Extensible

Kernels

Presentat lon by Lindsey Bowen

Meet the Authors

[Dawson Engler] [M. Frans Kaashoek] [James O'Toole Jr.]

Where are we Now?

Monolithic Kernels
e All applications share a single OS
e OS manages and secures system resources

through high level abstractions

e So awesome! Everything is all set to go. @

Josn

EIEY

MH

Applications

process

files

pipes

driver driver driver

CPU

/O dev

DISK

NIC

Where are we Now?

Applications

Monolithic Implementation

e Try to optimize for a wide variety of workloads

Josn

e Unchangeable from the application layer

o Applications are untrusted

A . .
e Guess an application’s future move by using 'SD process files pipes
heuristics. driver
=| cpru /0 dev DISK NIC

What's the Problem?

Applications

My application
doesn’'t work well

with the OS
Implementation!

Josn

) process files pipes

2

=
T

s CPU /O dev DISK NIC

What's the Problem?

My application Applications
doesn’t work well
yvith the OS | § LIBC
Implementation! K
D process files pipes
>
Well. Sucks for =
YOU. <
=| CPU /0 dev DISK NIC

Michael says current OS services are not suitable for

> : database systems!

o

o File buffer cache LRU replacement strategy is bad for

A 4 9 | non-rereferenced blocks.
' " ;r“ 14 f

o8 | The DBMS has to re-implement the buffer cache to

provide the correct access pattern

| Sound familiar?
Michael Stonebraker (~1980)

The End-to-End Argument

Applications

At which level should abstractions be
exposed?

“General purpose implementations of

Josn

abstractions force applications that do not

need a given feature to pay substantial

overhead costs” o process files pipes
>
1 . o o . . rD
The lower level a primitive, the more efficiently —
it can be implemented”
T
Do you buy the end-to-end argument? = CPU /0 dev DISK NIC

Josn

Microkernels

server

Applications

LIBC

server

server

MH |2u.Ja

IPC

Virtual
memory

scheduler

CPU

/O dev

DISK

NIC

—

e Minimize what's provided by the OS
e Move abstractions to user space
e Problems?

o Slow (kernel crossings)

o Extensibility still limited

Monolithic v. Microkernels

Monolithic Kernel Microkernel
based Operating System based Operating System

Application Application

Application

IPC

kernel

mode
kernel
mode

Hardware Hardware

Virtual Machines

VM VM VM

Hardware

—

—

e Ok fine you can run whatever OS you want
e Yay! Our hypervisor interface is very
low-level
e Problems?
o Extensible?

o Scalable?

Exokernel Hypothesis

Applications Barnes—Hut

Exokernel

Hardware

Secure bindings

-
Frame buffer

TLB

Network Memory r Disk

Exokernel Policy

Applications Barnes—Hut

Exokernel

Hardware

Secure bindings

TLB

Network Memory r Disk

LibOS Policy

Applications Barnes—Hut

Exokernel

Hardware

Secure bindings

TLB

Network Memory r Disk

Applications Barnes—Hut

Exokernel

Hardware

Secure bindings

TLB

Network Memory r Disk

Exokernel Mechanisms

User-space e Track ownership, guard usage, revoke
access

“ “ “ e Export freelists, disk arm positions, cached

TLB entries, etc.

e Secure bindings
Hardware

exokernel

e \isible revocation

e Abort protocol

Secure Bindings

User-space

~

—

e Bind at large granularity, access at small
granularity
o Check access at bind time not access time
o Use capabillities to share resources
o Ex: Check TLB entry at load time for the page,
not during address translation

e Protect resources without understanding them

_

Visible Revocation

User-space

Hardware

~

e Before: OS can take back whatever resource it
wants without informing the application
e Now: Exokernel asks libOS to give back a resource

o libOS can decide which resource to give up.

Visible Revocation

User-space

Bl BN

~

e Before: OS can take back whatever resource it
wants without informing the application
e Now: Exokernel asks libOS to give back a resource

o libOS can decide which resource to give up.

Abort Protocol

User-space

exokernel

Hardware

Say goodbye
to your
bindings

~

o If the liIbOS does not comply
o Threaten with imperative (you have 5 us!)
o Break all secure bindings and inform the libOS
e Where should | store vital information that can’t
be revoked?

o Arbitrary number of guaranteed pages.

Downloading into the Kernel

- ~ TN

A 1) -
-§ w0 o] —* EXOS with ASH
S o] T ExOSwithout ASH e How should we efficiently multiplex the network?
o
§ 15N}
R o Load handlers for application specific
S 1750 —
S |u messa into the k I
S 100 — ges into the kerne
- 1250 -
£ oo o
g - o Written in safe language: check for loops,
g SO
a3

E e e R S memory references, etc.

