
State Machine Replication

Jacqueline Wen



"A distributed system is one in which 
the failure of a computer didn't even 
know existed can render your own 
computer unusable" 

-Leslie Lamport



CAP Theorem



CAP Theorem

Can guarantee 
consistency



CAP Theorem

Can guarantee 
consistency

Best effort… 
without 
partitions



CAP Theorem

Can guarantee 
consistency

Best effort… 
without 
partitions

Only availability on 
your side of partition…



Timeline of papers ● “Time, clocks, and the ordering of events in a 
distributed system” (Leslie Lamport, 1978)

● “The Byzantine Generals Problem” (Leslie 
Lamport, 1984)

● “Implementing fault-tolerant services using 
the state machine approach: A Tutorial” (Fred 
Schneider, 1990)

● “The Part-Time Parliament” (Leslie Lamport, 
1998[?])

● “Chain replication for supporting high 
throughput and availability” (Robbert van 
Renesse + Fred Schneider, 2004)



Implementing Fault-Tolerant 
Services Using the State 

Machine
Approach: A Tutorial



Fred Schneider

Gates Hall 422



Failure modes

cr. 5414 slides

fail-stop crash

send omission receive omission

general omission

arbitrary failures with message authentication

Byzantine failures



Failure modes

cr. 5414 slides

fail-stop crash

send omission receive omission

general omission

arbitrary failures with message authentication

Byzantine failures



Bank example: single server



Bank example: single server



Bank example: multiple servers



Bank example: multiple servers



Bank example: multiple servers



Bank example: multiple servers



Bank example: multiple servers



Bank example: multiple servers



Bank example: multiple servers



Bank example: multiple servers (ideally)



Bank example: multiple servers (ideally)



Observation

● A replica is just a FSM
○ Ex. if deposit 50, add 50 to balance
○ Ex. if withdraw 50, subtract 50 from balance

● Replicas have deterministic transitions
● → if we have the same transactions in FSM, by definition we will have same result

○ Consensus! 



Discussion

● What would happen if replicas weren’t deterministic?
● What are the limitations of using FSMs for modeling replicas, especially in systems with infinite or 

highly dynamic states?



State machine approach

● REPLICATION!



State machine replication (SMR) approach

● REPLICATION!
● Replicas are coordinated

1. Agreement: every non faulty state 
machine replica receives every request

2. Order: every non faulty state machine 
replica processes its requests in same 
relative order

● Each server runs same deterministic 
state machine, executing same 
sequence of requests

● Failures masked



Replica coordination: agreement

● Any protocol that allows designated 
processor to disseminate a value to other 
processes such that
○ IR1 All non faulty processors agree on the 

same value
○ IR2 If the transmitter is non faulty, then all non 

faulty processors use its value as the one on 
which they agree



Replica 
coordination: order

Implementation: 

“Replica next processes the stable request 
with smallest unique identifier”

● O1: Requests issued by a single client 
to a given state machine sm are 
processed by sm in the order they 
were issued

● O2: If the fact that request r was 
made to a state machine sm by client 
c could have caused a request r’ to be 
made by a client c’ to sm, then sm 
processes r before r’



Order: Lamport Clocks

● assume FIFO channels, fail stop failures



Order: Synchronized Real-Time Clocks

● Assumes approximately synchronized clocks with known bounds on drift and message delay
● Each client tags request with real-time clock value as uid
● O1: clients can’t make > 1 requests on same clock tick
● O2: The clock synchronization bound δ must be less than the minimum message delivery time

○ If clocks are synchronized to within δ and message delay >δ, the timestamps respect 
causality



Order: Replica Generated Identifiers

● Replicas themselves propose identifiers 
during agreement phase

1. Each replica propose a candidate identifier 
cuid(sm_i, r) for request r

2. One candidate is selected as the final 
uid(r)



Discussion

● The paper separates agreement and order. Why is this separation useful? 
● The paper notes that order can sometimes be relaxed when requests commute. Any real-world examples 

where requests may commute? What trade-offs come with exploiting commutativity?
● Why is assigning unique identifiers to requests essential for ordering? What guarantees do these ids need 

to satisfy?
● The paper introduces ordering based on identifiers generated by the replicas themselves. How does this 

compare to client-assigned identifiers? What are the advantages and drawbacks?



