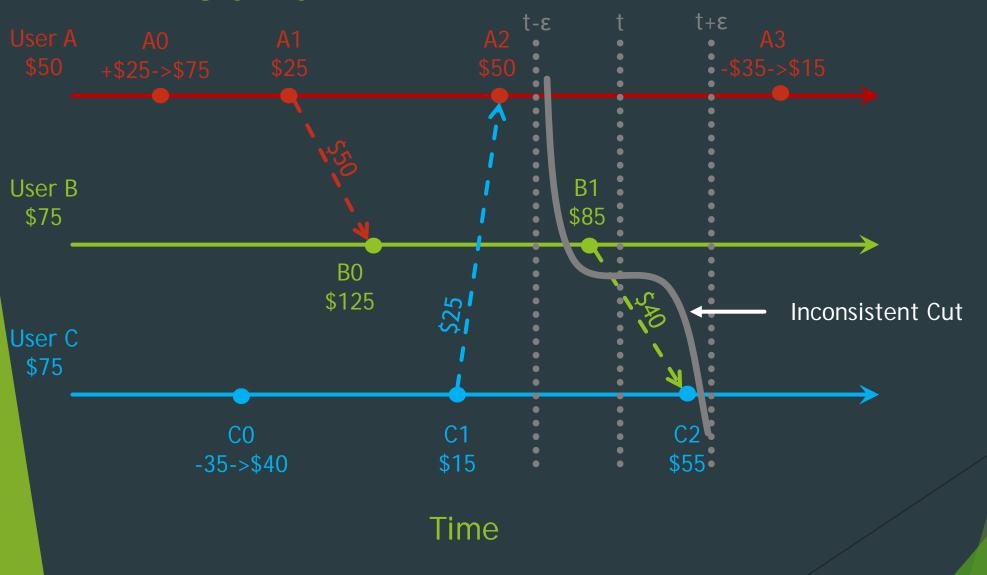








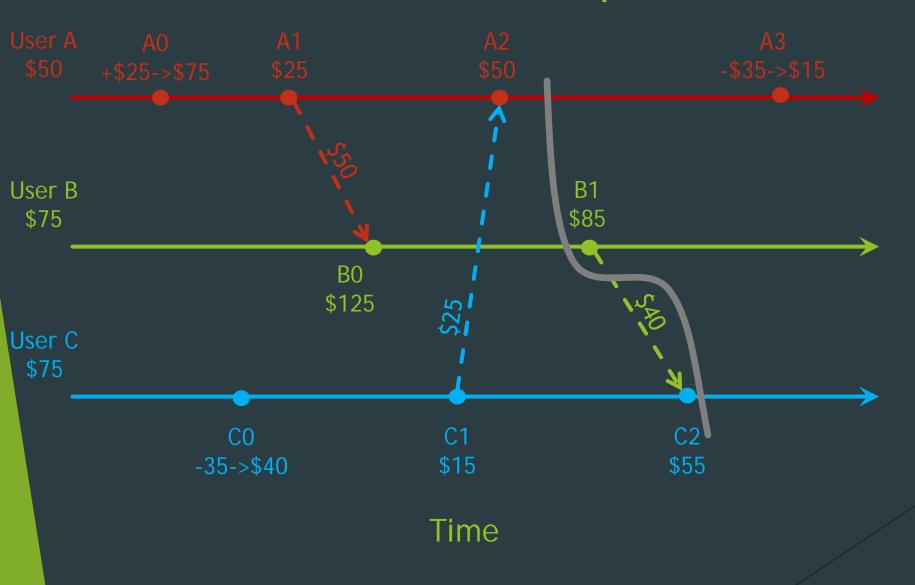




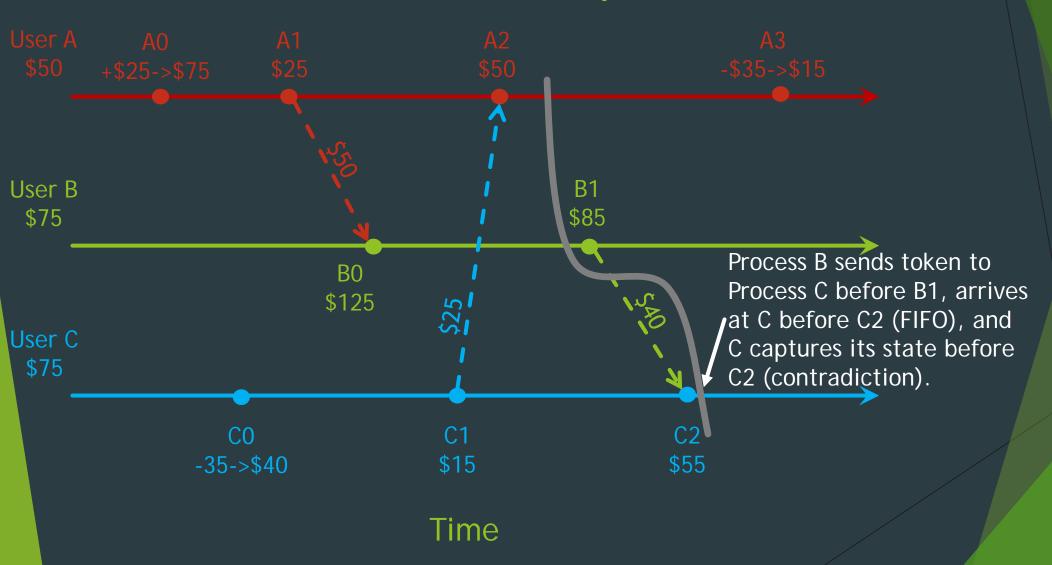
Consistent Cuts & Consistent Global States

- Process P starts taking a cut.
 - ► Take state on process *P*.
 - ▶ Send a token in each channel c adjacent to process P.
 - No message should be transmitted between taking the state and sending the tokens.
- On any process Q that receives token from channel c
 - ▶ If state has been captured, record channels c states as all the messages received from the point you have taken the state and received this token.
 - ▶ Else, record state and send token in each channel c adjacent to process Q.
 - No message should be transmitted between taking the state and sending the tokens.

Consistent Cuts - Is this possible?



Consistent Cuts - Is this possible?



Consistent Cut Issues

- 1. Cuts are not taken on demand. They should be taken pro-actively.
- 2. Might be slightly disruptive if the algorithm runs frequently.
