
Systems End-to-end argument
and Design Hints

CS 6410: Advanced Systems
Fall 2025

Hakim Weatherspoon

Systems Research
• The study of tradeoffs

• Functionality vs performance
• E.g. where to place error checking

• Are there principles or rules of thumb that can help with large
systems design?

What is System Design: Science, Art, Puzzle?

Required
Functionality

“Logic”

Expected
Workload

“User Load”

Required
Performance

“SLA”

Available
Resources

“Environm
ent”

Something to do with “Abstraction”

IMPLEMENTATION GOES HEREINTERFACE
(HIDES IMPLEMENTATION)

Also, “Layering” (layered modules)

From: http://www.tutorialspoint.com/operating_system/os_linux.htm

Any problem in computer science
can be solved with another level of

indirection
Attributed to David Wheeler (by Butler Lampson)

Functionality vs Assurance

Assurance
== Required Performance (Speed, Fault Tolerance)
== Service Level Agreement (SLA)

End-to-End arguments in System Design –
Jerry H. Saltzer, David P. Reed, David D. Clark (MIT)

• Jerry H. Saltzer
• A leader of Multics, key developer of the Internet, and a LAN (local area

network) ring topology, project Athena

• David P. Reed
• Early development of TCP/IP, designer of UDP

• David D. Clark
• I/O of Multics, Protocol architect of Internet

“ We reject: kings, presidents and voting.
We believe in: rough consensus and running code.”

End-to-End argument
• Helps guide function placement among modules of a distributed

system
• Argument

• implement the functionality in the lower layer only if
• a large number of higher layers / applications use this functionality and implementing

it at the lower layer improves the performance of many of them, AND
• does not hurt the remaining applications

Example : File Transfer (A to B)

A B

1. Read File Data blocks
2. App buffers File Data
3. Pass (copy) data to the
network subsystem

4. Pass msg/packet down the protocol
stack

5. Send the packet over the network

6. Route packet

Example : File Transfer (A to B)

A B
7. Receive packet and buffer msg.
8. Send data to the application

9. Store file data blocks

Possible failures
• Reading and writing to disk
• Transient errors in the memory chip while buffering and copying
• network might drop packets, modify bits, deliver duplicates
• OS buffer overflow at the sender or the receiver
• Either of the hosts may crash

Solution: make the network reliable?
• Packet checksums, sequence numbers, retry, duplicate elimination

• Example: TCP

• Solves only the network problem
• What about the other problems listed?
• Not sufficient and not necessary

Solution: end-to-end retransmission?
• Introduce file checksums and verify once transfer completes – end-

to-end check.
• On failure – retransmit file
• Works! (modulo rotting bits on disk)

Is network-level reliability useful?
• Per-link retransmission leads to faster recovery from dropped

packets than end-to-end
• Seems particularly useful in wireless networks or very high latency

networks
• But this may not benefit all applications

• Huge unnecessary overhead for, say, Real-Time speech transmission

TCP/IP
• Transmission Control Protocol (TCP)

• It is a transport protocol providing error detection, retransmission,
congestion control, and flow control

• TCP is almost-end-to-almost-end
• kernel-to-kernel, socket-to-socket, but not app-to-app

• Internet Protocol (IP)
• IP is a simple ("dumb"), stateless protocol that moves datagrams across the

network
• The network itself (the routers) needs only to support the simple,

lightweight IP; the endpoints run the heavier TCP on top of it when needed.

Other end-to-end examples

• End-to-end authentication
• TLS, SSL

• Duplicate msg suppression

Is argument complete?
• E.g. congestion control

• TCP leaves it to the ends
• Should the network trust the ends?

• RED
• In a wireless setting

• packet loss != congestion

• performance problems may appear in end-end systems under heavy load

• Performance enhancing Proxies

“Hints for Computer System Design”
--- Butler Lampson, 1983
• Based on author’s experience in systems design
• Founding member of Xerox PARC (1970)
• Technical Fellow at MSR and adjunct prof. at MIT
• Winner of ACM Turing Award (1994). IEEE Von Neumann Medal (2001)
• Was involved in the design of many famous systems, including

databases and networks

Some Projects & Collaborators
• Charles Simonyi - Bravo: WYSIWYG editor (MS Office)

• Bob Sproull - Alto operating system, Dover: laser printer, Interpress: page
description language (VP Sun/Oracle)

• Mel Pirtle - 940 project, Berkeley Computer Corp.