Handling outputs

● Ordering and agreement only ensure internal consistency
○ Make sure that outputs also remain correct even if devices fail

● Replicate output devices if outputs go to outside world
○ Each voter collects outputs from all state machine replicas
○ Environment effectively becomes final voter

● Let clients act as voters if outputs returned internally
○ Fail stop: client trusts first response it receives
○ Byzantine: wait for t+1 identical responses



Tolerating faulty clients

● Replicate clients (with voting)
○ Requests buffered, corresponding commands run only once

● Defensive programming in state machines (restrict commands, add validity checks) so they can’t 
be corrupted by bad requests



Reconfiguration

● Remove faulty components and add repaired ones without stopping the service
● Require mechanisms for updating configuration and synchronizing new components with system state



Discussion

● Can you think of any examples/formats of SMR?
● What are the pros and cons of each of the ordering protocols?



Chain Replication for 
Supporting High 
Throughput and 
Availability



Robbert van Renesse + Fred Schneider

Gates Hall 422Gates Hall 433



Chain replication is a way of 
implementing state machine 
replication!



Strong consistency Reads see latest writes

● All accesses are seen by all servers in same 
order

● Only one consistent state can be observed



High throughput Queries look at tail of chain



High availability
*without partitions

System reconfigures on failures



Two request types

● query(id)
● update(id, val)



Assumptions 

● Failure method: fail stop
○ Can detect when server fails

● Reliable FIFO channel between 
servers



query(id)

id=5 id=5 id=5 id=5 id=5

head tail

rec0 rec0 rec0 rec0 rec0



query(id)

id=5 id=5 id=5 id=5 id=5

head tail

query(id)

rec0 rec0 rec0 rec0 rec0



query(id)

id=5 id=5 id=5 id=5 id=5

head tail

query(id)

rec0 rec0 rec0 rec0 rec0

5



update(id, val)

id=5 id=5 id=5 id=5 id=5

head tail

update(id, 8)

rec0 rec0 rec0 rec0 rec0



update(id, val)

id=5 id=5 id=5 id=5 id=5

head tail

update(id, 8)

rec0 rec0 rec0 rec0 rec0



update(id, val)

id=8 id=5 id=5 id=5 id=5

head tail

update(id, 8)

rec0 rec0 rec0 rec0 rec0

rec1



update(id, val)

id=8 id=8 id=5 id=5 id=5

head tail

update(id, 8)

rec0 rec0 rec0 rec0 rec0

rec1 rec1



update(id, val)

id=8 id=8 id=8 id=5 id=5

head tail

update(id, 8)

rec0 rec0 rec0 rec0 rec0

rec1 rec1 rec1



update(id, val)

id=8 id=8 id=8 id=8 id=5

head tail

update(id, 8)

rec0 rec0 rec0 rec0 rec0

rec1 rec1 rec1 rec1



update(id, val)

id=8 id=8 id=8 id=8 id=8

head tail

Ack: successupdate(id, 8)

rec0 rec0 rec0 rec0 rec0

rec1 rec1 rec1 rec1 rec1



Master service

● Detects server failures (max t failures)
● Informs server about new predecessor/successor (in new chain when server 

fails)
● Tells clients which server is head/tail of chain



Fault tolerance

● Head failure: second server in chain is new head
● Tail failure: predecessor of tail is new tail
● Middle failure: link around failed server in chain
● Extending chain: add new server to end of chain



Metrics

● Chain: chain replication
● p/b: primary backup
● weak-chain: chain replication modified so query request goes to 

any random server
● weak-p/b: primary backup modified so query request goes to any 

random server



Single Chain, No Failures



Multiple chains, no failures



Throughput with failures



Discussion

● Other than not supporting Byzantine failures, are there any other downsides of chain replication?
● Why is chain replication still widely used in industry?


