
Presented by Ben Landrum 10/7/25

Time, Clocks, and the 
Ordering of Events in a 
Distributed System
By Leslie Lamport



Agenda

Leslie Lamport

Why we care about ordering events

Logical Clocks

Resource Exclusion

Physical Clocks

Clock Synchronization

Network Time Protocol



Leslie Lamport
b.1941, PhD at Brandeis 

Net worth: ?

• Developed many foundational 
ideas in distributed systems:


• Logical clocks (this paper)


• Paxos (won the Turing 
award primarily for this)


• Byzantine generals problem


• Sequential consistency


• Started LaTeX


• Worked in a handful of 
industry labs until retiring from 
MSR earlier this year



• There are many applications where you care about the ordering 
of events


• Financial system 


• Laser tag


• Resource exclusion

Why do we care?
Ordering Events in Distributed Systems



• ARPANET started in 1969


• TCP/IP proposed in 1974, wouldn’t be the official packet 
switching protocol on ARPANET until 1983


• This is the start of distributed systems

Where was the internet in 1978?



• If  happens before  on the same process, 


• If  is the sending of a message and  is the receipt of that message, 



• Transitive, such that  and  implies 


• Not reflexive, such that 


• We say that two events  and  such that  and  are concurrent

a b a → b

a b
a → b

a → b b → c a → c

a ↛ a

a b a ↛ b b ↛ a

The Partial Ordering
P1

P2

a b

a → b

b

a → c

c



Clock: a function  from events to 
timestamps such that 

C

a → b implies C⟨a⟩ < C⟨b⟩

How can we observe the partial ordering?
Logical Clocks



C1: 

two events  in the same process  satisfy 




IR1: 

Every time an event (including communication) happens 

on process , increment 

a → b Pi
Ci⟨a⟩ < Ci⟨b⟩

Pi Ci

The Clock Condition
Logical Clocks

P1

a b

a → b

C1 = 1 C1 = 2 C1 = 3



C2: 

if  is the sending of a message from , and  is the 

receipt of that message by , 


IR2: 

(a) every message contains a timestamp from the sender


       (b)  sets  

a Pi b
Pj Ci⟨a⟩ < Cj⟨b⟩

Pj Cj := max(Cj⟨b⟩, Ci⟨a⟩ + ϵ)

The Clock Condition
Logical Clocks

P1

P2

a

b

a → b

C1 = 1 C1 = 2

C2 = 1 C2 = 3

m(2)



• Are logical clocks robust to Byzantine faults? If not, what do we 
lose when there are adversarial timestamps being sent?


• Does it matter whether you increment the clock before vs after 
an event?

Discussion



• We want to define a tiebreaker for a total ordering  


• This allows all processes to agree on the ordering


• e.g. if  then  implies  

⇒

i < j Ci⟨a⟩ = Cj⟨b⟩ b ⇒ a

Making this a total ordering



Premise
Resource Exclusion

A set of processes share a resource, but only one process can 
use it at a time


We want an algorithm that ensures:


• The resource has to be released by the holder for it to 
change hands


• Requests are granted in the order they’re made


• If every lease is eventually released, every request is 
eventually granted



Messages are received in the order they’re sent


All messages are eventually delivered

Assumptions
Resource Exclusion



Resource Exclusion
Setup

queueA

A B C

Req(0, A)

CA = 1 CB = 2 CC = 3

queueB

Req(0, A)
queueC

Req(0, A)



Resource Exclusion
B requests the resource

queueA

A B C

Req(0, A)

CA = 1 CC = 3

queueB

Req(0, A)
queueC

Req(0, A)

Req(3, B) Req(3, B)

3CB =

Req(3, B)



Resource Exclusion
A and C receive the request

queueA

A B C

Req(0, A)
queueB

Req(0, A)
queueC

Req(0, A)
Req(3, B) Req(3, B)

3CB =4CA = 4CC =

Req(3, B)



Resource Exclusion
A and C acknowledge the request

queueA

A B C

Req(0, A)
queueB

Req(0, A)
queueC

Req(0, A)
Req(3, B) Req(3, B)

7CB =5CA = 5CC =

Ack(5, Req(3, B)) Ack(5, Req(3, B))

Req(3, B)



Resource Exclusion
A releases the resource

queueA

A B C

Req(0, A)
queueB

Req(0, A)
queueC

Req(0, A)
Req(3, B) Req(3, B)

7CB =6CA = 5CC =

Rel(6, A)

Rel(6, A)

Req(3, B)



Resource Exclusion
B and C receive the release & B starts using the resource

queueA

A B C

Req(0, A)
queueB

Req(0, A)
queueC

Req(0, A)
Req(3, B) Req(3, B)

8CB =6CA = 7CC =

Req(3, B)



• Vector clocks (1988)


• Each process tracks a logical clock for every other process, 
and sends a ‘vector’ of clocks as its timestamp


• Gives a complete view of which events are causally dependent

Logical clocks now



We often care about the actual ordering of events
A weakness of ⇒

Permission 
Server

Photo

Alice

Admin Bob
Remove 
Alice

Upload 
Photo

Request 
Photo

Validate 
Access

Send 
Photo

Call



• Let  be the partial ordering defined by the actual order that 
events in the system happened in


• Events outside the system (such as the phone call) could be 
placed in the order


• Clocks which track physical time could provide such an ordering

↠

Ensuring total ordering
The Strong Clock Condition



Offset: In absolute terms, the difference between  and 


“How far off are our clocks?” 

