DeltaFS

Lonnie Princehouse

May 9, 2009

Abstract

DeltaF'S combines a read-only network filesystem
with a mechanism for storing local changes. It is in-
tended for use on limited capacity devices with good
net connectivity, such as netbooks, mobile devices,
and virtual machines. The local footprint of the
filesystem is proportionate to the volume of changes
made; so long as most files are unmodified, the local
user can be given the illusion of having access to a
very large drive.

1 Introduction

In October 2007, computer manufacturer ASUS re-
leased the Eee PC — an extremely small, extremely
inexpensive laptop. In the months that followed, the
Eee proved to be a surprise success, and the netbook
(as these small laptops have come to be known) mar-
ket was born. The original Eee came equipped with a
2GB or 4GB solid-state hard disk. As of March 2009,
most major PC manufacturers have launched their
own versions of the netbook; some use traditional
laptop hard drives of up to 160GB, but the most af-
fordable still ship with 4GB or 8 GB solid-state disks.
With 512MB or 1GB RAM and 1.6GHz Intel Atom
CPUs, these netbooks are two generations behind the
performance of the recent full-size laptops, but have
quite sufficient horsepower for tasks like web brows-
ing and word processing. Limited hard disk space,
however, becomes a problem. The disk footprints of
operating systems and applications have been grow-
ing steadily for years, unconstrained by rapidly grow-
ing disk capacities. A bare installation of Windows
Vista with SP1 occupies upwards of 8 GB. Ubuntu

Linux 8.10 does better, using just over 2GB. Add
to this several hundred megabytes of applications,
and a netbook has precious little space left for user
data. Netbook users cope with this by using older
operating systems, such as Windows XP (which also
runs better than Vista considering limited RAM and
GPU), and by installing stripped down Linux-based
operating systems like Ubuntu Mobile Edition. Even
with such an operating system installed, we conjec-
ture that netbook power-users will quickly fill their
disks to the point that installing new software be-
comes a hassle.

With DeltaFS, we help to ameliorate this problem
by providing a filesystem which can store infrequently
used data, such as operating system and application
files, in the cloud, allowing space-confined systems
such as netbooks, smaller mobile devices, and virtual
machines to use more of their local disks for storage
of user data. DeltaFS consists of two pieces: The
Base, a read-only network filesystem, and the Delta,
a locally-stored record of modifications made to the
filesystem. When a DeltaFS volume is created, it is
initially identical to the Base, which could contain a
(potentially very large) system image. Even though
the Base is read-only, DeltaF'S gives the users the il-
lusion of having write access, with the caveat that
writes only take affect locally and are not visible to
other machines using the same Base. When a read re-
quest is made, DeltaF'S downloads the relevant blocks
from the Base and then applies any modifications
logged in the Delta. For performance, frequently
downloaded blocks are cached locally. A cache on
the order of one or two hundred megabytes should
make almost all reads local during normal operation
(for example, Ubuntu Linux performs 70MB of reads

from the time it starts until the time it arrives at a
user-ready desktop). With DeltaFS, the local foot-
print of a complete (not stripped) operating system
and set of applications is equal to the size of the cache
plus the Delta, which stores only changes made by the
user.

Another benefit of DeltaFS is that to duplicate
a volume requires only that the Delta be dupli-
cated, since the read-only Base is the same. This
may be very useful in the world of virtual machines,
where cloning a machine that hasn’t made many local
changes could be done very quickly. It also provides
data de-duplication, as many virtual machines could
share the same Base.

DeltaFS includes a mechanism to “freeze” the
Delta. This combines the Base and Delta, publishing
the current view of the filesystem as a new read-only
cloud filesystem that can be used as a new Base. By
freezing the filesystem, a user can commit her changes
to the network and free up space used by the local
Delta.

While DeltaFS does demand a fast and reliable net-
work connection, a properly filled cache could allow
limited operation during connection outages.

2 Design

DeltaF'S stores persistent data in two places:

The Base, a read-only network filesystem.

The Delta, a local log-structured filesystem. The
Delta stores modifications to the Base, and
caches data read from the Base.

