
Allied Agreement with Threshold Cryptography

Robert Burgess

Abstract

Ally is a framework for building distributed services
in a federated architecture. In a federation, nodes
may occupy multiple, independent administrative do-
mains, with complex trust relationships, connected
by an asynchronous, wide-area network. We present
a library that implements Byzantine fault-tolerant
agreement, a critical building-block service in ro-
bust distributed systems, targeted at the federation
model; threshold cryptography improves the basic
agreement protocol with proactive, verifiable security
and improved resilience to continuous attack.

1 Introduction

Although cloud computing services, such as those de-
veloped by Google and Amazon, are often designed
to handle nodes that crash, in general enterprise ser-
vices assume absolute trust and synchrony; nodes
that can behave arbitrarily can cripple or subvert
such services. Furthermore, they generally assume
extremely low-latency links even between nodes that
function precisely as expected. For smaller organiza-
tions, such as schools, to provide themselves the ad-
vantages of a cloud architecture under their smaller
budgets, they must cooperate—each supplying what
nodes they can, as in Planetlab or other federated
systems. Indeed, the Internet itself is a federation of
mutually untrusting autonomous systems that have
formed a coalition to provide a routing and message-
passing service.

In a federation setting, the participating nodes are
in independent administrative domains, so they can
not have the same level of trust in each other as can
be assumed if they were on the same rack, behind a
firewall; they are also likely to be separated from each

other by a wide-area network, so they can also not as-
sume consistent, low-latency, synchronous links. In-
deed, links are likely to have widely varying latencies
and might even be controlled by an adversary intent
on subverting the correct functioning of the service.
The problem, then, is to enable nodes to cooperate to
perform distributed computation or provide a cloud
service, without relying on mutual trust or strong as-
sumptions regarding the network or adversary.

We present Ally, a framework for federated appli-
cation development that enables distributed services
to easily guarantee Byzantine fault-tolerance, by pro-
viding an agreement (or consensus) protocol, a build-
ing block for higher-level services. We employ veri-
fiable threshold cryptography throughout the imple-
mentation to efficiently create and check statements
signed by by multiple peers, which improves scalabil-
ity, enables attack recovery without key revocation,
and makes proactive security possible.

2 Related Work

Perhaps the most famous agreement protocol is
Paxos, first introduced by Leslie Lamport [15, 14],
which re-popularized agreement as a basic building
block of reliable distributed services. Agreement it-
self underlies many distributed system techniques,
such as state machine replication [20].

Although Paxos assumes fail-stop participants and
synchronous communication, its popularity has led to
Byzantine fault-tolerant variants, asynchronous vari-
ants

Ally is directly inspired by work on distributed
computing frameworks, such as Google’s Chubby [2]
lock service, which is internally based on a Paxos
implementation, and Boxwood [16], which both pro-
vides a locking service and explicitly exposes the un-

1



derlying Paxos agreement service. Both Google and
Boxwood provide additional building blocks, such as
Google’s GFS [10] and Bigtable [3] storage services
and MapReduce [4] distributed computation service,
and Boxwood’s lower-level storage and data structure
abstraction services. Neither set of building blocks,
however, is designed for federated systems; both de-
pend on honest nodes, connected within a single data
center for beneficial network guarantees. Addition-
ally, Ally is open source, unlike the previous systems
but like the Hadoop1 family of distributed services,
such as Zookeeper and an open-source MapReduce
implementation, which also all assume trusted nodes.

Threshold cryptography [7, 6, 5, 8] can be applied
to distributed system-building, as in COCA [22], in
order to achieve both scalability and improved secu-
rity properties such as proactive security [13, 12, 11,
9], which provides the ability to defend against at-
tacks by mobile adversaries [19], which attack, com-
promise, and control nodes for limited periods be-
fore moving on adaptively. The Ally implementa-
tion employs a trusted dealer to set up the threshold
cryptosystem; however, there exist protocols for dis-
tributed key generation, such as that of Boneh and
Franklin [1, 17], which removes the trusted dealer and
ensures no entity ever knows the secret information.