Skew: The difference between  and 


“How much faster is your clock than mine?”

Ci(t) Cj(t)

dCi(t)
dt

dCj(t)
dt

Important definitions



Let  be the continuous, differentiable clock kept by process 


 should progress forward at ~the same rate as 
actual time (have small skew)


PC1:  such that 

Ci Pi

Ci

∃κ ≪ 1 ∀i,
dCi(t)

dt
− 1 < κ

A reasonable set of properties
Physical Clocks

Observed time

Actual time



All the  should ~agree on what time it is (have 
small offset)


PC2: For some small constant , 

Ci

ϵ ∀i, j, |Ci(t) − Cj(t) | < ϵ

A reasonable set of properties
Physical Clocks

Observed time

Actual time



• Let  be a time shorter than the minimum latency of a message


•  must hold for all . 


• This gives us the  and  we need for our physical clocks to 
respect the physical ordering:  
implies 

μ

Ci(t + μ) − Cj(t) > 0 i, j

κ ϵ
Ci(t + μ) − Cj(t) > (1 − κ)μ

ϵ(1 − κ) ≤ μ

And thereby avoid ‘anomalous behavior’
Ensuring clocks respect ↠



IR1: 


Every time an event (including communication) happens on process 
, increment 


becomes


IR1’: 


Any time  is not receiving a message,  is differentiable and 

, such that its time is moving forward

Pi Ci

Pi CidCi(t)
dt

> 0

Modified from logical clock rules
Update rules for physical clocks



IR2:


(a) every message contains a timestamp from the sender


(b)  sets  


becomes


IR2’: 


(a) every message contains a timestamp from the sender


(b) upon receiving a message with timestamp  at time ,  sets 
 , where  is a lower bound on the 

latency of the message.

Pj Cj := max(Cj⟨b⟩, Ci⟨a⟩ + ϵ)

tm t′￼ Pj
Cj := max(Cj(t′￼), tm + μm) μm

Modified from logical clock rules
Update rules for physical clocks



• Why do clocks have to be monotonic?

Discussion



Network Time Protocol 
(NTP)



A minimal 2 party example
Why it’s hard to synchronize clocks

Ben

Ernest

“It’s 8:40”

Ben reads his time

Ernest hears Ben, 
and sets his clock 

to 8:40

CB = 8 : 41

CE = 8 : 41 + μ

μ



• It’s often impossible to measure 1 way latency


• We can only measure the round trip latency 

• This even extends to the speed of light

We can’t measure !μ
Why it’s hard to synchronize clocks



• Timestamp broadcasts by radio


• NIST Automated Computer Time Service (ACTS) (1988)


• Many standards for sending a timestamp over the internet


• IP suite daytime protocol


• IP suite time protocol


• ICMP timestamp protocol


• Unix timed daemon keeps in sync with a master clock 

“What time is it?”
Prior art



• What’s wrong with the radio broadcast approach?


• What about GPS made it unsuitable for precise calibration of 
clocks until the Clinton administration? What about now?

Discussion



1. Send and receive NTP packets from peers in your NTP subnet


2. Collect several observations from each peer, and take the 
lowest offset as the most reliable measurement, recording 
things like jitter as indicators of peer quality


3. Filter out untrustworthy or unreliable peers


4. Use the offset between your clock and a weighted average of 
your trustworthy peers to adjust your skew

NTP Overview



offset

θmeasured =
(Ti−2 − Ti−3) + (Ti−1 − Ti)

2

Ti−2 ≈ Ti−3 +
δ
2

+ θ

Ti ≈ Ti−1 +
δ
2

− θ

∼
δ
2

∼
δ
2



• When adjusting, we can’t set our clock to a lower value


• Instead of changing the value outright, we tweak our skew up 
and down so our offset to the consensus of our peers will 
approach 0


• The bigger our offset, the more we change our skew


• Physically, the clock hardware is counting some physical 
phenomenon, and we adjust how many of that phenomenon are 
in a second

Adjusting your clock



• NTP packets contain , , and . Why is  needed?


• What changes could you make to the networking hardware to 
make clock synchronization more precise?


• At what level of the stack (NIC/driver/kernel/user space) should 
the timestamp for a message be computed?

Ti−3 Ti−2 Ti−1 Ti−3

Discussion