2.1 Handling reads and writes

Any event that modifies the state of the filesystem
is stored in the log. To determine the current state
of the filesystem, the log must be replayed; for in-
dividual filesystem requests, which only concern one
or two i-nodes, it is sufficient to replay only those log
events which modify the affected i-nodes to determine
their current state. Replaying these log events for ev-
ery request would perform poorly, so DeltaFS caches

summaries of i-node changes in memory. The cur-
rent implementation keeps a summary of every mod-
ified i-node in memory, but a more sophisticated im-
plementation might generate summaries on demand
and keep a fixed-size cache according to some evic-
tion policy. Upon receiving a read request, DeltaF'S
consults the relevant i-node’s summary. Summaries
store i-node attributes such as size and permissions,
directory entries, file data chunk pointers (the data
itself is stored on disk). If the requested informa-
tion is in the summary, then DeltaF'S fills the request
quickly. Otherwise, DeltaF'S fetches the information
from the Base.

To handle write requests, DeltaF'S writes i-node
change events and new data chunks to the log. The
current implementation replays these new log events
immediately to update in-memory summaries.

2.2 Freezing

If the Base implementation supports it, the user may
send a “freeze” command to DeltaFS. This merges
the original base filesystem with changes stored in
the Delta, and produces a new base. The transition
to this new base is seamless; it is not necessary to un-
mount DeltaFS. Data chunks stored locally become
cached copies of data residing at the new base, and
the log is truncated. To the user, the DeltaFS filesys-
tem is unchanged, except that more free space is
available. The new base will ideally share unchanged
data with the old base, but this is dependent on the
Base implementation.

2.3 The Base

DeltaFS’s design is largely independent of the design
of the Base. However, the properties resulting from
a DeltaF'S instance depend greatly on the Base. The
current implementation supports two Base backends:
S3ROBase, a self-verifying read-only cloud filesystem
stored in Amazon S3, and POSIXBase, which uses
any directory on the Linux filesystem as a base. Each
of these bases deliver different properties: S3ROBase
supports freezing. When data is frozen to S3RO, the
user benefits from S3’s durability guarantees: freez-
ing periodically becomes a viable backup strategy, in

addition to a way of freeing up local disk space. The
space available on S3 is also virtually infinite, so this
becomes a way to store a filesystem of ever-increasing
size, even though it may get expensive. The Linux
filesystem base allows users to have the illiusion of,
for example, writing to a mounted CD-ROM, TAR or
ZIP archive. It also allows speculative I/O to be per-
formed which can later be “rolled back”, since the
Base directory is unchanged. The Linux filesystem
implementation does not yet support freezing.

Each Base backend must implement its own
Freezer module. A Freezer module combines the
event log with the base to produce a new base.

2.4 Delta Structure

DeltaF'S is intended to work well on solid-state disks
(SSDs). SSDs are divided into sectors (typically 128
KB), each of which have a limited number of writes
but can be read an unlimited number of times with-
out penalty. It is therefore desirable to spread filesys-
tem writes as evenly as possible across all sectors, to
avoid exhausting any one sector lifespan while others
still have many writes remaining. Writing any data
to a sector invariably writes the entire 128 KB, so it
is wise to batch writes into consecutive 128 KB pieces
that fall on the sector boundaries.

Cb@ Cb@ Q;& fb@ fb@ fb@ nb@
Yooy Yy Yy
Seg.1 |Seg.2 | Seg.3 | ’ |
Sector 0 Sector 6

Figure 1: Physical sectors being filled with logical
segments

DeltaFS batches log writes into 128 KB segments.
Segments are logical entities, and each new segment
bears an ever-increasing segment ID. Segments are
written to consecutive disk sectors, cycling around
the disk so that the write load to all sectors is bal-
anced. Initially, all sectors are initialized to con-
tain segment number zero. This is the null-segment.
Eventually, once the log has cycled through all sec-
tors, it will encounter sectors which contain non-null

segments. At this point, garbage collection is need
to determine which objects within a segment are
obsolete, and to consolidate segments that are par-
tially utilized to free up sectors. This is log clean-
ing is a typical log-structured filesystem problem.
The current DeltaFS implementation does not imple-
ment cleaning, but it does offer the ability to freeze,
thereby moving data to a remote filesystem and cre-
ating local free space. A garbage-collector would need
to determine which log events and data objects are
reachable from the current filesystem state; DeltaF'S
does provide a reachability graph, but time on the
project was too short to design a proper garbage col-
lector.

