
Xen and the art of virtualization

Paper presentation for CS 6410

Irene Simo Munoz

Cornell HPC

September 23rd 2025

1 / 35

Background and overview

Xen Architecture

VM interface

Results

Impact and summary

2 / 35

Virtualization

3 / 35

Introduction

• Published in 2003, but VM had been around for a while already.

IBM main frames had VM back in the 70s on System/370

• New approach on virtualization: how to do it on the x86

architecture

Xen was the first practical open-source high-performance hypervisor

4 / 35

About the authors

Graduate student + professor collaboration out of University

of Cambridge.

• Ian Pratt: Faculty at University of Cambridge, later founded XenSource

• Keir Fraser: PhD student at Cambridge, lead developer of Xen

• Paul Barham: Google Ml infra, TensroFlow, Microsoft Research

• Boris Dragovic, Steven Hand, Tim Harris, Alex Ho, Rolf

Neugebauer, Andrew Warfield: Part of the original Cambridge

Systems Research Group

5 / 35

From microkernels to virtualization

• Monolithic kernels: all services run in kernel space

• Microkernels: Kernel runs the bare essentials (IPC, scheduling, etc.), other services run

in user space as separate processes

6 / 35

The x86 architecture

“Un-cooperative” design for full virtualization

• Insufficient permission on supervisor instructions on VMM fail silently

• Complicated privilege model

◦ 4 privilege levels (rings)

◦ Ring 0: kernel mode

◦ Ring 3: user mode

◦ No clean way for the hypervisor to sit “below” the guest OS while maintaining the illusion

that it’s running in ring 0.

◦ Complex workarounds for full virtualization (binary translation, device emulation)

7 / 35

Full virtualization

• No need to modify the guest OS

• Binary translation: Hypervisor traps and emulates

privileged instructions

• Each VM gets a fully virtualized hardware environment

• Needs hardware support or heavy device emulation

Architectures like x86 are not natively virtualizable and require costly techniques, causing

huge performance overhead

8 / 35

A tradeoff: from full virtualization to paravirtualization

Paravirtualization

Trade off small changes to the guest OS for big improvements in performance and VMM

simplicity. Guest OS are aware that they run in a virtualized enviroment.

• DomUs will explicitly call the hypervisor using a safe and efficient interface (like system

calls, but from the guest OS to the hypervisor)

• Hypervisor is simpler and faster

9 / 35

Xen overview

• Paravirtualization for speed

◦ Keep hypervisor as small as possible Split drivers

◦ Modify guest OS to be aware of virtualization issues of x86 architecture

◦ Ensure strong isolation between Guest OSes

• No changes to Application Binary Interface (ABIs)

◦ Propetiary software, modular applications can be executed in all guest OSes

• Domain0

10 / 35

Discussion

1. What are the differences between virtualization and exokernels?

2. Why was virtualization much more successful than exokernels?

11 / 35

Background and overview

Xen Architecture

VM interface

Results

Impact and summary

12 / 35

Xen Architecture roadmap

• Architecture

• Domain0

• Control transfer

• Split drivers

• Data transfer

13 / 35

Diagram of architecture

14 / 35

Domain0 kernel

• Automatically started at boot time

• Special management privileges: only domain with direct access to physical devices and

the control interface to the hypervisor

• Responsibilities:

◦ Creating, destroying, and managing DomUs

◦ Device management (network, disk, etc.)

◦ I/O request mediation for DomUs

◦ Resource allocation for DomUs

15 / 35

Control transfer: Hypercalls and events

Xen provides two mechanisms:

• Hypercall (synch): DomU /Dom0 requests a

privileged service, allocating resources or managing

memory

• Event channel (asynch): Signals, interrupts,

notifications between domans and hypervisor.

16 / 35

Split drivers or paravirtualized I/O

Multiple DomUs need access to hardware

• Xen doesn’t include drivers in the hypervisor itself, they

are run in domains

• Dom0 is the only domain with direct access to hardware

• DomU domains must communicate with Dom0 to perform

I/O

17 / 35

Data transfer: I/O rings

I/O ring

Shared-memory circular queue of descriptors allocated

by a domain but accessible from within Xen

• Descriptors do not hold the I/O data themselves;

instead, they point to buffers allocated by the

Guest OS.

• Requests are processed asynchronously

18 / 35

Discussion

1. What happens if Dom0’s security is compromised?

2. What makes Xen’s architecture not suitable for the cloud (as presented in this paper)?

19 / 35

Background and overview

Xen Architecture

VM interface

Results

Impact and summary

20 / 35

CPU virtualization; scheduling

• Protection

◦ Xen in ring 0, Guest kernel in ring 1

◦ DomUs cannot execute privileged instructions directly.

