# Time, Clocks, and the Ordering of Events in a Distributed System

By Leslie Lamport

# Agenda

Leslie Lamport

Why we care about ordering events

Logical Clocks

Resource Exclusion

**Physical Clocks** 

Clock Synchronization

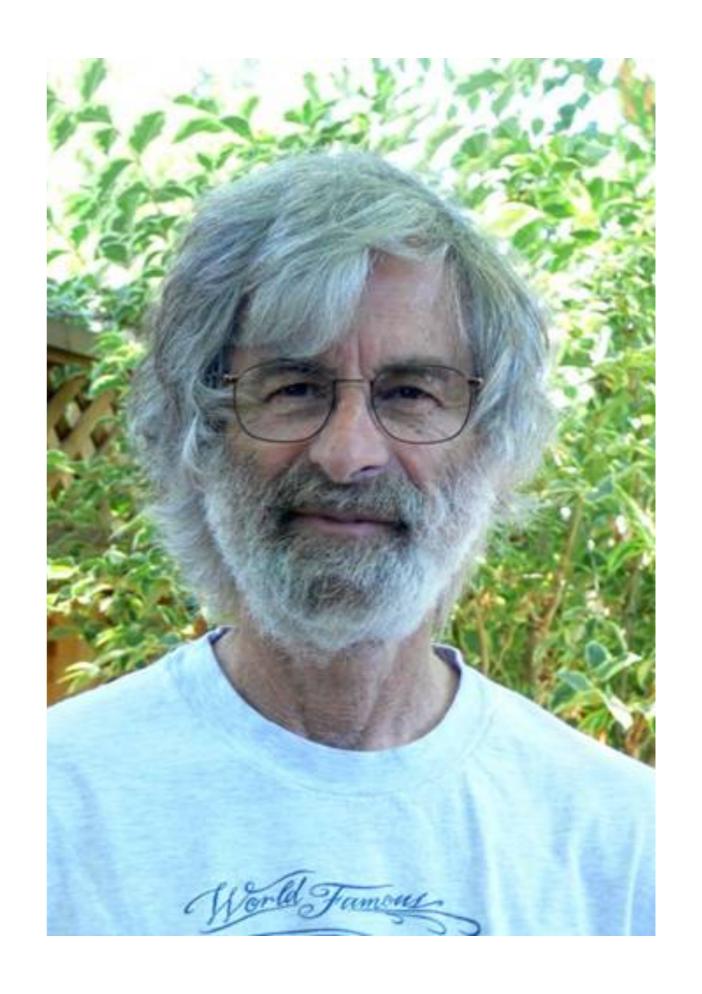
**Network Time Protocol** 

## Leslie Lamport

#### b.1941, PhD at Brandeis

Net worth: ?

- Developed many foundational ideas in distributed systems:
  - Logical clocks (this paper)
  - Paxos (won the Turing award primarily for this)
  - Byzantine generals problem
  - Sequential consistency
- Started LaTeX
- Worked in a handful of industry labs until retiring from MSR earlier this year



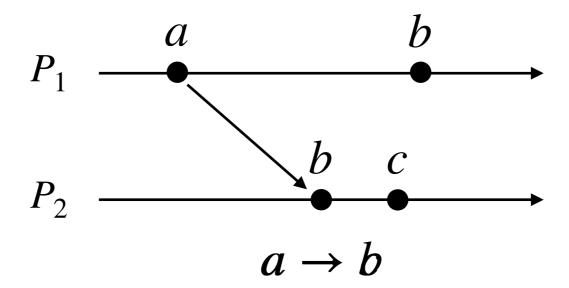
# Ordering Events in Distributed Systems Why do we care?