Segments contain a number of objects of variable
size. These objects may be either log events or data
objects, the difference being that the ordering of log
events is significant (because they must be replayed
to reconstruct current filesystem state), but data ob-
jects have no notion of ordering. Both kinds of ob-
jects have a unique identifier and an associated type;
there are many types of log objects, but only one
type of data object. Objects are packed into a seg-
ment starting from the least significant byte, and at
the same time a segment header table is created at
the most-significant end of the segment. The seg-
ment header table is an inventory of all objects in
the segment.

128 KB Segment ID: 1
| |Object ID Type 0ffset Size
S|4 LOG_WRITE 0 214
3 5 LOG_DATA 214 4192
T 6 LOG_MAP_INODE 4406 118

4406 Object 6

214 Object 5

0 Object 4

Figure 2: Segment Layout

When a DeltaFS is mounted, the entire disk is
scanned, and the segment header tables read from

every segment. DeltaF'S builds a map that asso-
ciates each object with its segment, and another map
from logical segments to physical sectors. This is
scan is relatively quick for small disks, but it makes
DeltaF'S impractical for disks larger than a few giga-
bytes. This is an aspect of the design that needs im-
provement; the fundamental challenge is that we can-
not designate any fixed sector(s) to store this meta-
information without violating the policy of balanced
sector writes.

2.5 Log Structure

The Log is a sequence of events that, when replayed,
reconstruct the state of the filesystem. It is a log-
ical log, meaning that the semantics of an event
are preserved (e.g., “create a directory entry named
README pointing to i-node number 109332”). This
is opposed to a physicial log, which would store the
above change as a new set of bits representing the
modified directory i-node. This decision of logical
versus physical log is discussed in greater depth in
the Conclusions section.

In addition to the obvious types of log events —
read, write, delete, create file, etc. — there are events
that modify the data structures DeltaFS uses to track
the mapping between the Base and the filesystem as
seen by the user. For example, the Linux VFS de-
mands that every i-node have a unique and persistent
number. DeltaF'S could use the same i-node numbers
as the Base filesystem, but then how could we assign
numbers to newly created files and directories, espe-
cially without reading the entire Base first to com-
pile a set of already-used i-node numbers? Instead,
DeltaF'S stores a mapping between Base i-node num-
bers and DeltaFS i-node numbers. DeltaFS numbers
are assigned on-demand, either when a new i-node is
created, or when an i-node is read from the Base for
the first time. This allows DeltaFS to store a map-
ping only for i-nodes it knows about, rather than
all i-nodes in the system. This i-node mapping is
logged in a LOG_MAP_INODE event; replaying this
log event will update the i-node mapping kept by
DeltaF'S, even though it does not directly affect the
state of any file or directory.

When DeltaFS is first initialized, the
log contains two events: a DBase event
(LOG_LINUX_BASE or LOG_S3RO_BASE) followed
by a LOG.MAP_INODE to give the root-directory
i-node a DeltaFS i-node number. When a freeze
occurs, LOG_ZEROQO is written, followed by a new
BASE event and relevant LOG_CACHE events.

2.6 Summary Structure

Directory and file summaries store pointers to a
struct stat filesystem meta-information structure. If
this pointer is NULL, then requested stat information
will be read from the Base.

Directory summaries store a directory entry diff
map, which associates entry names with either a
DeltaFS i-node ID, or the special value DELETED,
indicating that the named entry has been deleted
from the Base. If an entry lookup request for a named
entry is made and the directory summary has no such
entry, then it is fetched from the Base or an error is
returned if the Base i-node does not contain the en-
try. A request to list all entries must download the
Base i-node entry table, update it with the entry diff
map, and present the result.

