
An Analysis of Linux Scalability to Many Cores
Authors: Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey

Pesterev, M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich
OSDI 2010

Presenter: Yifan Li

1

V
S

Dual Cores TEN Cores !!!

2

Uh Oh

3

Uh Oh

We have many cores,
but they’re not working together!

We need to modify our {OS, applications}
to scale to many cores.

4

An Analysis of Linux Scalability to Many Cores

5

Background

6

Author Introduction

(First Author)
Silas Boyd-Wickizer
Now: CTO at Valora

(Last Author)
Nickolai Zeldovich

Professor at MIT

Affiliation: MIT CSAIL/PDOS

7

Author Introduction

Austin T. Clements

Affiliation: MIT CSAIL/PDOS

Yandong Mao (Now at Databricks)

Aleksey Pesterev (Now at Philo)

M. Frans Kaashoek
(Professor, MIT)

Author of Exokernel

Robert Morris
(Professor, MIT)

Morris Worm

8

Background

Multicore CPUs emerge around 2005,
why?

Reference: https://www.researchgate.net/figure/Evolution-of-multi-core-processors-1_fig1_281534326
9

Background

Multicore CPUs emerge around 2005,
as clock frequency hits the wall.

Reference: https://www.cs.cornell.edu/courses/cs3410/2025sp/lectures/22-multicore-notes.pdf
10

Background

Multicore CPUs emerge around 2005,
as clock frequency hits the wall.

Reference: https://www.cs.cornell.edu/courses/cs3410/2025sp/lectures/22-multicore-notes.pdf
11

Background

Core counts have skyrocketed since 2020
EPYC 9965 packs 192 cores on a single die!

EPYC 9965 Topology w/ 2 CPUs. 12

Scalability and Amdahl’s law

We do not get 192x speedup for using 192 cores.

Scalability:
The ability to handle more works / fulfills work faster as CPU core
count increases.

13

Scalability and Amdahl’s law

Amdahl’s law:

𝑆𝑝𝑒𝑒𝑑𝑈𝑝 =
𝑇𝑎𝑙𝑙

𝑇𝑆𝑒𝑟𝑖𝑎𝑙 +
𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑁

14

Motivation

15

Motivation: Scalability problems

Amdahl’s law:

Scalability is limited by sequential part,
And worsen by contention on resources.

16

𝑆𝑝𝑒𝑒𝑑𝑈𝑝 =
𝑇𝑎𝑙𝑙

𝑇𝑆𝑒𝑟𝑖𝑎𝑙 +
𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑁

Motivation: Scalability problems

Amdahl’s law:

Scalability is limited by sequential part,
And worsen by contention on resources.

Discussion: Any examples?

17

𝑆𝑝𝑒𝑒𝑑𝑈𝑝 =
𝑇𝑎𝑙𝑙

𝑇𝑆𝑒𝑟𝑖𝑎𝑙 +
𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

𝑁

Scalability: Spinlocks

I can finish in 20
minutes

Total Time:
20 Minutes

18

Scalability: Spinlocks

I can finish in 20
minutes

Total Time:
10 Minutes (CPU0)+

5 Minutes(Transition)+
10 Minutes(CPU6)=

25 Minutes!Let me do a part!

19

Scalability: Spinlocks

I can finish in 20
minutes

Total Time:
20 Minutes (CPU0)+

10 Minutes(Arguing)=
30 Minutes!

You are doing
wrong!

This is (basically) what happens to Linux Spinlock Design!

This way!

Watch out!

20

Scalability: Spinlocks

Socket

Core

Wants a Spin Lock

Possesses a Spin Lock

21

Scalability: Spinlocks

Wants a Spin Lock

Possesses a Spin Lock

Allocate a ticket;
Query

22

Scalability: Spinlocks

Wants a Spin Lock

Possesses a Spin Lock

Grants the lock
~200 cycles

23

Scalability: Spinlocks

Wants a Spin Lock

Possesses a Spin Lock

Query

Query

Query

24

Scalability: Spinlocks

Wants a Spin Lock

Possesses a Spin Lock

Query

Query

Query

Memory bandwidth is
filled with queries!

25

Scalability: Spinlocks

Wants a Spin Lock

Possesses a Spin Lock

Reply, Grant Lock
~800 cycles

Reply,
Not Granting Lock

t = atomic_inc(lock>next_ticket);

while (t != lock->current_ticket)

 /* Spin */

26

Motivation: Scalability problems

Scalability is limited by sequential part,
And worsen by contention on resources: locks, atomics

27

Motivation: Kernel Scalability

Scalability is limited by sequential part,
And worsen by contention on resources: locks, atomics

These bottlenecks exist in Linux Kernel!
e.g. TLB, filesystem, I/O handling…
And applications spend a lot of time in the kernel.