- There are many applications where you care about the ordering of events
  - Financial system
  - Laser tag
  - Resource exclusion

### Where was the internet in 1978?

- ARPANET started in 1969
- TCP/IP proposed in 1974, wouldn't be the official packet switching protocol on ARPANET until 1983
- This is the start of distributed systems

# **The Partial Ordering**



- If a happens before b on the same process,  $a \rightarrow b$
- If a is the sending of a message and b is the receipt of that message,  $a \rightarrow b$
- Transitive, such that  $a \to b$  and  $b \to c$  implies  $a \to c$
- Not reflexive, such that  $a \nrightarrow a$
- We say that two events a and b such that  $a \nrightarrow b$  and  $b \nrightarrow a$  are concurrent

# **Logical Clocks**

How can we observe the partial ordering?

Clock: a function C from events to timestamps such that  $a \rightarrow b$  implies  $C\langle a \rangle < C\langle b \rangle$ 

# **Logical Clocks**

#### The Clock Condition

#### **C**1:

two events  $a \to b$  in the same process  $P_i$  satisfy  $C_i\langle a \rangle < C_i\langle b \rangle$ 

#### **IR1**:

Every time an event (including communication) happens on process  $P_i$ , increment  $C_i$ 

$$P_{1} \xrightarrow{a} b$$

$$C_{1} = 1 \qquad C_{1} = 2 \qquad C_{1} = 3$$

$$a \rightarrow b$$

# **Logical Clocks**

#### The Clock Condition

#### **C2**:

if a is the sending of a message from  $P_i$ , and b is the receipt of that message by  $P_i$ ,  $C_i\langle a\rangle < C_i\langle b\rangle$ 

#### **IR2**:

(a) every message contains a timestamp from the sender (b)  $P_j$  sets  $C_j:=\max(C_j\langle b\rangle,C_i\langle a\rangle+\epsilon)$ 

$$P_{1}$$

$$C_{1} = 1$$

$$m(2)$$

$$C_{1} = 2$$

$$b$$

$$C_{2} = 1$$

$$C_{2} = 3$$

$$a \rightarrow b$$

#### Discussion

- Are logical clocks robust to Byzantine faults? If not, what do we lose when there are adversarial timestamps being sent?
- Does it matter whether you increment the clock before vs after an event?

# Making this a total ordering

- We want to define a tiebreaker for a total ordering ⇒
  - This allows all processes to agree on the ordering
  - e.g. if i < j then  $C_i \langle a \rangle = C_j \langle b \rangle$  implies  $b \Rightarrow a$

#### **Premise**

A set of processes share a resource, but only one process can use it at a time

We want an algorithm that ensures:

- The resource has to be released by the holder for it to change hands
- Requests are granted in the order they're made
- If every lease is eventually released, every request is eventually granted

#### **Assumptions**

Messages are received in the order they're sent

All messages are eventually delivered

# Resource Exclusion Setup



$$C_A = 1$$

Req(0, **A**)

 $queue_A$ 

B

$$C_B = 2$$

Req(0, A)