Overlay
L

Data #17
-

’ Overlay
Offset 16373

Size 7010

Overlay
Offset 1024

Size 4096
Data #17 Data #36

-
OverffOverlay ’
Offsef Offset 8070
Size {Size 18354
DatafData #71

Figure 3: Successive write overlays show how a file
summary evolves over time

File i-node summaries store modified data as a
sorted list of overlays. An overlay consists of a start
offset, a size, a data object ID, and an offset into the
data object. Overlays cannot overlap, but there may
be gaps between them. If a read request falls into

Event Type Description

LOG_MAP_INODE

Associate a Base i-node ID with a DeltaFS i-node ID

LOG_CREATE_REGULAR_FILE
LOG_CREATE_DIRECTORY

Create file and directory i-nodes

LOG_SETATTR

Set the stat() meta-information for an i-node

LOG_SET_DIRENT

Create a directory entry, or delete if the special child id DELETE is used

LOG_WRITE

Write data from a given data object to a regular file

LOG_CACHE

Similar to LOG_WRITE, but only creates a weak link to a data object.

If a data object is only linked to by LOG_CACHE events, it can be safely
garbage-collected. When a freeze occurs, a flurry of LOG_.CACHE events is
used to mark all data objects as cache.

LOG_S3RO_BASE

Initialize DeltaF'S with the S3RO Base specified by the root directory stored
in S3 object bucket/root_hash and using the supplied credentials

LOG_LINUX_BASE

Initialize DeltaF'S with the Linux filesystem Base

LOG_ZERO

This is a meta-event that invalidates all previous log events.

When DeltaFS is mounted, it replays log events starting from the most
recent LOG_ZERO event; in this way, a freeze can invalidate all prior
events without physically deleting them from the disk.

Table 1: Log Event Types

such a gap, then data is fetched from the Base. As
successive writes occur, individual overlays may be
truncated and split to accomodate newer overlays. If
an overlay is complete covered by a new overlay, it
becomes unreachable, and the event that created it
may be garbage collected. If that, in turn, causes the
data object to become unreachable, then the data
object may also be garbage collected.

3 Related Work

The DeltaFS Base is a read-only, self-verifying net-
work filesystem. This type of filesystem was pio-
neered by SFSRO [1] , which stores file data and
metadata as blocks in a simple key-value storage
server. A cryptographic hash of the block is used
as the block’s key; upon fetching a block, an SF-
SRO client verifies the block’s authenticity by re-
computing its hash and comparing it to the key used
to fetch the block. SFSRO meta-data blocks link to
other blocks via these cryptographic hashes, so a ma-
licious server has no opportunity to corrupt any block
in the filesystem. The root block is signed by the pub-
lisher’s private key and indexed by a hash of the pub-

lic key. This allows the publisher to re-publish up-
dated filesystems with the same key. Several systems
build on SFSRO: CFS distributes and de-centralizes
the filesystem among many servers. [fixme: what
else?] DeltaFS could conceivably be built atop any
read-only filesystem, but an SFSRO-style filesystem
is attractive because it is immutable, and the correct-
ness of DeltaF'S will depend on the Base not changing.
The Base in DeltaFS will also attempt to aggregate
small files into larger blocks, as is done for Cumulus
[2] . By doing so, Cumulus reduces overhead in sev-
eral ways: compression, encryption, and Amazon S3
transaction expenses are all reduced by aggregation.

The Delta in DeltaFS is a locally-stored record of
local changes made on top of the read-only Base.
Logically, the Delta describes how two filesystems dif-
fer; applying the changes recorded in Delta to the
Base yields the current view of the local filesystem.
This kind of filesystem “diff” has long been a part of
incremental backup systems. The UNIX tar [3] and
rsync [4] utilities compute such a diff for the purposes
of backup and network synchronization, respectively.
More sophisticated backup systems maintain several
old versions of a filesystem, called snapshots. rdiff-
backup [5] stores older snapshots snapshots as diffs

with respect to the most recent snapshot, which is
a full backup. The primary difference between these
backup diffs and those used by DeltaFS are the per-
formance characteristics: The data structures used
for backup diffs are optimized for full filesystem re-
stores, not random access. Thus, they would be a
poor choice for use in a filesystem. Some revision con-
trol systems, such as Subversion [6] , are also able to
store filesystem diffs. However, a Subversion reposi-
tory would be strained with the sheer volume of reads
and writes made to a primary filesystem, and would
not perform well if used as our Delta. Perhaps the
closest related work to the Delta is the use of logs as
a means to record incremental changes to a filesys-
tem, as is done with log-structured filesystems [7]