28

Motivation: Kernel Scalability

Application Single Core
Kernel Time Percentage

Mail Server 69%

Object Cache 80%

Web Server 60%

Database 1.5% (82% at 48 cores)

Parallel Build 7.6%

File Indexer 1.9% (23% at 48 cores)

MapReduce 3% (16% at 48 cores)

29

Motivation: Kernel Scalability

Many studies have been trying to investigate this problem.

Discussion:
• Will the common monolithic kernel work well?
• What kind of kernel design is the best fit?

31

Motivation: Kernel Scalability

Many studies have been trying to investigate this problem.

Some come up with new OS design:
Corey, Barrelfish, fos……

32

Motivation: Kernel Scalability

Many studies have been trying to investigate this problem.

Some come up with new OS design:
Corey: applications should control sharing
• An exo-kernel like design
• Memory address space (sharing) is controlled by applications
• Kernel avoids unnecessary sharing, provides interfaces for explicit sharing
• Some cores may be dedicated to kernel functions
• A proof-of-concept system

33

Motivation: Kernel Scalability

“There is a sense in the community that traditional kernel designs won’t scale well on
multicore processors: that applications will spend an increasing fraction of their time in the
kernel as the number of cores increases.”

This work focuses on:
• What’s the bottleneck for (applications on) current Linux OS?
• How serious?
• Can we remedy them?

34

Methods

35

Methods

1. Run experiments on stock Linux, vary core count;
2. Identify bottlenecks for multicore execution;
3. Fix the bottlenecks; Goto 1.

36

Methods

1. Run experiments on stock Linux, vary core count;
2. Identify bottlenecks for multicore execution;
3. Fix the bottlenecks; Goto 1.

• MOSBench, a set of 7 applications for testing parallel performance.
• 16 Patches (3k loc) for Linux kernel;
• Scale 7 real applications efficiently to 48 cores.

Contributions

37

MOSBench

Set 1 - Applications not scaling well on Linux
• Memcached: Object cache. Launches one instance per core to avoid

contention on the global hash table.
• Apache: Web server. Uses one instance, one process per core, multiple

threads.
• Metis: MapReduce Library. Combined with an application that generates

inverted indices.

38

MOSBench

Set 2 - Applications designed for parallel execution and
kernel-intensive
• Exim: Mail server. A single master process is started and forks a new

process for each connection.
• PostgreSQL: Database server. One process per connection.
• Gmake: Parallel build tool. Used to build Linux kernel for benchmark,

creates many processes.
• Psearchy: File indexer. An indexer is run on each core, which shares a

working queue of input files.

39

Setup

Hardware:
• 8 * (6 core AMD M4985 CPU)
• “Weird” topology
• Non Unified Memory Access
• RAM disk to avoid disk bottleneck

NUMA Domian

40

Setup

Hardware:
• 8 * (6 core AMD M4985 CPU)
• “Weird” topology
• Non Unified Memory Access
• RAM disk to avoid disk bottleneck

Software:
• Latest Linux kernel (2.6.35-rc5)
• 7 commonly-used server software

NUMA Domian

41

Case studies

42

Starting Point: Poor Scaling

Speedup achieved using 48 cores

43

Exim

Performance Drop Profiling Result

Reference: https://www.usenix.org/legacy/events/osdi10/tech/slides/boyd-wickizer.pdf
44

Exim

Performance Drop Profiling Result

45

Exim Bottleneck

Bottleneck Code Profiling Result

46

Exim Bottleneck: Reading Mount Table

Bottleneck Code

This is a critical path of sys_open;
Hashing itself is cheap;

47

Exim Bottleneck: Reading Mount Table

Bottleneck Code

This is a critical path of sys_open;
Hashing itself is cheap;
Spinlock is consuming much time!

48

Exim Bottleneck: Reading Mount Table

Wants a Spin Lock

Possesses a Spin Lock

Query

Query

Query

Memory bandwidth is
filled with queries!

49

Exim Solution: Mount Caches

Bottleneck Code

Implement Per-core mount caches;

50

Exim Solution: Mount Caches

Bottleneck Code

Implement Per-core mount caches;
Depending Observation: mount table is
rarely modified;
When modified, invalidate all cache.

51

Exim Performance Improvement

Performance

52

Exim Performance Improvement

Performance

Still not Linear Scaling!

53

Exim Bottleneck: Reference Counting

Profiling result w/ mount cache

54

Exim Bottleneck: Reference Counting

Profiling result w/ mount cache

Bottleneck Code

55

Exim Bottleneck: Reference Counting

Bottleneck Code

Reference Counting indicates
whether kernel can free an object;

Here dentry is file name cache.