 $queue_B$ 

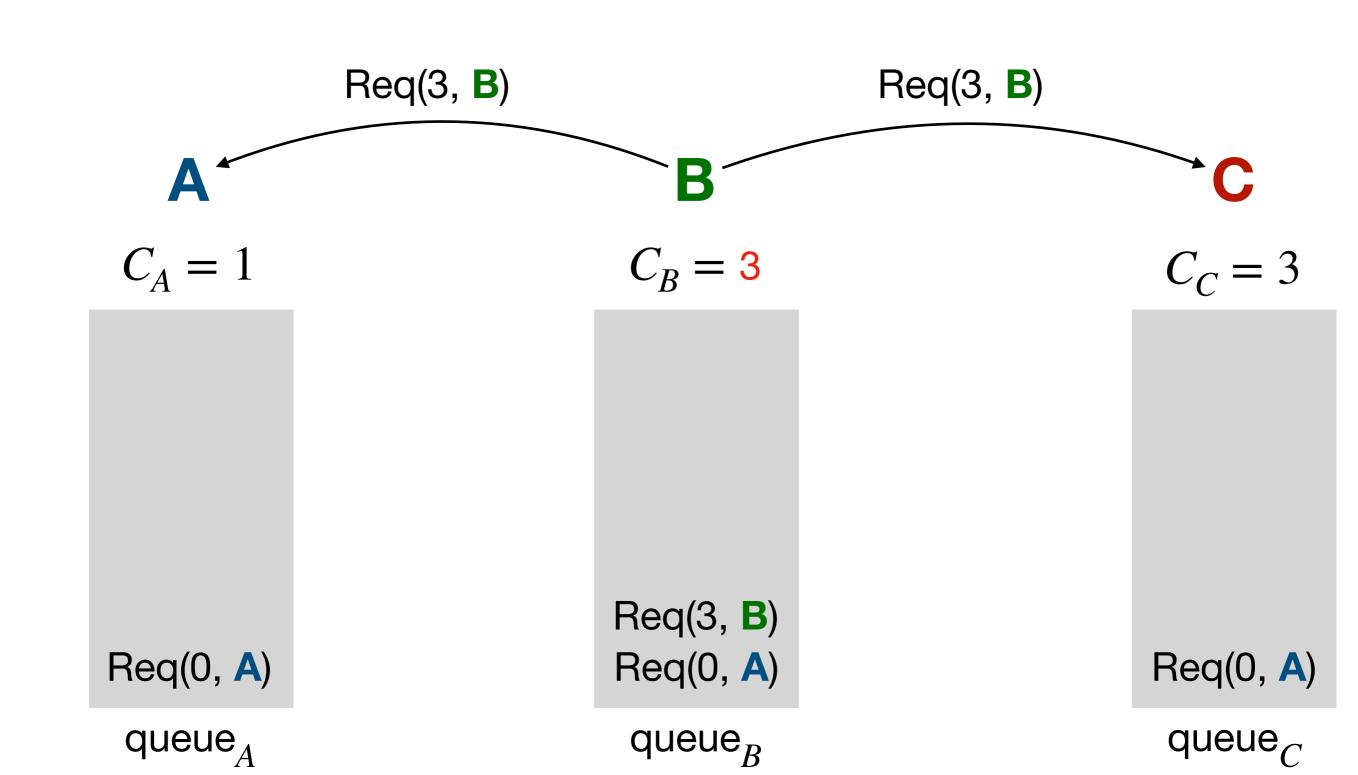
C

$$C_C = 3$$

Req(0, **A**)

 $queue_C$ 

#### B requests the resource



#### A and C receive the request



$$C_A = 4$$

Req(3, B)

Req(0, A)

 $queue_A$ 

B

$$C_{B} = 3$$

Req(3, B)

Req(0, A)