• Peter Deutsch - 940 operating system, QSPL: system programming language
(founder of Ghostscript)

• Chuck Geschke, Jim Mitchell, Ed Satterthwaite - Mesa: system programming
language

Some Projects & Collaborators (cont.)
• Roy Levin - Wildflower: Star workstation prototype, Vesta: software

configuration

• Andrew Birrell, Roger Needham, Mike Schroeder - Global name service and
authentication

• Eric Schmidt - System models: software configuration
 (CEO/Chairman of Google/Executive Chairman of Alphabet)

• Rod Burstall - Pebble: polymorphic typed language

System Design Hints organized along two axes:
Why and Where
• Why:

• Functionality: does it work?
• Speed: is it fast enough?
• Fault-tolerance: does it keep working?

• Where:
• Completeness
• Interface
• Implementation

Hints for Computer System Design - Butler Lampson

FUNCTIONALITY
• Interface

• Between user and implementation of an abstraction
• Contract, consisting of a set of assumptions about participants

• Assume-Guarantees specification
• Same interface may have multiple implementations

• Requirements:
• Simple but complete
• Admit efficient implementation

• Examples: Posix File System Interface, Network Sockets, SQL, …

• Lampson: “ Interface is a small programming language”
• Do we agree with this?

Keep it Simple Stupid (KISS Principle)
• Attributed to aircraft engineer Kelly Johnson (1910—1990)
• Based on observation: systems work best if they are kept simple
• Related:

• Make everything as simple as possible, but not simpler (Einstein)
• It seems that perfection is reached not when there is nothing left to add, but

when there is nothing left to take away (Antoine de Saint Exupéry)
• If in doubt, leave it out (Anon.)
• Complexity is the Enemy: Exterminate Features (Charles Thacker)
• The unavoidable price of reliability is simplicity (Tony Hoare)

Do one thing at a time, and do it well
Don’t generalize
Get it right!
• A complex interface is hard to implement correctly, efficiently
• Don’t penalize all for wishes by just a few
• Basic (fast) operations rather than generic/powerful (slow) ones
• Good interface admits implementation that is

• Correct
• Efficient
• Predictable Performance

• Simple does not imply good
• A simple but badly designed interface makes it hard to build applications

that perform well and/or predictably

Make it Fast
Leave it to the Client
Don’t Hide Power
Keep Secrets
• Design basic interfaces that admit implementations that are fast

• Consider monolithic O.S. vs. microkernels

• Clients can implement the rest
• Abstraction should hide only undesirable properties

• What are examples of undesirable?
• Non-portable

• Don’t tell clients about implementation details they can exploit
• Leads to non-portability, applications breaking when modules are updated, etc.
• Bad example: TCP

Use procedure arguments
• High-level functions passed as arguments

• Requires some kind of interpreter within the abstraction
• Hard to secure

• Requires safe language or sandboxing

Keep basic interfaces stable
Keep a place to stand
• Ideally do not change interfaces

• Extensions are ok

• If you have to change the interface, provide a backward
compatibility option

• Good example: Microsoft Windows

Plan to throw one away
Use a good idea again
• Prototyping is often a good strategy in system design
• You end up building a series of prototypes
• The same good idea may be usable in multiple contexts
• Example: Unix developed this way, leading to Linux, Mac OS X,

and several others

Divide and Conquer
• Several forms:

• Recursion
• Stepwise Refinement
• Modularization

• Lampson only talks about recursion
• Stepwise refinement is a useful technique to contain complexity of

systems
• Modules contain complexity

• Principle of “Separation of Concerns” (Edsger Dijkstra)

Handle normal and worst case separately
• Use a highly optimized code path for normal case
• Just try to implement handling the worst case correctly
• Sometimes optimizing normal case hurts worst case performance!

• And sometimes good worst case performance is more important than
optimal normal case performance

• Example: normal case in TCP/IP highly optimized

SPEED
• Lampson talks mostly about making systems fast
• Other, perhaps more subtle considerations include

• Predictable performance
• Meeting service-level objectives
• Cheap to run in terms of resources

Split resources
Safety first
• Partitioning may result in better performance than sharing

• but not always..
• for example: a shared cache would result in better overall utilization typically than a

partitioned cache
• but a partitioned cache may give more predictable performance to any particular user

• most low-level resources these days tend to be shared…

• Prioritize safety over optimality

Static analysis
Dynamic translation
• No, this is not a PL course
• If you know something about the workload, exploit it!