These logs are kept in full log form for correct-
ness, but for efficiency, a cache of the most recent
version of changed files is kept. We expect to do the
same with DeltaFS. Logs are also used as a means
of tamper-proofing filesystems; when combined with
signatures, they can record an un-repudiable chain of
events. This is of greater concern for network filesys-
tems, as data may be stored on untrusted hosts; such
logs are used by Antiquity [8] and SUNDR [9] , among
others.

DeltaFS is intended to perform well enough to
serve as the root filesystem for a machine, containing
the operating system and installed software. In this
scenario, it would be highly desirable to pre-fill a lo-
cal cache with those blocks from the read-only Base
that are most likely to be needed to boot the operat-
ing system and are most frequently used during the
course of normal operation. Because DeltaFS aggre-
gates small files, the question arises of how to do ag-
gregation such that files likely to be used at the same
time are grouped together in the same block, thus
minimizing block downloads. This is closely related
to a large body of work that strives to optimize hard
disk performance by grouping data together that are
likely to be accessed sequentially, thus reducing the
movement of the disk’s head. One method for achiev-
ing this is to predict access patterns based on file
access traces of previous executions of the operating
system [10] . However, this kind of optimization is
beyond what we expect to accomplish for DeltaFS in
the context of a class project.

4 Implementation

Together, DeltaFS and S3RO are implemented in
11 lines of Python and over 4300 lines of C++.
Two Bases are implemented, S3ROBase and a Linux
filesystem Base, and new Bases can be implemented
with relative ease thanks to a flexible C++ design.
Other Base designs that were considered include a
local BerkeleyDB block store for S3RO (thus avoid-
ing S3 network problems), a Linux filesystem base
capable of freezing, and a decentralized Base such
as could be implemented using CFS [?]. Although
the implementation does work, there are several fea-
tures not implemented because of time constraints.
Notably, log-structured filesystem cleaning is not im-
plemented, so freezing is the only way to reclaim disk
space. There are many known bugs regarding correct
filesystem behavior — not all error cases are handled
correctly; for instance, running out of memory or disk
space will cause DeltaF'S to crash — so the system in
its current state is not suitable for any kind of real
usage.

4.1 S3RO

S3RO is a self-verifying read-only cloud filesystem
written for use with DeltaFS. It is a simplified imple-
mentation of SFS[1], the main difference being that
it uses Amazon S3 as a data store. S3RO stores i-
nodes and data chunks in a block store, indexed by
the SHA1 hash of the block. In this way, data can-
not be forged by a malicious server or middleman, be-
cause requested blocks must match their keys. Unlike
SFS, S3RO makes no provision to use keys based on
a cryptographic signature. This is intentional. With
SFS and other subsequent systems, this capability
was used to publish new versions of a filesystem. We
do not want this capability in DeltaFS; immutability
of the Base filesystem guarantees it will not change
while we are storing change information.

S3RO breaks large files into 656KB data chunks, but
does not do so for i-nodes: a directory with many
thousands of entries could translate into a large S3
object. Directory and file i-nodes are each stored in
their own S3 object; file i-nodes contain a list of all
data chunks in the file.

S3RO verifies the content hashes of all blocks it
downloads. Rudimentary client-side caching is done:
to improve performance, the most recently used 200
S3 objects are cached in memory. However, overall
performance of S3RO is very bad, because it is not
currently able to make parallel requests to S3 so a
great deal of time is wasted on latency. Additionaly,
the implementation is unreliable unless being run on
an EC2 instance; the S3 connection regularly times
out, and the current S3RO implementation wastes
much time recovering from these problems.