 $queue_R$ 

C

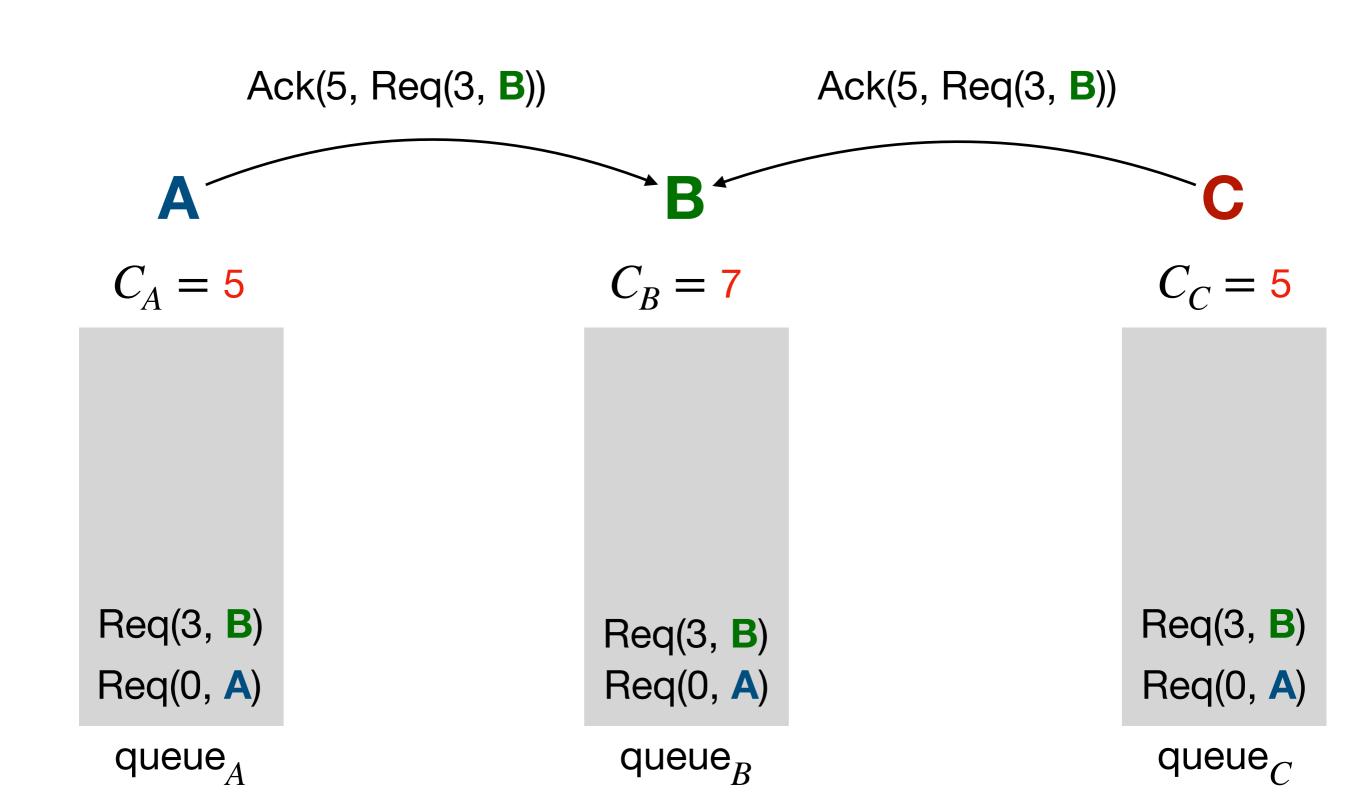
$$C_C = 4$$