56

Exim Bottleneck: Reference Counting

Bottleneck Code

Reference Counting indicates
whether kernel can free an object;

Here dentry is file name cache.

Vars are locked to a certain cache
line with atomic operations --

Reading a var from memory is slow
due to cache mechanism;

Interconnect is congested.

Request

Request

Request

Reading other
vars but delayed

57

Reference Counting Solution: Sloppy Counters

Observation:
The true and precise value of reference count is typically not needed.

Thus, we can use a “loose” counter,
Each core holds a few “spare” references.

58

Solution: Sloppy Counters

A sloppy counter represents one logical counter as
• a single shared central counter, and
• a set of per-core counts of spare references

Central CounterCore 0
Counter

Core 1
Counter

Core 0 Core 1

0

59

Solution: Sloppy Counters

When a core wants a reference, it first look at local counter for spare
references.

Central CounterCore 0
Counter

Core 1
Counter

Core 0 Core 1

0

60

Solution: Sloppy Counters

When a core wants a reference, it first look at local counter for spare
references.
If and only if there’s no spare ones at local counter, it’ll go to central
counters.

Central CounterCore 0
Counter

Core 1
Counter

Core 0 Core 1

0

61

Solution: Sloppy Counters

When a core wants a reference, it first look at local counter for spare
references.
If and only if there’s no spare ones at local counter, it’ll go to central
counters.

Central CounterCore 0
Counter

Core 1
Counter

Core 0 Core 1

1

62

Solution: Sloppy Counters

When a core releases a reference, it’ll go back to the local counter.

Central CounterCore 0
Counter

Core 1
Counter

Core 0 Core 1

1

63

Solution: Sloppy Counters

When a core releases a reference, it’ll go back to the local counter.

Central CounterCore 0
Counter

Core 1
Counter

Core 0 Core 1

1

64

Solution: Sloppy Counters

When a core releases a reference, it’ll go back to the local counter.

Central CounterCore 0
Counter

Core 1
Counter

Core 0 Core 1

1

65

Solution: Sloppy Counters

Central CounterCore 0
Counter

Core 1
Counter

Core 0 Core 1

2

66

Solution: Sloppy Counters

Central CounterCore 0
Counter

Core 1
Counter

Core 0 Core 1

2

67

Solution: Sloppy Counters

Central CounterCore 0
Counter

Core 1
Counter

Core 0 Core 1

2

68

Solution: Sloppy Counters

Central CounterCore 0
Counter

Core 1
Counter

Core 0 Core 1

4

69

Solution: Sloppy Counters

Central CounterCore 0
Counter

Core 1
Counter

Core 0 Core 1

4

70

Solution: Sloppy Counters

Under certain circumstances, the local spare references are
released

Central CounterCore 0
Counter

Core 1
Counter

Core 0 Core 1

1

71

Solution: Sloppy Counters

Advantages of Sloppy Counters include:

• Simple to use: No need to change application code

• Scale well: No cache misses in common case

• Acceptable memory usage: O(N)

72

Solution: Sloppy Counters

Performance

73

Corner case: False sharing

The cores are requiring different vars;
These vars happen to fall into the same cache line

Lock 1 Lock 2 Lock 3 Lock 4

74

False sharing solution

Simply split to different cache lines.

Lock 1

Lock 2

Lock 3

Lock 4

75

Discussion

76

• What’s the common reason behind those bottlenecks?

• Will there be a common solution?

Results and Conclusions

77

Memcached Apache Exim PostgreSQL GMake P-Searchy Metis

Mount Table
Per core Caching X X

File Table
Per core Caching X X

Sloppy Counter X X X

inode allocation
Avoid locks X X

Lock-free dentry
Avoid locks X X

Super Page
Fewer locks X

DMA buffer
Allocate local memory X X

Network Stack
Avoid false sharing X X X

Parallel Accept
Per core Socket queue X

App Modification X X X

78

Memcached Apache Exim PostgreSQL GMake P-Searchy Metis

Mount Table
Per core Caching X X

File Table
Per core Caching X X

Sloppy Counter X X X

inode allocation
Avoid locks X X

Lock-free dentry
Avoid locks X X

Super Page
Fewer locks X

DMA buffer
Allocate local memory X X

Network Stack
Avoid false sharing X X X

Parallel Accept
Per core Socket queue X

App Modification X X X

79Uses a “Generation Counter” to check for modifications during comparison

Memcached Apache Exim PostgreSQL GMake P-Searchy Metis

Mount Table
Per core Caching X X

File Table
Per core Caching X X

Sloppy Counter X X X

inode allocation
Avoid locks X X

Lock-free dentry
Avoid locks X X

Super Page
Fewer locks X

DMA buffer
Allocate local memory X X

Network Stack
Avoid false sharing X X X

Parallel Accept
Per core Socket queue X

App Modification X X X

80Programs NIC to direct packets to different queues

Performance after changes

81

Performance after changes

82

Conclusion

• Current Linux (2010) is capable for scaling server software, up to
48 cores.