3 Design

The Ally consensus protocol is an implementation of
Fast Asynchronous Paxos [18] (FaB Paxos), with sig-
natures performed using threshold cryptography. In
threshold cryptography, the signing key is split, us-
ing secret sharing techniques, among the nodes, such
that a threshold of them can cooperate to produce a
correct signature, but any fewer gain no information
about signatures or the key itself. Ally uses Shoup’s
threshold RSA scheme [21], which has the benefits
that nodes can separately produce signature shares,
without communication, enabling asynchrony; the
signature shares can then be verified independently
before combining them into a full signature, provid-
ing a way to catch cheaters.

1http://hadoop.apache.org/

Leader

Proposers

Acceptors

Listeners

Figure 1: Ally Agreement Architecture. In a
system that tolerates f Byzantine failures, there are
3f + 1 proposers (one of which is designated the
leader), 5f + 1 acceptors, and 3f + 1 listeners. The
processes may be colocated, so only 5f +1 actual sys-
tems are required. The clients are separate, and the
overhead of the agreement architecture can be used
to support many applications.

The FaB Paxos algorithm itself is a Byzantine
fault-tolerant agreement protocol, which is optimized
for the common case when there is a correct leader
recognized by all of the correct nodes, and the net-
work behaves synchronously; when these assumptions
fail, its performance degrades gracefully while guar-
anteeing correctness. It is often possible to terminate
in just two rounds, the optimum for Byzantine fault-
tolerant agreement.

4 Implementation

Ally is implemented as an open source ANSI C li-
brary, libally, providing the agreement protocol
functionality, and also exposing an interface to dis-
tributed cryptography directly. The codebase em-
ploys techniques for simple object-orientation so that,
for example, the agreement protocol can be parame-
terized on the distributed cryptosystem and be used
with more than just the current Shoup scheme. Be-
ing written in plain C and packaged with Gnu Au-

2

http://hadoop.apache.org/


totools provides maximum portability. The library
depends on the Gnu Multiple Precision (GMP) li-
brary for mathematics, which provides excellent per-
formance. All of the message passing is handled by
the application, leaving the library itself agnostic to
transport. Concrete applications can use UDP, TCP,
or any other communication layer that is convenient.
The library comes with a simple chat program that
exercises it, as well as programs for unit testing and
benchmarking.

Some features of the abstract designs are not imple-
mented. For instance, the agreement protocol does
not contain the sub-protocol to recover from a cor-
rupt leader, and therefore no leader election. The
Shoup cryptosystem offers the ability to verify indi-
vidual shares in order to determine, when an overall
signature is bad, what peers to exclude; this feature
is not provided in the library.

The code base is available under the BSD license.

5 Evaluation

Because the services in Ally are intended to be the
building blocks of higher-level services, their perfor-
mance is critical. I will first measure the latency
of the agreement protocol under ideal circumstances,
that is, when the network behaves synchronously and
all nodes are honest and correct.

To measure performance with crashed nodes, the
experiment will be repeated with varying numbers
of nodes “crashed” (not participating). To measure
performance under asynchrony, the experiment will
be repeated for varying random delay and loss ar-
tificially introduced in the network. Finally, nodes
will approximate Byzantine failures by sending well-
formed but random messages (essentially, fuzz test-
ing), and I will repeat the experiment for varying
numbers of such “Byzantine” nodes. Note that the
cases in which the leader is among the crashed or
failed nodes will cause different protocol paths to be
followed, and I will measure them separately.

6 Conclusion

Cloud computing is a relatively new way of look-
ing at distributed systems; Ally is equally appli-
cable to other buzzwords—such as grid computing,
volunteer computing, and peer-to-peer computing—
when mutually untrusting participants must cooper-
ate. The common thread is a need for complex trust
relationships, enahnced fault-tolerance, and unreli-
able network connections. Ally provides Byzantine
fault-tolerant distributed building blocks, with weak
assumptions regarding the network and adversary,
based on distributed cryptography for improved scal-
ability and security.

References

[1] Dan Boneh and Matt Franklin. Efficient Gener-
ation of Shared RSA Keys. Journal of the ACM,
48:702–722, July 2001.

[2] Mike Burrows. The Chubby Lock Service for
Loosely-Coupled Distributed Systems. OSDI
’06: Proceedings of the 7th symposium on Oper-
ating systems design and implementation, pages
335–350, USENIX Association, Berkeley, CA,
USA, 2006.

[3] Fay Chang, Jeffrey Dean, Sanjay Ghemawat,
Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: A Distributed
Storage System for Structured Data. OSDI
’06: Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementa-
tion, pages 15–15, USENIX Association, Berke-
ley, CA, USA, 2006.

