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V
S

Dual Cores TEN Cores !!!
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Uh Oh
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Uh Oh

We have many cores, 
but they’re not working together!

We need to modify our {OS, applications}
to scale to many cores.
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An Analysis of Linux Scalability to Many Cores
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Background
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Background

Multicore CPUs emerge around 2005,
why?

Reference: https://www.researchgate.net/figure/Evolution-of-multi-core-processors-1_fig1_281534326
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Background

Multicore CPUs emerge around 2005,
as clock frequency hits the wall.

Reference: https://www.cs.cornell.edu/courses/cs3410/2025sp/lectures/22-multicore-notes.pdf
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Background

Core counts have skyrocketed since 2020 
EPYC 9965 packs 192 cores on a single die!

EPYC 9965 Topology w/ 2 CPUs. 12



Scalability and Amdahl’s law

We do not get 192x speedup for using 192 cores.

Scalability: 
The ability to handle more works / fulfills work faster as CPU core 
count increases.
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Scalability and Amdahl’s law

Amdahl’s law:

 

𝑆𝑝𝑒𝑒𝑑𝑈𝑝 =
𝑇𝑎𝑙𝑙

𝑇𝑆𝑒𝑟𝑖𝑎𝑙 +
𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑁 
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Motivation
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Motivation: Scalability problems

Amdahl’s law:

Scalability is limited by sequential part,
And worsen by contention on resources.
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Motivation: Scalability problems

Amdahl’s law:

Scalability is limited by sequential part,
And worsen by contention on resources.

Discussion: Any examples?
 

17

𝑆𝑝𝑒𝑒𝑑𝑈𝑝 =
𝑇𝑎𝑙𝑙

𝑇𝑆𝑒𝑟𝑖𝑎𝑙 +
𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑁 



Scalability: Spinlocks

I can finish in 20 
minutes

Total Time:
20 Minutes
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Scalability: Spinlocks

I can finish in 20 
minutes

Total Time:
10 Minutes (CPU0)+

5 Minutes(Transition)+
10 Minutes(CPU6)=

25 Minutes!Let me do a part!
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Scalability: Spinlocks

I can finish in 20 
minutes

Total Time:
20 Minutes (CPU0)+

10 Minutes(Arguing)=
30 Minutes!

You are doing 
wrong!

This is (basically) what happens to Linux Spinlock Design!

This way!

Watch out!
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Scalability: Spinlocks

Socket

Core

Wants a Spin Lock 

Possesses a Spin Lock 
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Scalability: Spinlocks

Wants a Spin Lock 

Possesses a Spin Lock 

Allocate a ticket;
Query
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Scalability: Spinlocks

Wants a Spin Lock 

Possesses a Spin Lock 

Grants the lock
~200 cycles
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Scalability: Spinlocks

Wants a Spin Lock 

Possesses a Spin Lock 

Query

Query

Query
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Scalability: Spinlocks

Wants a Spin Lock 

Possesses a Spin Lock 

Query

Query

Query

Memory bandwidth is 
filled with queries!
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Scalability: Spinlocks

Wants a Spin Lock 

Possesses a Spin Lock 

Reply, Grant Lock
~800 cycles

Reply,
Not Granting Lock

t = atomic_inc(lock>next_ticket);

while (t != lock->current_ticket)

 /* Spin */
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Motivation: Scalability problems

Scalability is limited by sequential part,
And worsen by contention on resources: locks, atomics
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Motivation: Kernel Scalability

Scalability is limited by sequential part,
And worsen by contention on resources: locks, atomics

These bottlenecks exist in Linux Kernel!
e.g. TLB, filesystem, I/O handling…
And applications spend a lot of time in the kernel.
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Motivation: Kernel Scalability

Application Single Core
Kernel Time Percentage

Mail Server 69%

Object Cache 80%

Web Server 60%

Database 1.5% (82% at 48 cores)

Parallel Build 7.6%

File Indexer 1.9% (23% at 48 cores)

MapReduce 3% (16% at 48 cores)
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Motivation: Kernel Scalability

Many studies have been trying to investigate this problem.

Discussion:
• Will the common monolithic kernel work well?
• What kind of kernel design is the best fit?
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Motivation: Kernel Scalability

Many studies have been trying to investigate this problem.

Some come up with new OS design: 
Corey, Barrelfish, fos……
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Motivation: Kernel Scalability

Many studies have been trying to investigate this problem.

