
Microkernels:
Mach and L4

CS 6410: Advanced Systems
Fall 2025

Hakim Weatherspoon

1CS6410

Introduction to Kernels
• Different Types of Kernel Designs

• Monolithic kernel
• Microkernel
• Hybrid Kernel
• Exokernel
• Virtual Machines?

Monolithic Kernels
• All OS services operate in kernel space
• Good performance
• Disadvantages

• Dependencies between system component
• Complex & huge (millions(!) of lines of code)
• Larger size makes it hard to maintain

• E.g. Multics, Unix, BSD, Linux

Microkernels
• Minimalist approach

• IPC, virtual memory, thread scheduling

• Put the rest into user space
• Device drivers, networking, file system, user interface, even the pager for

virtual memory

• More stable with less services in kernel space
• Disadvantages

• Lots of system calls and context switches

• E.g. Mach, L4, AmigaOS, Minix, K42

Monolithic Kernels VS Microkernels

Hybrid Kernels
• Combine the best of both worlds

• Speed and simple design of a monolithic kernel
• Modularity and stability of a microkernel

• Still similar to a monolithic kernel
• Disadvantages still apply here

• E.g. Windows NT, NetWare, BeOS

Exokernels
• Follows end-to-end principle

• Extremely minimal
• Fewest hardware abstractions as possible
• Just allocates physical resources to apps

• Disadvantages
• More work for application developers

• E.g. Nemesis, ExOS
• This Thursday!

The Microkernel Debate
• How big should it be?

• Big debate during the 1980’s
• Michael Stonebraker publishes Operating System Support for Database Management

• File system, scheduler, concurrency control all suboptimal for databases
• Perhaps different applications require different OS primitives

Summary: Kernels
• Monolithic kernels

• Advantages: performance
• Disadvantages: difficult to debug and maintain

• Microkernels
• Advantages: more reliable and secure
• Disadvantages: more overhead

• Hybrid Kernels
• Advantages: benefits of monolithic and microkernels
• Disadvantages: same as monolithic kernels

• Exokernels
• Advantages: minimal and simple
• Disadvantages: more work for application developers

1st Generation Microkernels

Mach: A New Kernel Foundation For UNIX Development
• USENIX Summer Conference 1986
• Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard

Rashid, Avadis Tevanian, and Michael Young

• Richard Rashid
• Lead developer of Mach
• Microsoft Research

• William Bolosky
• Microsoft Research

• Avadis Tevanian
• Primary figure in development of Mac OS X
• Apple Computer (former VP and CTO)

Mach
• 1st generation microkernel
• Based on Accent
• Memory object

• Mange system services like network paging and file system

• Memory via communication

Mach Abstractions
• Task

• Basic unit of resource allocation
• Virtual address space, communication capabilities

• Thread
• Basic unit of computation

• Port
• Communication channel for IPC

• Message
• May contain port capabilities, pointers

• Memory Object

External Memory Management
• No kernel-based file system

• Kernel is just a cache manager

• Memory object
• AKA “paging object”

• Pager
• Task that implements memory object

Lots of Flexibility
• E.g. consistent network shared memory

• Each client maps X with shared pager
• Use primitives to tell kernel cache what to do

• Locking
• Flushing

Problems of External Memory Management
• External data manager failure looks like communication failure

• E.g. need timeouts

• Opportunities for data manager to deadlock on itself

Performance
• Does not prohibit caching
• Reduce number of copies of data occupying memory

• Copy-to-use, copy-to-kernel
• More memory for caching

• “compiling a small program cached in memory…is twice as fast”
• I/O operations reduced by a factor of 10
• Context switch overhead?

2nd Generation Microkernels

The Performance of Micro-Kernel-Based Systems
• SOSP 1997
• Herman Hartig, Michael Hohmuth, Jochen Liedtke, Sebastian

Schonberg, Jean Wolter

• Herman Hartig
• Prof at TU Dresden

• Jochen Liedtke
• Worked on microkernels Eumel, L3
• Is the “L” in L3 and L4

Mach was terrible…
• Mach (and other gen-1 microkernels) performed so terribly that no one

took the idea seriously
• High overheads prevented adoption as a substrate for monolithic kernels
• High overheads would negate any benefits from creative new systems

built directly on Mach

…but L4 could be better
• IPC needs to be 1-2 orders of magnitude faster
• Address space switches need to be less costly

L4 design goals
• Hardware Abstraction
• Modularity
• Security
• Performance

• L4 really wanted to prove that microkernels were better than monolithic
kernels

• Servicing page faults and syscalls over the network, again?