[4] Jeffrey Dean and Sanjay Ghemawat. Mapre-
duce: Simplified Data Processing on Large Clus-
ters. Commun. ACM, 51(1):107–113, ACM,
New York, NY, USA, 2008.

[5] Yvo Desmedt. Some Recent Research Aspects
of Threshold Cryptography. Information Secu-
rity, Tatsunokuchi, Ishikawa, Japan, September
1997.

3



[6] Yvo Desmedt and Yair Frankel. Threshold Cryp-
tosystems. Advances in Cryptology, pages 307–
315, 1989.

[7] Yvo Desmedt and Yair Frankel. Shared Gen-
eration of Authenticators and Signatures (ex-
tended Abstract). CRYPTO ’91: Proceedings of
the 11th Annual International Cryptology Con-
ference on Advances in Cryptology, pages 457–
469, Springer-Verlag, London, United Kingdom,
1992.

[8] Yair Frankel and Moti Yung. Distributed Pub-
lic Key Cryptosystems. PKC ’98: Proceedings
of the First International Workshop on Practice
and Theory in Public Key Cryptography, pages
1–13, Springer-Verlag, London, United King-
dom, 1998.

[9] Yair Frankel, Peter Gemmell, Philip D. MacKen-
zie, and Moti Yung. Optimal Resilience Proac-
tive Public-Key Cryptosystems. IEEE Sym-
posium on Foundations of Computer Science,
pages 384–393, 1997.

[10] Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung. The Google File System. SOSP ’03:
Proceedings of the nineteenth ACM symposium
on Operating systems principles, pages 29–43,
ACM Press, New York, NY, USA, 2003.

[11] Amir Herzberg, Markus Jakobsson, Stanislaw
Jarecki, Hugo Krawczyk, and Moti Yung. Proac-
tive Public Key and Signature Systems. ACM
Conference on Computer and Communications
Security, pages 100–110, 1997.

[12] Amir Herzberg, Stanislaw Jarecki, Hugo
Krawczyk, and Moti Yung. Proactive Secret
Sharing Or: How to Cope with Perpetual
Leakage. Lecture Notes in Computer Science,
963:339–352, 1995.

[13] Stanislaw Jarecki. Proactive Secret Sharing
and Public Key Cryptosystems. Master’s The-
sis, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, 1995.

[14] Leslie Lamport. Paxos Made Simple. ACM
SIGACT News, 32(4):18–25, December 2001.

[15] Leslie Lamport and Keith Marzullo. The Part-
Time Parliament. ACM Transactions on Com-
puter Systems, 16:133–169, 1998.

[16] John MacCormick, Nick Murphy, Marc Najork,
Chandramohan A. Thekkath, and Lidong Zhou.
Boxwood: Abstractions as the Foundation for
Storage Infrastructure. OSDI’04: Proceedings of
the 6th conference on Symposium on Opearting
Systems Design & Implementation, pages 8–8,
USENIX Association, Berkeley, CA, USA, 2004.

[17] Michael Malkin, Thomas Wu, and Dan Boneh.
Experimenting with Shared Generation of RSA
Keys. Network and Distributed System Security
Symposium, San Diego, California, 1999.

[18] Jean-Philippe Martin. Fast Byzantine Consen-
sus. IEEE Trans. Dependable Secur. Comput.,
3(3):202–215, IEEE Computer Society Press,
Los Alamitos, CA, USA, 2006.

[19] Rafail Ostrovsky and Moti Yung. How to With-
stand Mobile Virus Attacks. ACM Symposium
on Principles of Distributed Computing, pages
51–59, Montréal, Canada, August 1991.

[20] Fred B. Schneider. Implementing Fault-Tolerant
Services Using the State Machine Approach: A
Tutorial. ACM Comput. Surv., 22(4):299–319,
ACM, New York, NY, USA, 1990.

[21] Victor Shoup. Practical Threshold Signatures.
Lecture Notes in Computer Science, 1807, 2000.

[22] Lidong Zhou, Fred B. Schneider, and Robbert
van Renesse. COCA: A Secure Distributed on-
Line Certification Authority. ACM Transactions
on Computer Systems, 20(4):329–368, November
2002.

4


	Introduction
	Related Work
	Design
	Implementation
	Evaluation
	Conclusion