- 3. What timestamp should be assigned to a cut?

Happened Before Relation

- 1. If an event e' happens after another event e in the same process P, then $e \rightarrow e'$
- 2. If a process P sends a message m (event e) and another process Q receives message m (event e') then

$$e \rightarrow e'$$

3. Transitive Closure: If

$$e \rightarrow e'$$
 and $e' \rightarrow e''$

then

$$e \rightarrow e^{\prime\prime}$$

Causal Consistency

A snapshot (or a cut) C is causally consistent iff $\forall e' \in \{e' | \exists e.e' \rightarrow e \land e \in C\}.e' \in C$

Causal Consistency - Universal Time

We know that:

$$e' \to e \Rightarrow UT(e') \le UT(e)$$

Proof as exercise.

We take a snapshot C where we include every event e such that $UT(e) \le t$. For all events $e' \to e$ such that $e \in C$, we have

$$UT(e') \le UT(e) \Rightarrow$$

$$UT(e') \le t \Rightarrow$$

$$e' \in C$$

Logical Clock

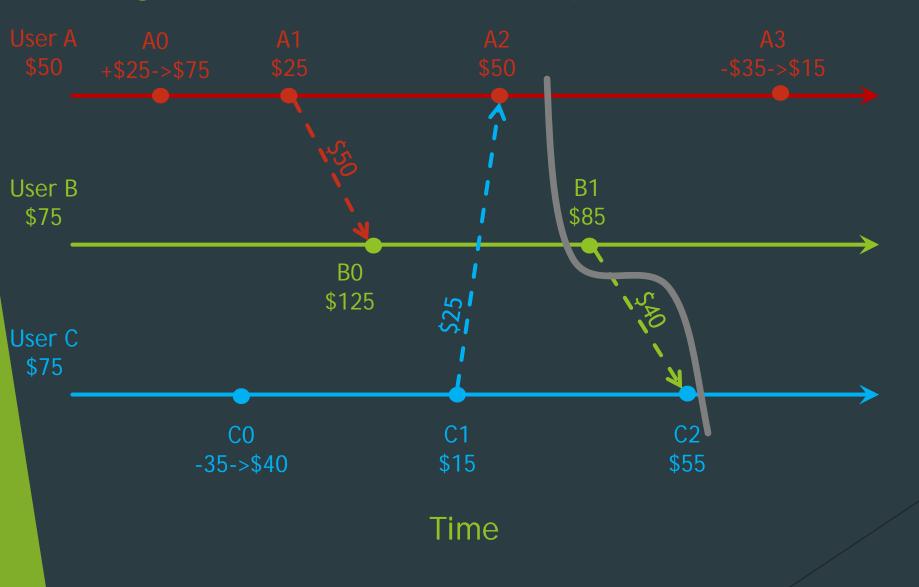
At process *P*:

