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"A distributed system is one in which 
the failure of a computer didn't even 
know existed can render your own 
computer unusable" 

-Leslie Lamport
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CAP Theorem

Can guarantee 
consistency

Best effort… 
without 
partitions

Only availability on 
your side of partition…



Timeline of papers ● “Time, clocks, and the ordering of events in a 
distributed system” (Leslie Lamport, 1978)

● “The Byzantine Generals Problem” (Leslie 
Lamport, 1984)

● “Implementing fault-tolerant services using 
the state machine approach: A Tutorial” (Fred 
Schneider, 1990)

● “The Part-Time Parliament” (Leslie Lamport, 
1998[?])

● “Chain replication for supporting high 
throughput and availability” (Robbert van 
Renesse + Fred Schneider, 2004)



Implementing Fault-Tolerant 
Services Using the State 

Machine
Approach: A Tutorial
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Observation

● A replica is just a FSM
○ Ex. if deposit 50, add 50 to balance
○ Ex. if withdraw 50, subtract 50 from balance

● Replicas have deterministic transitions
● → if we have the same transactions in FSM, by definition we will have same result

○ Consensus! 



Discussion

● What would happen if replicas weren’t deterministic?
● What are the limitations of using FSMs for modeling replicas, especially in systems with infinite or 

highly dynamic states?
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State machine replication (SMR) approach

● REPLICATION!
● Replicas are coordinated

1. Agreement: every non faulty state 
machine replica receives every request

2. Order: every non faulty state machine 
replica processes its requests in same 
relative order

● Each server runs same deterministic 
state machine, executing same 
sequence of requests

● Failures masked



Replica coordination: agreement

● Any protocol that allows designated 
processor to disseminate a value to other 
processes such that
○ IR1 All non faulty processors agree on the 

same value
○ IR2 If the transmitter is non faulty, then all non 

faulty processors use its value as the one on 
which they agree



Replica 
coordination: order

Implementation: 

“Replica next processes the stable request 
with smallest unique identifier”

● O1: Requests issued by a single client 
to a given state machine sm are 
processed by sm in the order they 
were issued

● O2: If the fact that request r was 
made to a state machine sm by client 
c could have caused a request r’ to be 
made by a client c’ to sm, then sm 
processes r before r’



Order: Lamport Clocks

● assume FIFO channels, fail stop failures



Order: Synchronized Real-Time Clocks

● Assumes approximately synchronized clocks with known bounds on drift and message delay
● Each client tags request with real-time clock value as uid
● O1: clients can’t make > 1 requests on same clock tick
● O2: The clock synchronization bound δ must be less than the minimum message delivery time

○ If clocks are synchronized to within δ and message delay >δ, the timestamps respect 
causality



Order: Replica Generated Identifiers

● Replicas themselves propose identifiers 
during agreement phase

1. Each replica propose a candidate identifier 
cuid(sm_i, r) for request r

2. One candidate is selected as the final 
uid(r)



Discussion

● The paper separates agreement and order. Why is this separation useful? 
● The paper notes that order can sometimes be relaxed when requests commute. Any real-world examples 

where requests may commute? What trade-offs come with exploiting commutativity?
● Why is assigning unique identifiers to requests essential for ordering? What guarantees do these ids need 

to satisfy?
● The paper introduces ordering based on identifiers generated by the replicas themselves. How does this 

compare to client-assigned identifiers? What are the advantages and drawbacks?



Handling outputs

● Ordering and agreement only ensure internal consistency
○ Make sure that outputs also remain correct even if devices fail

● Replicate output devices if outputs go to outside world
○ Each voter collects outputs from all state machine replicas
○ Environment effectively becomes final voter

● Let clients act as voters if outputs returned internally
○ Fail stop: client trusts first response it receives
○ Byzantine: wait for t+1 identical responses



Tolerating faulty clients

● Replicate clients (with voting)
○ Requests buffered, corresponding commands run only once

● Defensive programming in state machines (restrict commands, add validity checks) so they can’t 
be corrupted by bad requests



Reconfiguration

● Remove faulty components and add repaired ones without stopping the service
● Require mechanisms for updating configuration and synchronizing new components with system state



Discussion

● Can you think of any examples/formats of SMR?
● What are the pros and cons of each of the ordering protocols?



Chain Replication for 
Supporting High 
Throughput and 
Availability



Robbert van Renesse + Fred Schneider
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Chain replication is a way of 
implementing state machine 
replication!



Strong consistency Reads see latest writes

● All accesses are seen by all servers in same 
order

● Only one consistent state can be observed



High throughput Queries look at tail of chain



High availability
*without partitions

System reconfigures on failures



Two request types

● query(id)
● update(id, val)



Assumptions 

● Failure method: fail stop
○ Can detect when server fails

● Reliable FIFO channel between 
servers
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update(id, val)
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head tail

Ack: successupdate(id, 8)
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Master service

● Detects server failures (max t failures)
● Informs server about new predecessor/successor (in new chain when server 

fails)
● Tells clients which server is head/tail of chain



Fault tolerance

● Head failure: second server in chain is new head
● Tail failure: predecessor of tail is new tail
● Middle failure: link around failed server in chain
● Extending chain: add new server to end of chain



Metrics

● Chain: chain replication
● p/b: primary backup
● weak-chain: chain replication modified so query request goes to 

any random server
● weak-p/b: primary backup modified so query request goes to any 

random server



Single Chain, No Failures



Multiple chains, no failures



Throughput with failures



Discussion

● Other than not supporting Byzantine failures, are there any other downsides of chain replication?
● Why is chain replication still widely used in industry?