• For example, workload might exhibit locality, periodicity, etc.
• Related to “normal case” handling

• Prefetching allows I/O and compute to overlap
• Examples: paging and scheduling algorithms

Cache answers
Use hints
• Caching answers to expensive computations trades storage for other

resources (CPU, network, etc.)
• What does “expensive” mean in this context?

• “Hints” are typically caches of potentially wrong information
• Example: DNS uses this extensively to provide scalability
• Should be easy to check if hint works, and correct for it if not

When in doubt, use brute force
• Related idea: don’t optimize blindly

1. build the system “stupidly”
2. identify bottlenecks through profiling
3. eliminate bottlenecks
4. go back to Step 2 if necessary

• If the system is modular, such “adjustments” are typically easy to
make

• If not, difficult refactoring might be necessary
• Related: building series of prototypes

Compute in background
Use batch processing
Shed load
• “Compute in background” essentially means to do I/O and compute

in parallel
• examples: paging, GC, …
• in this day and age, we do everything in parallel…

• Batching multiple small jobs into a larger one can significantly
improve throughput

• although often at the expense of latency
• example: TCP

• Avoid overload by admission control
• example: TCP

Fault Tolerance
• We expect 24x7x365.25 reliability these days
• In spite of what Lampson says, it’s pretty hard…

Log updates
Make actions atomic or restartable
• Cheap: many storage devices optimal or optimized for append-only
• Useful: after a crash, state can be restored by replaying log

• helps if updates are “ idempotent” or restartable
• example: ARIES “ WAL” (Write-Ahead Log)

• Atomic (trans-)actions simplify reliable system design
• group of low-level operations that either complete as a unit or have no

effect

• Isolation and Durability are also very useful properties!

Concrete conclusions?
• Lessons Learned

• Pose your problem in a clean way
• Next decompose into large-scale components
• Think about the common case that will determine performance: the critical

path or the bottleneck points
• Look for elegant ways to simultaneously offer structural clarity and yet still

offer fantastic performance

• This can guide you towards very high-impact success

Before Next Time
• Rank-order papers to present
• Read and write review:

• The UNIX time-sharing system, Dennis M. Ritchie and Ken Thompson.
Communications of the ACM Volume 17, Issue 7, July 1974, pages 365 – 375

 https://dl.acm.org/doi/10.1145/357401.357402

• The structure of the " THE" -multiprogramming system, E.W. Dijkstra.
Communications of the ACM Volume 11, Issue 5, May 1968, pages 341—346

 https://dl.acm.org/doi/10.1145/363095.363143

• Need to be on campus, or use VPN to access some papers. Or, change
".acm.org/" to ".acm.org.proxy.library.cornell.edu/" in the URL

• Check website for updated schedule

https://dl.acm.org/doi/10.1145/357401.357402
https://dl.acm.org/doi/10.1145/363095.363143

	Systems End-to-end argument and Design Hints
	Systems Research
	What is System Design: Science, Art, Puzzle?
	Something to do with “Abstraction”
	Also, “Layering” (layered modules)
	Any problem in computer science can be solved with another level of indirection
	Functionality vs Assurance
	End-to-End arguments in System Design –�Jerry H. Saltzer, David P. Reed, David D. Clark (MIT)
	End-to-End argument
	Example : File Transfer (A to B)
	Example : File Transfer (A to B)
	Possible failures
	Solution: make the network reliable?
	Solution: end-to-end retransmission?
	Is network-level reliability useful?
	TCP/IP
	Other end-to-end examples
	Is argument complete?
	“Hints for Computer System Design”�--- Butler Lampson, 1983
	Some Projects & Collaborators
	Some Projects & Collaborators (cont.)
	System Design Hints organized along two axes: Why and Where
	Hints for Computer System Design - Butler Lampson
	FUNCTIONALITY
	Keep it Simple Stupid (KISS Principle)
	Do one thing at a time, and do it well�Don’t generalize�Get it right!
	Make it Fast�Leave it to the Client�Don’t Hide Power�Keep Secrets
	Use procedure arguments
	Keep basic interfaces stable�Keep a place to stand
	Plan to throw one away�Use a good idea again
	Divide and Conquer
	Handle normal and worst case separately
	SPEED
	Split resources�Safety first
	Static analysis�Dynamic translation
	Cache answers�Use hints
	When in doubt, use brute force
	Compute in background�Use batch processing�Shed load
	Fault Tolerance
	Log updates�Make actions atomic or restartable
	Concrete conclusions?
	Before Next Time