Req(3, B)

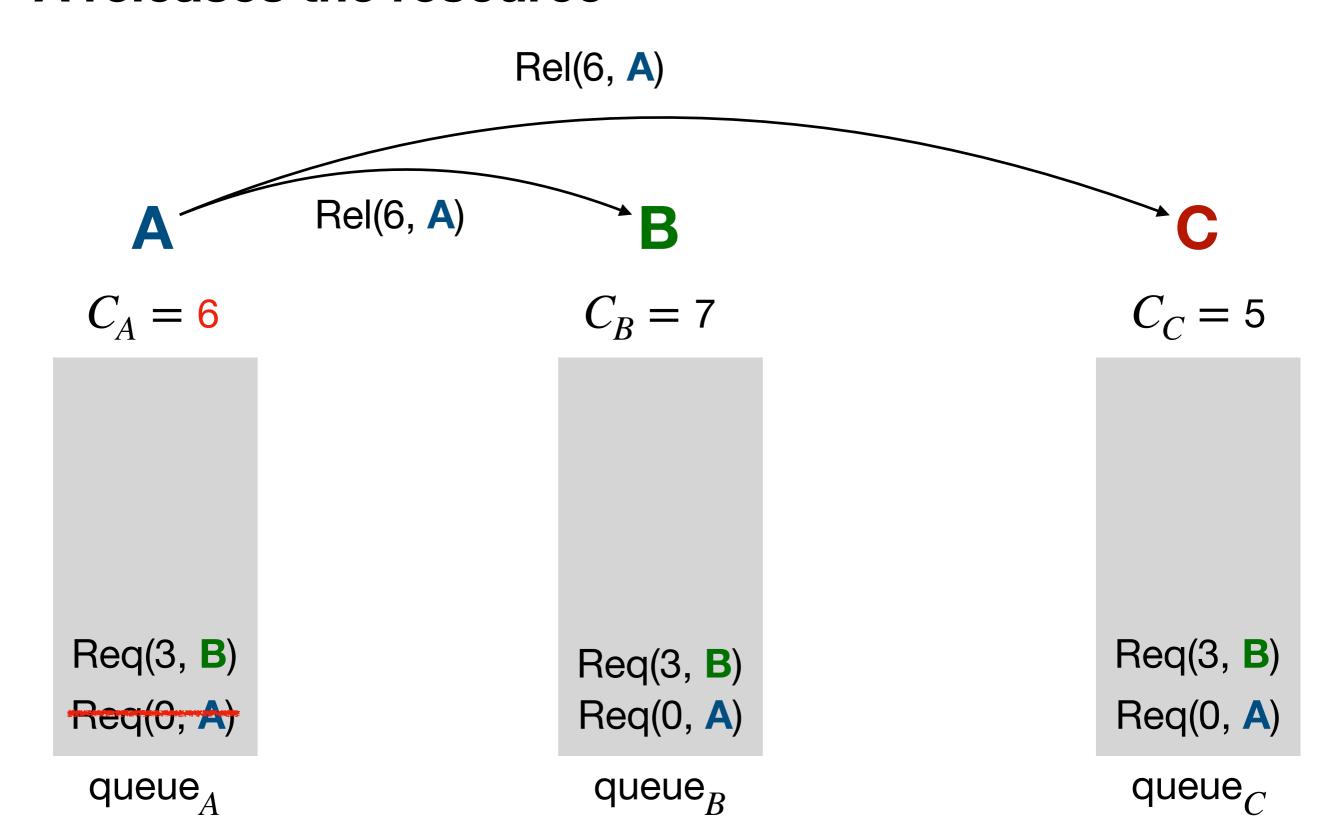
Req(0, A)