IPC
• Really was an order of magnitude faster than Mach in the first

generation (and it pretty much only got faster)
• Which enabled using IPC to handle hardware interrupts and syscalls

Address Spaces
• L4 allowed recursive address space construction
• Any process could grant a page in its own address space to another

consenting process
• (this removed the page from the granter’s address space)

• Any process could map a page in its own address space to another
consenting process

• (this kept the page in the granter’s address space, creating a shared page)

• Processes could unmap any page in their own address space from all
process who had inherited the page directly or indirectly from the
unmapper

• In this way user space servers could perform almost all memory
management functions

Address Spaces

Address Spaces

Discussion Questions
• Do these abstractions seem flexible enough to support any

operating system on top of them performantly?
• Flexible enough to implement any system someone might care to

actually build?

The Performance of Micro-Kernel-Based Systems
• Evaluates the L4 microkernel
• Ports Linux to run on top of L4
• Suggests improvements

L4
• 2nd generation microkernel
• Similar to Mach

• Started from scratch, rather than monolithic
• Even more minimal

• Uses user-level pages
• Tasks, threads, IPC

L4Linux
• Linux source has two cleanly separated parts

• Architecture dependent
• Architecture independent

• In L4Linux
• Architecture dependent code is modified for L4
• Architecture independent part is unchanged
• L4 not specifically modified to support Linux

• Linux kernel as L4 user service
• Runs as an L4 thread in a single L4 address space
• Creates L4 threads for its user processes
• Maps parts of its address space to user process threads (using L4 primitives)
• Acts as pager thread for its user threads
• Has its own logical page table
• Multiplexes its own single thread (to avoid having to change Linux source

code)

L4Linux

• The statically linked and shared C libraries are modified
• Systems calls in the lib call the Linux kernel using IPC

• For unmodified native Linux applications, there is a “trampoline”
• The application traps
• Control bounces to a user-level exception handler
• The handler calls the modified shared library
• Binary compatible

L4Linux – System Calls

• A Translation Look-aside Buffer (TLB) caches page table lookups
• On context switch, TLB needs to be flushed
• A tagged TLB tags each entry with an address space label, avoiding

flushes
• A Pentium CPU can emulate a tagged TLB for small address spaces

A Note on TLBs

• Compared the following systems
• Native Linux
• L4Linux
• MkLinux (in-kernel)

• Linux ported to run inside the Mach microkernel
• MkLinux (user)

• Linux ported to run as a user process on top of the Mach microkernel

Performance - Benchmarks

Performance - Microbenchmarks

Performance - Macrobenchmarks

Performance - Analysis
• L4Linux is 5% - 10% slower than native Linux for macrobenchmarks
• User mode MkLinux is 49% slower (averaged over all loads)
• In-kernel MkLinux is 29% slower (averaged over all loads)
• Co-location of kernel is not enough for good performance

L4 is Proof of Concept
• Pipes can be made faster using L4 primitives
• Linux kernel was essentially unmodified

• Could be optimized for microkernel

• More options for extensibility

Perspective
• Microkernels have attractive properties

• Extensibility benefits
• Minimal/simple

• Microkernels can have comparable performance

Next Time
• Project: next step is the Survey Paper

• Read and write a review:
• Exokernel: an operating system architecture for application-level resource

management, Dawson R. Engler, M. Frans Kaashoek, and James O'Toole, Jr. In
ACM symposium on Operating systems principles (SOSP), December 1995, pages
251–266
https://dl.acm.org/doi/10.1145/224057.224076

• Optional: Extensibility, Safety and Performance in the SPIN Operating System ,
Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gun Sirer, Marc E.
Fiuczynski, David Becker, Craig Chambers, and Susan Eggers. In ACM symposium on
Operating systems principles (SOSP), December 1995, pages 267 – 283
https://dl.acm.org/doi/abs/10.1145/224056.224077

https://dl.acm.org/doi/10.1145/224057.224076
https://dl.acm.org/doi/abs/10.1145/224056.224077

	Microkernels: �Mach and L4
	Introduction to Kernels
	Monolithic Kernels
	Microkernels
	Monolithic Kernels VS Microkernels
	Hybrid Kernels
	Exokernels
	The Microkernel Debate
	Summary: Kernels
	1st Generation Microkernels
	Mach: A New Kernel Foundation For UNIX Development
	Mach
	Mach Abstractions
	External Memory Management
	Lots of Flexibility
	Problems of External Memory Management
	Performance
	2nd Generation Microkernels
	The Performance of Micro-Kernel-Based Systems
	Mach was terrible…
	…but L4 could be better
	L4 design goals
	IPC
	Address Spaces
	Address Spaces
	Address Spaces
	Discussion Questions
	The Performance of Micro-Kernel-Based Systems
	L4
	L4Linux
	L4Linux
	L4Linux – System Calls
	A Note on TLBs
	Performance - Benchmarks
	Performance - Microbenchmarks
	Performance - Macrobenchmarks
	Performance - Analysis
	L4 is Proof of Concept
	Perspective
	Next Time