◦ Privileged instructions are replaced with hypercalls

• Xen uses Borrowed Virtual Time (BVT) to schedule virtual CPUs

◦ Threads can ”borrow” virtual time by warping their virtual time to an earlier point, making

them appear to have a higher priority

• Xen handles page fault exceptions on behalf of DomUs

21 / 35

Timers and time virtualization

Running in a virtual machine, OS are not used to being de-scheduled, stopped. Not enough

CPUs for all the VMs running at once!

• Network: When do I need to resend a packet? Did I receive something while I was off?

22 / 35

Virtualizing physical memory

• Reservations are specified at

time of creation

• Balloon driver (dynamic

adjustment)

• Shared translation array

(between guest virtual memory

and actual machine memory)

23 / 35

Memory access virtualization

• x86 uses hardware page tables

• Xen exists in a 64MB section at the top of every address space

• DomUs allocate and manage their own page tables

◦ DomU requires new page table → allocates and initializes from its own memory reservation

and registers it to Xen

◦ Xen is only involved in updates via hypercall

◦ Updates must be validated before being applied

◦ Can queue updates and apply in batch

24 / 35

Network and disk virtualization

• DomU has ≥ network interface

• Each one contains two I/O ring buffers

with associated rules (Dom0)

• Each direction (transmit, receive) has a

list of associated rules of the form

(pattern,action) – if the pattern matches

then the associated action applied

• DomU access through virtual block

device (VBD)

• For each VBD a translation table is

maintained at the hypervisor (entries

controlled by Dom0)

• Domain0 has access to physical disks

• VBD info accessed using I/O ring

25 / 35

26 / 35

Discussion

1. For OS with only 2 levels, what is the approach for putting the hypervisor at a priority

higher than the OS?

2. Note on Balloon Dirver

27 / 35

Background and overview

Xen Architecture

VM interface

Results

Impact and summary

28 / 35

CPU/memory microbenchmarks.

Xen performs almost as good as native Linux for all microbenchmarks!

29 / 35

Other nice results

• Scalability (target of 100 domains)

◦ Domains able to reduce its memory footprint up to 90%

◦ Context switching between large numbers of domains, Xen only loses 7.5% of total

throughput relative to Linux

30 / 35

Discussion

1. Are VM microkernels done right?

2. Why do VMs seem to be more successful than microkernels?

31 / 35

Background and overview

Xen Architecture

VM interface

Results

Impact and summary

32 / 35

Are VM microkernels done right?

1. Steven Hand, Andrew Wareld, Keir Fraser (2005)

◦ Microkernels rely heavily on user-level components. Xen, keeps the hypervisor tiny and

doesn’t push so much into user space.

◦ Performance in microkernels is dominated by IPC latency, but Xen focuses on VM isolation

and paravirtualized performance, so IPC isn’t central.

◦ Supporting legacy apps is painful in a pure microkernel world, but Xen treats entire OSes as

components, so it inherits all their compatibility.

2. Gernot Heiser, Volkmar Uhlig, Joshua LeVasseur (2006)

◦ Xen also relies on Dom0!

◦ Xen also ends up doing a lot of IPC-style communication (via event channels and shared

memory)

◦ L4Linux project showed you can run full OSes on microkernels with acceptable performance

33 / 35

Legacy

• Industry adoption: Basis for commercial XenSource, then bought by Citrix ($500 million)

• Backbone of Amazon’s AWS EC2 in early days, used Xen hypervisor until late 2010s →
Cloud ran on Xen!

• Set stage for hardware virtualization extensions (Intel VT-x, AMD-V): paravirtualization

influenced Intel/AMD to add new hardware instructions to make virtualization easier

34 / 35

References

1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,

Pratt, I., Warfield, A. (2003). Xen and the art of virtualization. ACM SIGOPS

Operating Systems Review, 37(5), 164–177. https://doi.org/10.1145/1165389.945462

2. Bitwise Botcast. (2025, April 3). Xen and the Art of Virtualization [Video]. YouTube

https://www.youtube.com/watch?v=UG7pzbBnxe8

3. Shen, Zhiming (n.d.). Virtualization technology. Fall 2016.

https://www.cs.cornell.edu/courses/cs6410/2016fa/slides/07-virtualization.pdf

4. Ouyang, Chuhan. Xen and the Art of Virtualization. Fall 2024.

https://www.cs.cornell.edu/courses/cs6410/2024fa/schedule/slides/09-

virtualization.pdf

5. Weatherspoon, Hakim “VIRTUALIZATION: IBM VM/370 AND XEN” Fall 2019.

https://www.cs.cornell.edu/courses/cs6410/2019fa/slides/09-virtualization.pdf

35 / 35

https://www.youtube.com/watch?v=UG7pzbBnxe8

	Background and overview
	Xen Architecture
	VM interface
	Results
	Impact and summary