queue<sub>C</sub>

#### A and C acknowledge the request



#### A releases the resource



B and C receive the release & B starts using the resource

A

$$C_{A} = 6$$

Req(3, B)

Req(0, A)

 $queue_A$ 

B

$$C_B = 8$$

Req(3, **B**) Req(0, **A**)

$$queue_B$$

C

$$C_{C} = 7$$

Req(3, B)

Req(0, A)

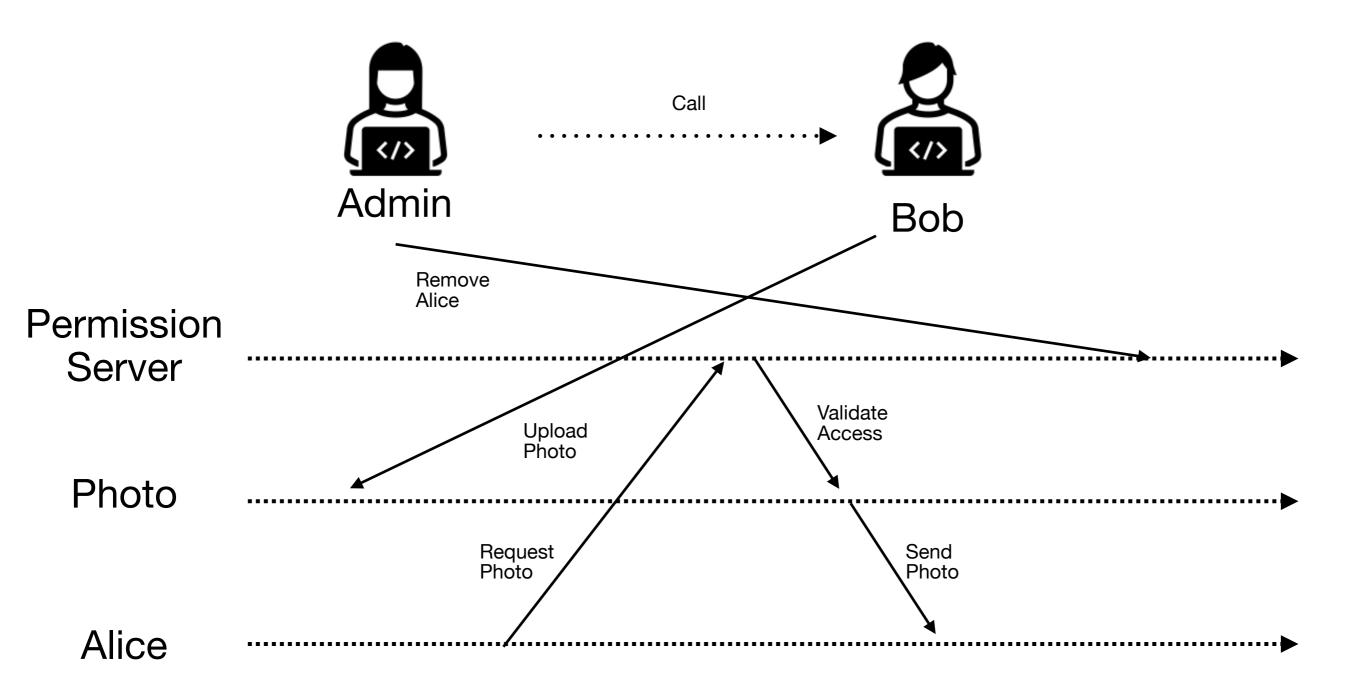
queue

# Logical clocks now

- Vector clocks (1988)
  - Each process tracks a logical clock for every other process, and sends a 'vector' of clocks as its timestamp
  - Gives a complete view of which events are causally dependent

### A weakness of ⇒

We often care about the actual ordering of events



# The Strong Clock Condition

#### **Ensuring total ordering**

- Let → be the partial ordering defined by the actual order that events in the system happened in
- Events outside the system (such as the phone call) could be placed in the order
- Clocks which track physical time could provide such an ordering

# Important definitions

Offset: In absolute terms, the difference between  $C_i(t)$  and  $C_j(t)$ 

"How far off are our clocks?"

**Skew**: The difference between 
$$\frac{dC_i(t)}{dt}$$
 and  $\frac{dC_j(t)}{dt}$ 

"How much faster is your clock than mine?"

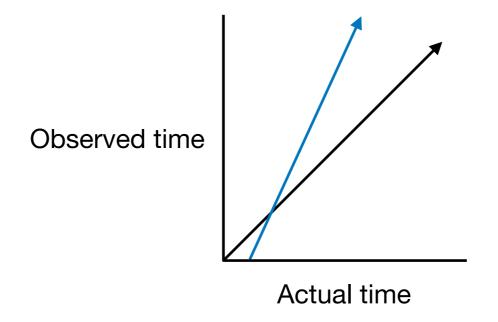
# **Physical Clocks**

#### A reasonable set of properties

Let  $C_i$  be the continuous, differentiable clock kept by process  $P_i$ 

 $C_i$  should progress forward at ~the same rate as actual time (have small **skew**)

**PC1**: 
$$\exists \kappa \ll 1$$
 such that  $\forall i, \left| \frac{dC_i(t)}{dt} - 1 \right| < \kappa$ 

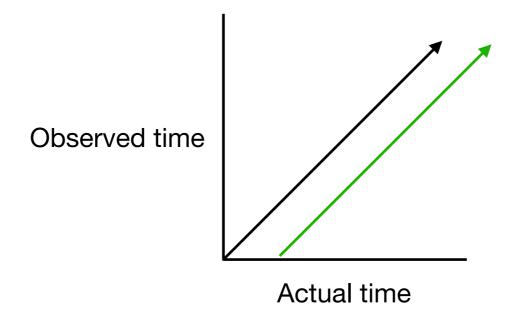


# **Physical Clocks**

#### A reasonable set of properties

All the  $C_i$  should ~agree on what time it is (have small offset)

**PC2**: For some small constant  $\epsilon$ ,  $\forall i, j, |C_i(t) - C_j(t)| < \epsilon$ 



# Ensuring clocks respect -->

#### And thereby avoid 'anomalous behavior'

- Let  $\mu$  be a time shorter than the minimum latency of a message
- $C_i(t + \mu) C_j(t) > 0$  must hold for all i, j.
- This gives us the  $\kappa$  and  $\epsilon$  we need for our physical clocks to respect the physical ordering:  $C_i(t+\mu)-C_j(t)>(1-\kappa)\mu$  implies  $\epsilon(1-\kappa)\leq\mu$