• Some necessary parallel programming techniques need to be
applied to kernel / applications.

83

Discussion

84

Limitations

• Ignore File System (using RAM disks)

• Limited to 48 cores, a few applications

85

Limitations

• Ignore File System (using RAM disks)

• Limited to 48 cores, a few applications

• Many applications could be disk/memory bounded!

• How are cores binded and selected (when not using all of them)?

• Will different topology affect the results?

• Will the solutions scale (in theory)? 86

Next Steps?

87

	Slide 1: An Analysis of Linux Scalability to Many Cores
	Slide 2: VS
	Slide 3: Uh Oh
	Slide 4: Uh Oh
	Slide 5: An Analysis of Linux Scalability to Many Cores
	Slide 6: Background
	Slide 7: Author Introduction
	Slide 8: Author Introduction
	Slide 9: Background
	Slide 10: Background
	Slide 11: Background
	Slide 12: Background
	Slide 13: Scalability and Amdahl’s law
	Slide 14: Scalability and Amdahl’s law
	Slide 15: Motivation
	Slide 16: Motivation: Scalability problems
	Slide 17: Motivation: Scalability problems
	Slide 18: Scalability: Spinlocks
	Slide 19: Scalability: Spinlocks
	Slide 20: Scalability: Spinlocks
	Slide 21: Scalability: Spinlocks
	Slide 22: Scalability: Spinlocks
	Slide 23: Scalability: Spinlocks
	Slide 24: Scalability: Spinlocks
	Slide 25: Scalability: Spinlocks
	Slide 26: Scalability: Spinlocks
	Slide 27: Motivation: Scalability problems
	Slide 28: Motivation: Kernel Scalability
	Slide 29: Motivation: Kernel Scalability
	Slide 31: Motivation: Kernel Scalability
	Slide 32: Motivation: Kernel Scalability
	Slide 33: Motivation: Kernel Scalability
	Slide 34: Motivation: Kernel Scalability
	Slide 35: Methods
	Slide 36: Methods
	Slide 37: Methods
	Slide 38: MOSBench
	Slide 39: MOSBench
	Slide 40: Setup
	Slide 41: Setup
	Slide 42: Case studies
	Slide 43: Starting Point: Poor Scaling
	Slide 44: Exim
	Slide 45: Exim
	Slide 46: Exim Bottleneck
	Slide 47: Exim Bottleneck: Reading Mount Table
	Slide 48: Exim Bottleneck: Reading Mount Table
	Slide 49: Exim Bottleneck: Reading Mount Table
	Slide 50: Exim Solution: Mount Caches
	Slide 51: Exim Solution: Mount Caches
	Slide 52: Exim Performance Improvement
	Slide 53: Exim Performance Improvement
	Slide 54: Exim Bottleneck: Reference Counting
	Slide 55: Exim Bottleneck: Reference Counting
	Slide 56: Exim Bottleneck: Reference Counting
	Slide 57: Exim Bottleneck: Reference Counting
	Slide 58: Reference Counting Solution: Sloppy Counters
	Slide 59: Solution: Sloppy Counters
	Slide 60: Solution: Sloppy Counters
	Slide 61: Solution: Sloppy Counters
	Slide 62: Solution: Sloppy Counters
	Slide 63: Solution: Sloppy Counters
	Slide 64: Solution: Sloppy Counters
	Slide 65: Solution: Sloppy Counters
	Slide 66: Solution: Sloppy Counters
	Slide 67: Solution: Sloppy Counters
	Slide 68: Solution: Sloppy Counters
	Slide 69: Solution: Sloppy Counters
	Slide 70: Solution: Sloppy Counters
	Slide 71: Solution: Sloppy Counters
	Slide 72: Solution: Sloppy Counters
	Slide 73: Solution: Sloppy Counters
	Slide 74: Corner case: False sharing
	Slide 75: False sharing solution
	Slide 76: Discussion
	Slide 77: Results and Conclusions
	Slide 78
	Slide 79
	Slide 80
	Slide 81: Performance after changes
	Slide 82: Performance after changes
	Slide 83: Conclusion
	Slide 84: Discussion
	Slide 85: Limitations
	Slide 86: Limitations
	Slide 87: Next Steps?