A e ey [k) [PR I i pam

1 2 k) 4 5 6 7 5 © 10
Number of Processes e Now we don't need to context switch to respond!
Figure 2: Average roundtrip latency with increasing number of
active processes on recejver. .
p So cool, right?)

—

Downloading into the Kernel

LL Lt L Lt

Roundtrip Latency (microseconds)

e xS with ASH
—atr— Ex0O8S without ASH

Number of Processes

Figure 2: Average roundtrip latency with increasing number of
active processes on recejver.

Machine OS | Roundtrip latency
DEC5000/125 | ExOS/ASH 259
DECS5000/125 ExOS 320
DECS5000/125 Ultrix 3400

v

DEC5000/200

Ultrix/FRPC

340

e What if the packet filter lies and claims a packet
when it belongs to someone else?
o Assume no one lies :D

e \What would happen if we didn't have the ASH?

N

Evaluation

Run benchmarks multiple times to warm up
cache.
Take the best run of Ultrix. Take the median of 3

runs for exokernel.

Are these fair benchmarks? Why or why not?

Machine OS | Procedure call | Syscall (getpid)
DEC2100 | Ultrix 0.57 322
DEC2100 | Aegis 0.56 32/4.7

[DEC3100 | Ultrix 0.42 33.7
DEC3100 | Aegis 0.42 29135
DEC5000 | Ultrix 0.28 213
DECS5000 | Aegis 0.28 1.6/2.3
Machine OS | unalign | overflow | coproc | prot
DEC2100 | Ultrix n/a 208.0 n/a | 238.0
DEC2100 | Aegis 2.8 2.8 2.8 3.0
DEC3100 | Ultrix n/a 151.0 n/a | 177.0
DEC3100 | Aegis 21 2:1 2:1 23
DECS5000 | Ultrix n/a 130.0 n/a | 154.0
DECS5000 | Aegis 1.5 1:5 1.5 IS

Exception dispatch time (us)

Evaluation

Machine | OS dirty | protl | protl00 | unprotl00 | trap | appell | appel2
DEC2100 | Ultrix n/a 51.6 175.0 175.0 | 240.0 383.0 335.0
DEC2100 | ExOS | 17.5 32:5 213.0 275.0 13.9 74.4 45.9
DEC3100 | Ultrix n/a 39.0 133.0 133.0 | 185.0 | 3020 | 267.0
DEC3100 | ExOS | 13.1 244 156.0 206.0 10.1 55.0 34.0
DECS5000 | Ultrix n/a 32.0 102.0 102.0 | 161.0 262.0 232.0
DECS5000 | ExOS 9.8 16.9 109.0 143.0 4.8 34.0 22.0

e Anything unexpected?

e Faster in EXOS because we are operating all in user space!

Evaluation

e Anything unexpected?

e Faster in EXOS because we are operating all in user space!

o Why is prot100 and unprot1O0 so slow in comparison?

Machine | OS dirty | protl appell | appel2
DEC2100 | Ultrix n/a 51.6 383.0 335.0
DEC2100 | ExOS | 17.5 32:5 74.4 45.9
DEC3100 | Ultrix n/a 39.0 3020 | 267.0
DEC3100 | ExOS | 13.1 244 55.0 34.0
DECS5000 | Ultrix n/a 32.0 262.0 232.0
DECS5000 | ExOS 9.8 16.9 34.0 22.0

Where is the file system?

e |t's really hard to build a filesystem @

e Exokernel filesystem went through 4 redesigns

e How do we give all libOSes control of the
filesystem when they all have to share it?

e What would you do?

What happens when
there are competing
libOSes?

Are application writers
willing to invest time to

create a specialized libOS?

Are low level
abstractions actually

more efficient?

Is the tradeoff for less
functionality worth the
flexibility?

e Lower level abstractions in an OS can lead to
better performance.

e Trade-off since we are losing functionality

e A more elegant idea than the monolithic kernel,

but is it in actuality?

\

Diagram credits :-)

11:21 N\

<

Exokernel Slides [inbox

me 10:51PM

L

to Emmett v

Hi Emmett,

The tables have unfortunately turned and | have
to do a presentation next week about exokernels
for a class. Would it be alright if | used some of

the graphics from your slides?

Hope things are going well with the new
semester!

(XY}

Emmett Witchel 11:12PM

=

tome v

What is my cut?

oo

me 11:19PM

L

to Emmett v

5 glowing rate my professor reviews

—~ Forward

S o e