# Update rules for physical clocks Modified from logical clock rules

#### **IR1**:

Every time an event (including communication) happens on process  $P_i$ , increment  $C_i$ 

becomes

#### **IR1**':

Any time  $P_i$  is not receiving a message,  $C_i$  is differentiable and  $\frac{dC_i(t)}{dt} > 0$ , such that its time is moving forward

# Update rules for physical clocks Modified from legisel clock rules

#### Modified from logical clock rules

#### **IR2**:

(a) every message contains a timestamp from the sender

(b) 
$$P_j$$
 sets  $C_j := \max(C_j \langle b \rangle, C_i \langle a \rangle + \epsilon)$ 

becomes

#### **IR2**':

- (a) every message contains a timestamp from the sender
- (b) upon receiving a message with timestamp  $t_m$  at time t',  $P_j$  sets  $C_j := \max(C_j(t'), t_m + \mu_m)$ , where  $\mu_m$  is a lower bound on the latency of the message.

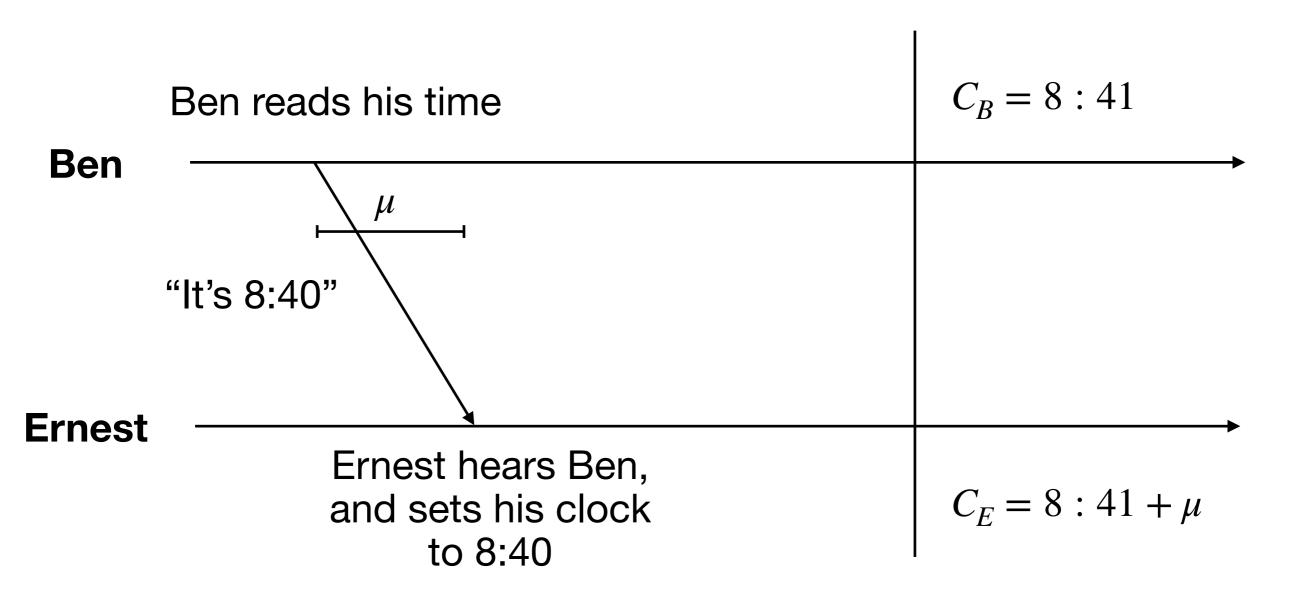
### Discussion

Why do clocks have to be monotonic?