1. On local event e:

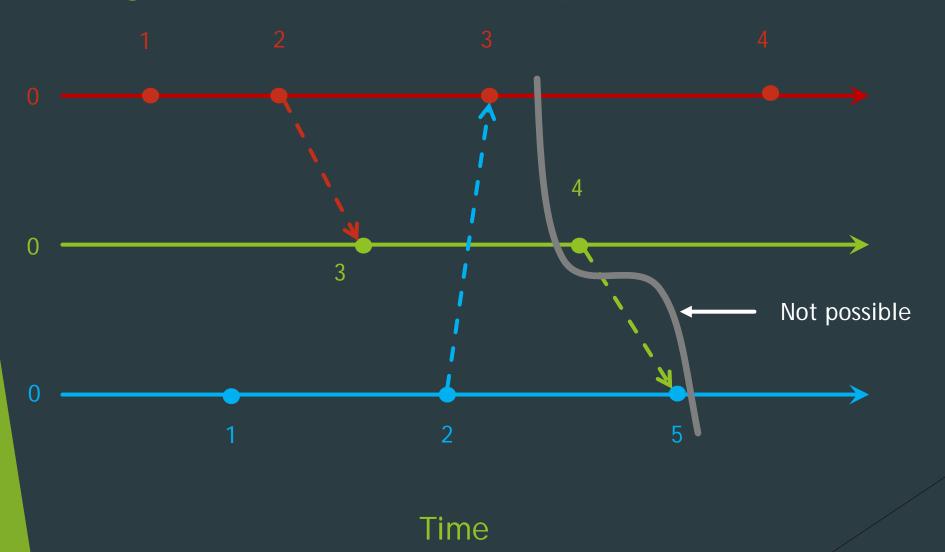
$$LC(e) = LC^P + 1$$

- 2. When sending a message m to another process Q(e): $LC(e) = LC^P + 1$
 - Send message m, LC(e) to process Q.
- 3. When receiving a message m, LC^m from process Q(e): $LC(e) = \max\{LC^P, LC^m\} + 1$
- 4. We always set LC^P to LC(e) after we finish executing the events.

Logical Clocks - Is this possible?



Logical Clocks - Is this possible?



Causal Consistency - Logical Clocks

We know that:

$$e' \to e \Rightarrow LC(e') \leq LC(e)$$

Proof as exercise.

We take a snapshot C where we include every event e such that $LC(e) \le t$. For all events $e' \to e$ such that $e \in C$, we have