Some come up with new OS design: 
Corey: applications should control sharing
• An exo-kernel like design
• Memory address space (sharing) is controlled by applications
• Kernel avoids unnecessary sharing, provides interfaces for explicit sharing
• Some cores may be dedicated to kernel functions
• A proof-of-concept system
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Motivation: Kernel Scalability

“There is a sense in the community that traditional kernel designs won’t scale well on 
multicore processors: that applications will spend an increasing fraction of their time in the 
kernel as the number of cores increases.”

This work focuses on:
• What’s the bottleneck for (applications on) current Linux OS?
• How serious?
• Can we remedy them?
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Methods

35



Methods

1. Run experiments on stock Linux, vary core count;
2. Identify bottlenecks for multicore execution;
3. Fix the bottlenecks; Goto 1.
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Methods

1. Run experiments on stock Linux, vary core count;
2. Identify bottlenecks for multicore execution;
3. Fix the bottlenecks; Goto 1.

• MOSBench, a set of 7 applications for testing parallel performance.
• 16 Patches ( 3k loc ) for Linux kernel;
• Scale 7 real applications efficiently to 48 cores.

Contributions
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MOSBench

Set 1 - Applications not scaling well on Linux
• Memcached: Object cache. Launches one instance per core to avoid 

contention on the global hash table.
• Apache: Web server. Uses one instance, one process per core, multiple 

threads.
• Metis: MapReduce Library. Combined with an application that generates 

inverted indices.
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MOSBench

Set 2 - Applications designed for parallel execution and 
kernel-intensive
• Exim: Mail server. A single master process is started and forks a new 

process for each connection.
• PostgreSQL: Database server. One process per connection.
• Gmake: Parallel build tool. Used to build Linux kernel for benchmark, 

creates many processes.
• Psearchy: File indexer. An indexer is run on each core, which shares a 

working queue of input files.
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Setup

Hardware:
• 8 * (6 core AMD M4985 CPU) 
• “Weird” topology
• Non Unified Memory Access
• RAM disk to avoid disk bottleneck

NUMA Domian
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Setup

Hardware:
• 8 * (6 core AMD M4985 CPU) 
• “Weird” topology
• Non Unified Memory Access
• RAM disk to avoid disk bottleneck

Software:
• Latest Linux kernel (2.6.35-rc5)
• 7 commonly-used server software

NUMA Domian
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Case studies
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Starting Point: Poor Scaling

Speedup achieved using 48 cores
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Exim

Performance Drop Profiling Result

Reference: https://www.usenix.org/legacy/events/osdi10/tech/slides/boyd-wickizer.pdf
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Exim

Performance Drop Profiling Result
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Exim Bottleneck

Bottleneck Code Profiling Result
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Exim Bottleneck: Reading Mount Table

Bottleneck Code

This is a critical path of sys_open;
Hashing itself is cheap;
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Exim Bottleneck: Reading Mount Table

Bottleneck Code

This is a critical path of sys_open;
Hashing itself is cheap;
Spinlock is consuming much time!
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Exim Bottleneck: Reading Mount Table

Wants a Spin Lock 

Possesses a Spin Lock 

Query

Query

Query

Memory bandwidth is 
filled with queries!
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Exim Solution: Mount Caches

Bottleneck Code

Implement Per-core mount caches;
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Exim Solution: Mount Caches

Bottleneck Code

Implement Per-core mount caches;
Depending Observation: mount table is 
rarely modified;
When modified, invalidate all cache.
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Exim Performance Improvement

Performance
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Exim Performance Improvement

Performance

Still not Linear Scaling!
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Exim Bottleneck: Reference Counting

Profiling result w/ mount cache
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Exim Bottleneck: Reference Counting

Profiling result w/ mount cache

Bottleneck Code
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Exim Bottleneck: Reference Counting

Bottleneck Code

Reference Counting indicates 
whether kernel can free an object;

Here dentry is file name cache.

56



Exim Bottleneck: Reference Counting

Bottleneck Code

Reference Counting indicates 
whether kernel can free an object;

Here dentry is file name cache.

Vars are locked to a certain cache 
line with atomic operations --

Reading a var from memory is slow 
due to cache mechanism;

Interconnect is congested.

Request

Request

Request

Reading other 
vars but delayed
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Reference Counting Solution: Sloppy Counters

Observation: 
The true and precise value of reference count is typically not needed.