# Network Time Protocol (NTP)

# Why it's hard to synchronize clocks

#### A minimal 2 party example



# Why it's hard to synchronize clocks We can't measure $\mu$ !

- It's often impossible to measure 1 way latency
- We can only measure the round trip latency
- This even extends to the speed of light

# Prior art "What time is it?"

- Timestamp broadcasts by radio
- NIST Automated Computer Time Service (ACTS) (1988)
- Many standards for sending a timestamp over the internet
  - IP suite daytime protocol
  - IP suite time protocol
  - ICMP timestamp protocol
- Unix timed daemon keeps in sync with a master clock

#### Discussion

- What's wrong with the radio broadcast approach?
- What about GPS made it unsuitable for precise calibration of clocks until the Clinton administration? What about now?

#### **NTP Overview**

- 1. Send and receive NTP packets from peers in your NTP subnet
- Collect several observations from each peer, and take the lowest offset as the most reliable measurement, recording things like jitter as indicators of peer quality
- 3. Filter out untrustworthy or unreliable peers
- 4. Use the *offset* between your clock and a weighted average of your trustworthy peers to adjust your *skew*

$$T_{i-2} \approx T_{i-3} + \frac{\delta}{2} + \theta$$

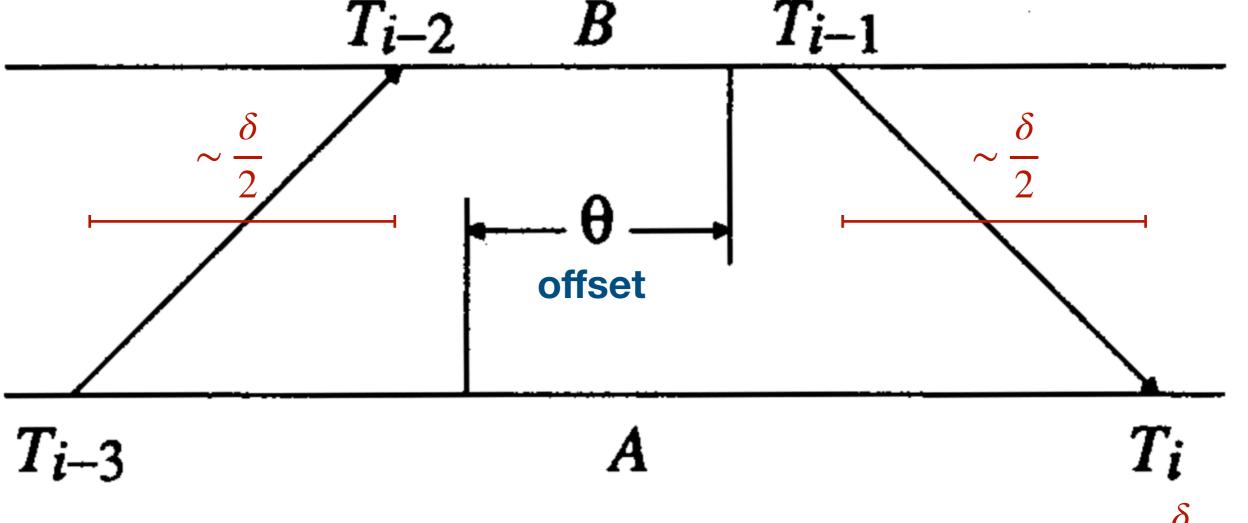


Fig. 3. Measuring delay and offset.  $T_i \approx T_{i-1} + \frac{\delta}{2} - \theta$ 

$$\theta_{\text{measured}} = \frac{(T_{i-2} - T_{i-3}) + (T_{i-1} - T_i)}{2}$$

# Adjusting your clock

- When adjusting, we can't set our clock to a lower value
- Instead of changing the value outright, we tweak our skew up and down so our offset to the consensus of our peers will approach 0
- The bigger our offset, the more we change our skew
- Physically, the clock hardware is counting some physical phenomenon, and we adjust how many of that phenomenon are in a second

### Discussion

- NTP packets contain  $T_{i-3}$ ,  $T_{i-2}$ , and  $T_{i-1}$ . Why is  $T_{i-3}$  needed?
- What changes could you make to the networking hardware to make clock synchronization more precise?
- At what level of the stack (NIC/driver/kernel/user space) should the timestamp for a message be computed?