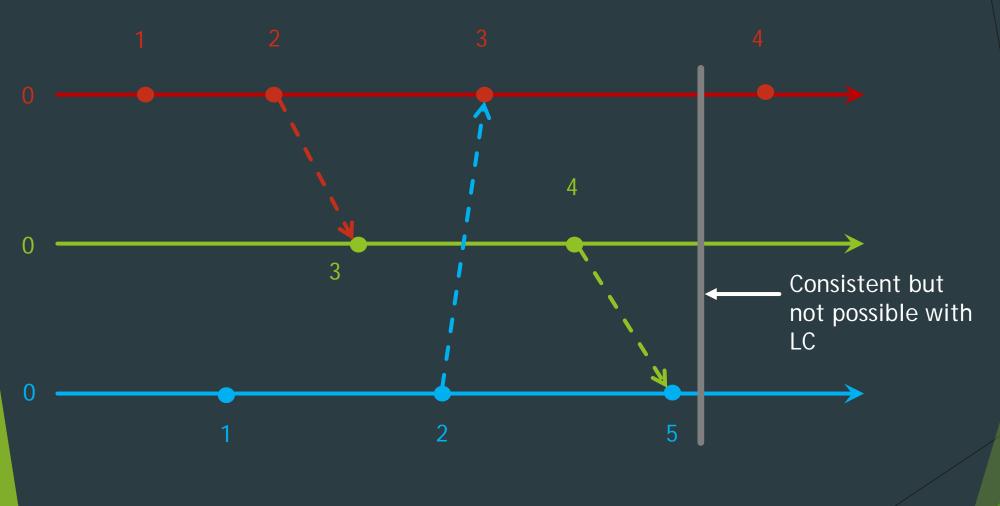
$$LC(e') \le LC(e) \Rightarrow$$

 $LC(e') \le t \Rightarrow$
 $e' \in C$

Is the following true?

$$LC(e) < LC(e') \Rightarrow e \rightarrow e'$$

Logical Clocks - Is this possible?



Time

Causal Consistency - Logical Clocks

We know that:

$$e' \to e \Rightarrow LC(e') \leq LC(e)$$

Proof as exercise.

We take a snapshot C where we include every event e such that $LC(e) \le t$. For all events $e' \to e$ such that $e \in C$, we have

$$LC(e') \le LC(e) \Rightarrow$$

 $LC(e') \le t \Rightarrow$
 $e' \in C$

Is the following true?

$$LC(e) < LC(e') \Rightarrow e \rightarrow e'$$

NO!

Vector Clock

Assume we have n processes. Then VC is an n-tuple. We denote $VC^P[Q]$ as the VC value for process Q that is kept at process P. At process P:

1. On local event e:

$$VC(e)[P] = VC^{P}[P] + 1$$

For all processes $Q \neq P$:
 $VC(e)[Q] = VC^{P}[Q]$

2. When sending a message m to another process R (e):

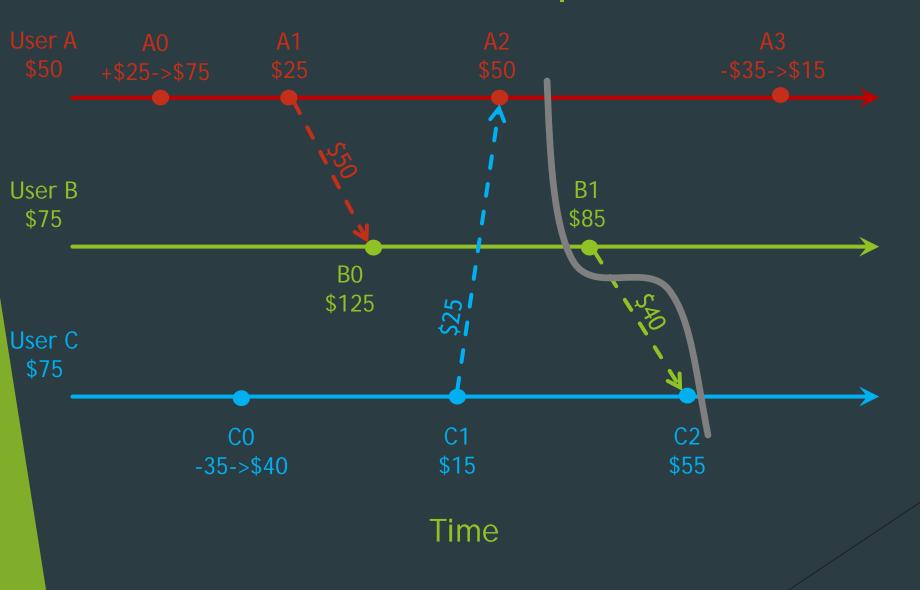
$$VC(e)[P] = VC^{P}[P] + 1$$
For all processes $Q \neq P$:
$$VC(e)[Q] = VC^{P}[Q]$$
Sond massage m $VC(e)$ to process Q

Send message m, VC(e) to process Q.