5 Results

DeltaFS remains too buggy for robust benchmarks,
so quantitative results are left as future work. Anec-
dotal results suggest that performance of DeltaFS
is very good for data stored locally, but the SSRO
Base filesystem is quite slow, making network traffic
a show-stopping bottleneck. It remains to be seen
how performance degrades after a long period of use
without freezing — a full disk of log events and highly
fragmented file overlay summaries will certainly not
be good for performance , but it is unknown just how
bad performance will be under these conditions.

6 Conclusions

6.1 Logical vs. Physical Log

The current design uses a logical log to store events.
The alternative would be a physical log, which would
store on the Delta a direct record of bitwise diffs for
the i-node and file data. A physical log would be sim-
pler, in that it would not require the many different
event types listed in Table 1. However, a physical
log retains more information about the intent behind
modifications, and this could be useful for future im-
provements; for example, in resolving freeze conflicts
in a hypothetical multi-user version of DeltaF'S. The
logical log may also be smaller, as small logical events
may translate into large phyiscal changes; then again,
it might not, since it also contains many more events
than a physical log would.

6.2 Future Work and Improvements

A number of improvements could be made to the
DeltaFS design.

LBFS [11] and Cumulus [2] use Rabin fingerprints
to break files into chunks with movable, content-
based chunk boundaries. This allows more efficient
diffs to be computed for files when bytes are inserted
or deleted, and could be applied to S3RO to make
freezing to S3RO use less bandwidth, storage space,
and time.

DeltaFS could also explore the idea of specula-
tion and reverting back to original base files. One
way to do this would be to overload the filesystem
namespace with special directives for DeltaFS. For
example, if the regular file README has been mod-
ified, DeltaFS could be modified to interpret the
path “README/original” as a request for the orig-
inal file from the Base. This would make it possible
to diff against an original version (“diff README
README/original”) and to revert to the original
(“cp README /original README”).

The DeltaFS log is currently stored in a block de-
vice or fixed-size file meant to simulate a block device.
However, there may be uses to storing this log in a
regular file that grows as the log grows. This would
allow per-directory speculation, where changes to a
directory could be stored temporarily in a DeltaFS
volume file, and then replayed to commit changes to
the actual directory. It also opens the door to nested
DeltaFS instances — that is, storing a DeltaF'S vol-
ume file inside another mounted DeltaFS filesystem.

However, the immediate and obvious future work is
much more mundane. The bugs discussed in the Im-
plementation section need to be fixed, and log clean-
ing should be implemented, in order to make it an
attractive system for actual work.

References

[1] Kevin Fu, M. Frans Kaashoek, and David
Mazieres. Fast and secure distributed filesystem
In Proc. 2nd USENIX OSDI, December 2000

[2] Michael Vrable, Stefan Savage, and Geoffrey M.
Voelker. Cumulus: Filesystem Backup to the

Cloud In Proc. 7th USENIX FAST, February
2009

Preston, W. C. Backup and Recovery. OReilly,
2006.

A. Tridgell Efficient Algorithms for Sorting and
Synchronization PhD thesis, Australian National
University, February 1999

Escoto, B. rdiff-backup.
http://www.nongnu.org/rdiff-backup/

Ben Collins-Sussman, Brian W. Fitzpatrick, C.
Michael Pilato Version Control with Subversion,
O’Reilly, 2008

M. Rosenblum and J. Ousterhout. The Design
and Implementation of a Log-Structured File Sys-
tem ACM Trans. on Computer Systems, February
1992.

H. Weatherspoon, P. Eaton, B. G. Chun, J. Ku-
biatowicz Antiquity: exploiting a secure log for
wide-area distributed storage In FuroSys 07,
March 2007

Jinyuan Li, Maxwell Krohn, David Mazieres, and
Dennis Shasha Secure untrusted data repository
In Proc. 6th USENIX OSDI, December 2004.

[10] Chris Ruemmler and John Wilkes Unix Disk Ac-

cess Patterns Hewlett-Packard Tech Report HPL-
92-152, December 1992

[11] A Muthitacharoen, B Chen, D Mazieres A low-

bandwidth network filesystem Proc. 18th ACM
SOSP, 2001