Thus, we can use a “loose” counter,
Each core holds a few “spare” references.
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Solution: Sloppy Counters

A sloppy counter represents one logical counter as 
• a single shared central counter, and 
• a set of per-core counts of spare references

Central CounterCore 0 
Counter

Core 1 
Counter

Core 0 Core 1

0
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Solution: Sloppy Counters

When a core wants a reference, it first look at local counter for spare 
references.

Central CounterCore 0 
Counter

Core 1 
Counter

Core 0 Core 1

0
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Solution: Sloppy Counters

When a core wants a reference, it first look at local counter for spare 
references.
If and only if there’s no spare ones at local counter, it’ll go to central 
counters.

Central CounterCore 0 
Counter

Core 1 
Counter

Core 0 Core 1

0
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Solution: Sloppy Counters

When a core wants a reference, it first look at local counter for spare 
references.
If and only if there’s no spare ones at local counter, it’ll go to central 
counters.

Central CounterCore 0 
Counter

Core 1 
Counter

Core 0 Core 1

1
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Solution: Sloppy Counters

When a core releases a reference, it’ll go back to the local counter.

Central CounterCore 0 
Counter

Core 1 
Counter

Core 0 Core 1

1
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Solution: Sloppy Counters

When a core releases a reference, it’ll go back to the local counter.

Central CounterCore 0 
Counter

Core 1 
Counter

Core 0 Core 1

1
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Central CounterCore 0 
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Solution: Sloppy Counters

Central CounterCore 0 
Counter

Core 1 
Counter

Core 0 Core 1

4
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Solution: Sloppy Counters

Central CounterCore 0 
Counter

Core 1 
Counter

Core 0 Core 1

4
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Solution: Sloppy Counters

Under certain circumstances, the local spare references are 
released

Central CounterCore 0 
Counter

Core 1 
Counter

Core 0 Core 1

1
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Solution: Sloppy Counters

Advantages of Sloppy Counters include:

• Simple to use: No need to change application code

• Scale well: No cache misses in common case

• Acceptable memory usage: O(N)
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Solution: Sloppy Counters

Performance
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Corner case: False sharing

The cores are requiring different vars;
These vars happen to fall into the same cache line

Lock 1 Lock 2 Lock 3 Lock 4

74



False sharing solution

Simply split to different cache lines.

Lock 1

Lock 2

Lock 3

Lock 4
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Discussion
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• What’s the common reason behind those bottlenecks?

• Will there be a common solution? 



Results and Conclusions
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Memcached Apache Exim PostgreSQL GMake P-Searchy Metis

Mount Table
Per core Caching X X

File Table
Per core Caching X X

Sloppy Counter X X X

inode allocation
Avoid locks X X

Lock-free dentry
Avoid locks X X

Super Page
Fewer locks X

DMA buffer
Allocate local memory X X

Network Stack
Avoid false sharing X X X

Parallel Accept
Per core Socket queue X

App Modification X X X
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Memcached Apache Exim PostgreSQL GMake P-Searchy Metis

Mount Table
Per core Caching X X

File Table
Per core Caching X X

Sloppy Counter X X X

inode allocation
Avoid locks X X

Lock-free dentry
Avoid locks X X

Super Page
Fewer locks X

DMA buffer
Allocate local memory X X

Network Stack
Avoid false sharing X X X

Parallel Accept
Per core Socket queue X

App Modification X X X

79Uses a “Generation Counter” to check for modifications during comparison  



Memcached Apache Exim PostgreSQL GMake P-Searchy Metis

Mount Table
Per core Caching X X

File Table
Per core Caching X X

Sloppy Counter X X X

inode allocation
Avoid locks X X

Lock-free dentry
Avoid locks X X

Super Page
Fewer locks X

DMA buffer
Allocate local memory X X

Network Stack
Avoid false sharing X X X

Parallel Accept
Per core Socket queue X

App Modification X X X

80Programs NIC to direct packets to different queues



Performance after changes
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Performance after changes

82



Conclusion

• Current Linux (2010) is capable for scaling server software, up to 
48 cores.

• Some necessary parallel programming techniques need to be 
applied to kernel / applications.
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Discussion
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Limitations

• Ignore File System (using RAM disks)

• Limited to 48 cores, a few applications
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Limitations

• Ignore File System (using RAM disks)

• Limited to 48 cores, a few applications

• Many applications could be disk/memory bounded!

• How are cores binded and selected (when not using all of them)?

• Will different topology affect the results?

• Will the solutions scale (in theory)? 86



Next Steps?

87
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