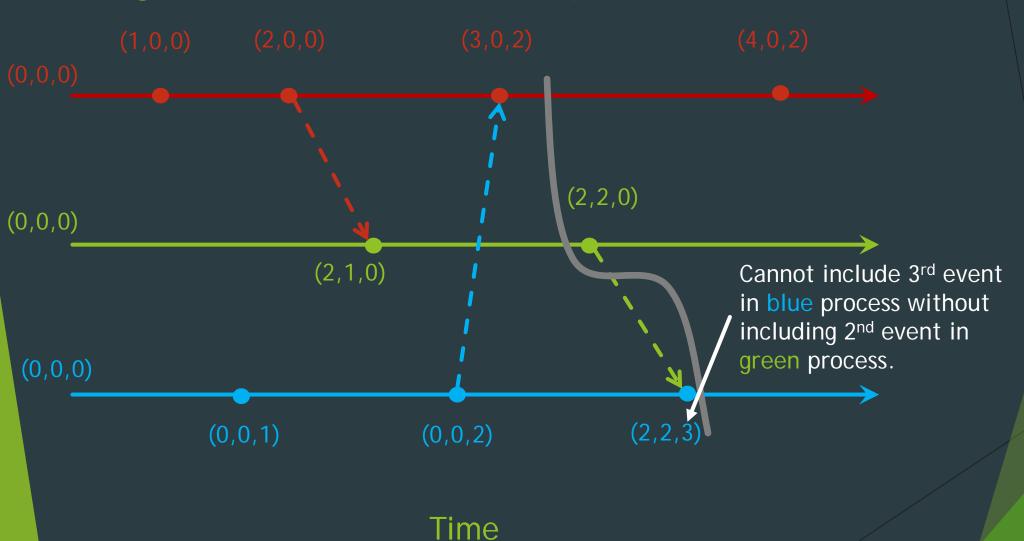
3. When receiving a message m, VC^m from process R(e): $VC(e)[P] = \max\{VC^P[P], VC^m[P]\} + 1$ For all processes $Q \neq P$: $VC(e)[Q] = \max\{VC^P[Q], VC^m[Q]\}$

4. We always set VC^P to VC(e) after we finish executing the events.

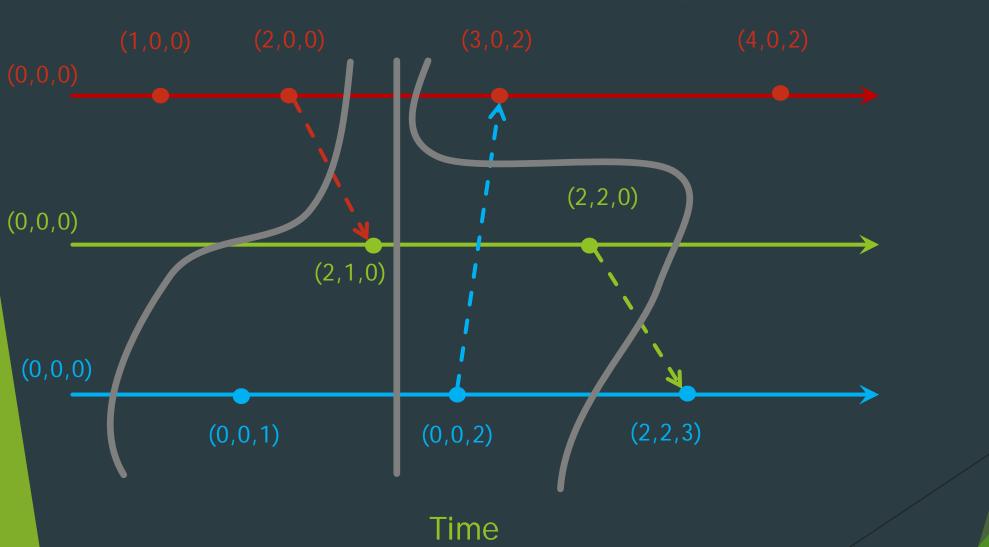
Vector Clocks - Is this possible?



Logical Clocks - Is this possible?



Vector Clocks - Multiple Snapshots Possible



Causal Consistency - Vector Clocks

▶ We say that:

iff for all processes P: $VC(e')[P] \le VC(e)[P]$ VC(e')[Q] < VC(e)[Q]