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Where are we Now?

Monolithic Kernels
e All applications share a single OS
e OS manages and secures system resources

through high level abstractions

e So awesome! Everything is all set to go. @
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Where are we Now?

Applications

Monolithic Implementation

e Try to optimize for a wide variety of workloads

Josn

e Unchangeable from the application layer

o Applications are untrusted

A . .
e Guess an application’s future move by using 'SD process files pipes
heuristics. driver
=| cpru /0 dev DISK NIC




What's the Problem?

Applications

My application
doesn’'t work well

with the OS
Implementation!
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What's the Problem?

My application Applications
doesn’t work well
yvith the OS | § LIBC
Implementation! K
D process files pipes
>
Well. Sucks for =
YOU. <
=| CPU /0 dev DISK NIC




Michael says current OS services are not suitable for

> : database systems!

o

o File buffer cache LRU replacement strategy is bad for

A 4 9 | non-rereferenced blocks.
' " ;r“ 14 f

o8 | The DBMS has to re-implement the buffer cache to

provide the correct access pattern

| Sound familiar?
Michael Stonebraker (~1980)




The End-to-End Argument

Applications

At which level should abstractions be
exposed?

“General purpose implementations of

Josn

abstractions force applications that do not

need a given feature to pay substantial

overhead costs” o process files pipes
>
1 . o o . . rD
The lower level a primitive, the more efficiently —
it can be implemented”
T
Do you buy the end-to-end argument? = CPU /0 dev DISK NIC
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e Minimize what's provided by the OS
e Move abstractions to user space
e Problems?

o Slow (kernel crossings)

o Extensibility still limited




Monolithic v. Microkernels

Monolithic Kernel Microkernel
based Operating System based Operating System
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Virtual Machines

VM VM VM

Hardware

—

—

e Ok fine you can run whatever OS you want
e Yay! Our hypervisor interface is very
low-level
e Problems?
o Extensible?

o Scalable?




Exokernel Hypothesis

Applications Barnes—Hut
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Exokernel Policy
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LibOS Policy

Applications Barnes—Hut
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Applications Barnes—Hut
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Exokernel Mechanisms

User-space e Track ownership, guard usage, revoke
access

“ “ “ e Export freelists, disk arm positions, cached

TLB entries, etc.

e Secure bindings
Hardware

exokernel

e \isible revocation

e Abort protocol




Secure Bindings

User-space

~

—

e Bind at large granularity, access at small
granularity
o Check access at bind time not access time
o Use capabillities to share resources
o Ex: Check TLB entry at load time for the page,
not during address translation

e Protect resources without understanding them

_




Visible Revocation

User-space

Hardware

~

e Before: OS can take back whatever resource it
wants without informing the application
e Now: Exokernel asks libOS to give back a resource

o libOS can decide which resource to give up.




Visible Revocation

User-space

Bl BN
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e Before: OS can take back whatever resource it
wants without informing the application
e Now: Exokernel asks libOS to give back a resource

o libOS can decide which resource to give up.




Abort Protocol

User-space

exokernel

Hardware

Say goodbye
to your
bindings

~

o If the liIbOS does not comply
o Threaten with imperative (you have 5 us!)
o Break all secure bindings and inform the libOS
e Where should | store vital information that can’t
be revoked?

o Arbitrary number of guaranteed pages.




Downloading into the Kernel
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Downloading into the Kernel

LL Lt L Lt

Roundtrip Latency (microseconds)

e xS with ASH
—atr— Ex0O8S without ASH

Number of Processes

Figure 2: Average roundtrip latency with increasing number of
active processes on recejver.

Machine OS | Roundtrip latency
DEC5000/125 | ExOS/ASH 259
DECS5000/125 ExOS 320
DECS5000/125 Ultrix 3400

v

DEC5000/200

Ultrix/FRPC

340

e What if the packet filter lies and claims a packet
when it belongs to someone else?
o Assume no one lies :D

e \What would happen if we didn't have the ASH?

N




Evaluation

Run benchmarks multiple times to warm up
cache.
Take the best run of Ultrix. Take the median of 3

runs for exokernel.

Are these fair benchmarks? Why or why not?

Machine OS | Procedure call | Syscall (getpid)
DEC2100 | Ultrix 0.57 322
DEC2100 | Aegis 0.56 32/4.7

[ DEC3100 | Ultrix 0.42 33.7
DEC3100 | Aegis 0.42 29135
DEC5000 | Ultrix 0.28 213
DECS5000 | Aegis 0.28 1.6/2.3
Machine OS | unalign | overflow | coproc | prot
DEC2100 | Ultrix n/a 208.0 n/a | 238.0
DEC2100 | Aegis 2.8 2.8 2.8 3.0
DEC3100 | Ultrix n/a 151.0 n/a | 177.0
DEC3100 | Aegis 21 2:1 2:1 23
DECS5000 | Ultrix n/a 130.0 n/a | 154.0
DECS5000 | Aegis 1.5 1:5 1.5 IS

Exception dispatch time (us)




Evaluation

Machine | OS dirty | protl | protl00 | unprotl00 | trap | appell | appel2
DEC2100 | Ultrix n/a 51.6 175.0 175.0 | 240.0 383.0 335.0
DEC2100 | ExOS | 17.5 32:5 213.0 275.0 13.9 74.4 45.9
DEC3100 | Ultrix n/a 39.0 133.0 133.0 | 185.0 | 3020 | 267.0
DEC3100 | ExOS | 13.1 244 156.0 206.0 10.1 55.0 34.0
DECS5000 | Ultrix n/a 32.0 102.0 102.0 | 161.0 262.0 232.0
DECS5000 | ExOS 9.8 16.9 109.0 143.0 4.8 34.0 22.0

e Anything unexpected?

e Faster in EXOS because we are operating all in user space!




Evaluation

e Anything unexpected?

e Faster in EXOS because we are operating all in user space!

o Why is prot100 and unprot1O0 so slow in comparison?

Machine | OS dirty | protl appell | appel2
DEC2100 | Ultrix n/a 51.6 383.0 335.0
DEC2100 | ExOS | 17.5 32:5 74.4 45.9
DEC3100 | Ultrix n/a 39.0 3020 | 267.0
DEC3100 | ExOS | 13.1 244 55.0 34.0
DECS5000 | Ultrix n/a 32.0 262.0 232.0
DECS5000 | ExOS 9.8 16.9 34.0 22.0




Where is the file system?

e |t's really hard to build a filesystem @

e Exokernel filesystem went through 4 redesigns

e How do we give all libOSes control of the
filesystem when they all have to share it?

e What would you do?




What happens when
there are competing
libOSes?

Are application writers
willing to invest time to

create a specialized libOS?

Are low level
abstractions actually

more efficient?

Is the tradeoff for less
functionality worth the
flexibility?




e Lower level abstractions in an OS can lead to
better performance.

e Trade-off since we are losing functionality

e A more elegant idea than the monolithic kernel,

but is it in actuality?

\




Diagram credits :-)
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Hi Emmett,

The tables have unfortunately turned and | have
to do a presentation next week about exokernels
for a class. Would it be alright if | used some of

the graphics from your slides?

Hope things are going well with the new
semester!
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Emmett Witchel 11:12PM
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What is my cut?
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5 glowing rate my professor reviews
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