
Extensible 
Kernels
Presentation by Lindsey Bowen



Meet the Authors

Dawson Engler M. Frans Kaashoek James O’Toole Jr.



Where are we Now?

Monolithic Kernels

● All applications share a single OS

● OS manages and secures system resources 

through high level abstractions

● So awesome! Everything is all set to go.

driver driver driver 

CPU I/O dev DISK NIC

process files pipes

LIBC

Applications

u
ser

kern
el

H
W



Where are we Now?

Monolithic Implementation

● Try to optimize for a wide variety of workloads

● Unchangeable from the application layer

○ Applications are untrusted

● Guess an application’s future move by using 

heuristics. driver driver driver 

CPU I/O dev DISK NIC

process files pipes

LIBC

Applications

u
ser

kern
el

H
W



What’s the Problem?

driver driver driver 

CPU I/O dev DISK NIC

process files pipes

LIBC

Applications

u
ser

kern
el

H
W

My application 
doesn’t work well 
with the OS 
implementation!



What’s the Problem?

driver driver driver 

CPU I/O dev DISK NIC

process files pipes

LIBC

Applications

u
ser

kern
el

H
W

My application 
doesn’t work well 
with the OS 
implementation!

Well. Sucks for 
you. 



Who Cares?

Michael Stonebraker (~1980)

● Michael says current OS services are not suitable for 

database systems!

○ File buffer cache LRU replacement strategy is bad for 

non-rereferenced blocks.

○ The DBMS has to re-implement the buffer cache to 

provide the correct access pattern

● Sound familiar?



The End-to-End Argument

● At which level should abstractions be 

exposed?

● “General purpose implementations of 

abstractions force applications that do not 

need a given feature to pay substantial 

overhead costs”

● “The lower level a primitive, the more efficiently 

it can be implemented”

● Do you buy the end-to-end argument?

driver driver driver 

CPU I/O dev DISK NIC

process files pipes

LIBC

Applications

u
ser

kern
el

H
W



Microkernels

● Minimize what’s provided by the OS

● Move abstractions to user space

● Problems?

○ Slow (kernel crossings)

○ Extensibility still limited
d

ri
ve

r 

CPU I/O dev DISK NIC

IPC
Virtual 

memory
scheduler

LIBC

Applications

u
ser

kern
el

H
W

d
ri

ve
r 

d
ri

ve
r 

Fi
le

 
se

rv
er

 

U
N

IX
 

se
rv

er
 

p
ag

er
s

Pr
o

ce
ss

 
se

rv
er

…



Monolithic v. Microkernels



Virtual Machines

● Ok fine you can run whatever OS you want

● Yay! Our hypervisor interface is very 

low-level

● Problems?

○ Extensible?

○ Scalable?

VM

APP

OS

VM

APP

OS

VM

APP

OS

Hypervisor

Hardware



Exokernel Hypothesis

● Low level multiplexing is more efficient

● Traditional OS abstractions can be 

implemented more efficiently at the 

application level

● Special purpose implementations for these 

abstractions will allow applications to gain 

efficiency in resource usage.



Exokernel Policy

● Separate resource protection from 

management.

○ Securely multiplex resources, but leave 

management to the user level.

● Allow applications to choose the 

implementations that work best for their use 

case.



LibOS Policy

● Portability

○ Implement POSIX compliant calls

○ Or don’t!

● Security

○ LibOS not depended on by other 

applications

○ Library can trust the application all it 

wants!



Discussion

● What are the benefits of this design over a 

monolithic OS?

● Which OS services might have the most trouble 

separating protection from management?

● Is the exokernel doing enough to be useful? 



Exokernel Mechanisms

● Track ownership, guard usage, revoke 

access

● Export freelists, disk arm positions, cached 

TLB entries, etc.

● Secure bindings

● Visible revocation

● Abort protocol

User-space

APP

libOS

exokernel

Hardware

APP

libOS

APP

libOS



Secure Bindings

● Bind at large granularity, access at small 

granularity

○ Check access at bind time not access time

○ Use capabilities to share resources

○ Ex: Check TLB entry at load time for the page, 

not during address translation

● Protect resources without understanding them

User-space

APP

libOS

exokernel

Hardware

APP

libOS

APP

libOS



Visible Revocation

● Before: OS can take back whatever resource it 

wants without informing the application

● Now: Exokernel asks libOS to give back a resource

○ libOS can decide which resource to give up.

User-space

APP

libOS

exokernel

Hardware

APP

libOS

APP

libOS



Visible Revocation

● Before: OS can take back whatever resource it 

wants without informing the application

● Now: Exokernel asks libOS to give back a resource

○ libOS can decide which resource to give up.

User-space

APP

libOS

exokernel

Hardware

APP

libOS

APP

libOS

But what if I 
don’t? >:)



Abort Protocol

● If the libOS does not comply

○ Threaten with imperative (you have 5 μs!)

○ Break all secure bindings and inform the libOS

● Where should I store vital information that can’t 

be revoked?

○ Arbitrary number of guaranteed pages.

User-space

APP

libOS

exokernel

Hardware

APP

libOS

APP

libOS
Say goodbye 
to your 
bindings



Downloading into the Kernel

● How should we efficiently multiplex the network?

○ Load handlers for application specific 

messages into the kernel

○ Written in safe language: check for loops, 

memory references, etc. 

● Now we don’t need to context switch to respond! 

So cool, right?



Downloading into the Kernel

● What if the packet filter lies and claims a packet 

when it belongs to someone else?

○ Assume no one lies :D

● What would happen if we didn’t have the ASH?



Evaluation

● Run benchmarks multiple times to warm up 

cache.

● Take the best run of Ultrix. Take the median of 3 

runs for exokernel.

● Are these fair benchmarks? Why or why not?

Exception dispatch time (µs)



Evaluation

● Faster in ExOS because we are operating all in user space!

● Anything unexpected?



Evaluation

● Faster in ExOS because we are operating all in user space!

● Anything unexpected?

○ Why is prot100 and unprot100 so slow in comparison?



Where is the file system?

● It’s really hard to build a filesystem

● Exokernel filesystem went through 4 redesigns

● How do we give all libOSes control of the 

filesystem when they all have to share it?

● What would you do?



Questions

What happens when 

there are competing 

libOSes?

Are application writers 

willing to invest time to 

create a specialized libOS?

Are low level 

abstractions actually 

more efficient?

Is the tradeoff for less 

functionality worth the 

flexibility?



Summary

● Lower level abstractions in an OS can lead to 

better performance.

● Trade-off since we are losing functionality

● A more elegant idea than the monolithic kernel, 

but is it in actuality?



Diagram credits :-)


