Concurrent Programming: Critical Sections

CS 6410

[Robbert van Renesse]

Concurrent Programming is Hard

Why?

- Concurrent programs are non-deterministic
 - run them twice with same input, get two different answers
 - or worse, one time it works and the second time it fails
- Program statements are executed non-atomically
 - x += 1 compiles to something like
 - LOAD x
 - ADD 1
 - STORE x

Enter Harmony

- A new concurrent programming language
 - heavily based on Python syntax to reduce learning curve for many
- A new underlying virtual machine

it tries *all* possible executions of a program (or rather, explores all possible reachable states) until it finds a problem, if any (this is called "model checking")

Non-Determinism

```
shared = True

def f(): assert shared
def g(): shared = False

f()
g()
```

(a) [code/prog1.hny] Sequential

(b) [code/prog2.hny] Concurrent

Figure 3.1: A sequential and a concurrent program.

Non-Determinism

```
shared = True

def f(): assert shared
def g(): shared = False

f()
g()
```

(a) [code/prog1.hny] Sequential

```
shared = True

def f(): assert shared
def g(): shared = False

spawn f()
spawn g()
```

(b) [code/prog2.hny] Concurrent

Figure 3.1: A sequential and a concurrent program.

```
#states 2
2 components, 0 bad states
No issues
```

```
#states 11
Safety Violation
T0: __init__() [0-3,17-25] { shared: True }
T2: g() [13-16] { shared: False }
T1: f() [4-8] { shared: False }
Harmony assertion failed
```

Critical Section

Must be serialized due to shared memory access

```
CSEnter()
Critical section
CSExit()
```

```
CSEnter()
Critical section
CSExit()
```

Goals

Mutual Exclusion: 1 thread in a critical section at time **Progress:** at least one thread makes it into the CS if desired and no other thread is there

Fairness: equal chances of getting into CS

... in practice, fairness rarely guaranteed or needed

Mutual Exclusion and Progress

- Need both:
 - o either one is trivial to achieve by itself

Critical Sections in Harmony

- How do we check mutual exclusion?
- How do we check progress?

Critical Sections in Harmony

- How do we check mutual exclusion?
- How do we check progress?

Critical Sections in Harmony

```
def thread(self):
    while choose( { False, True } ):
        ... # code outside critical section
        ... # code to enter the critical section
        cs: assert countLabel(cs) == 1
        ... # code to exit the critical section

spawn thread(1)
spawn thread(2)
...
```

- How do we check mutual exclusion?
- How do we check progress?
 - if code to enter/exit the critical section cannot terminate, Harmony with balk

Sounds like you need a lock...

- True, but this is an O.S. class!
- The question is:

How does one build a lock?

 Harmony is a concurrent programming language. Really, doesn't Harmony have locks?

You have to program them!

```
lockTaken = False
       def thread(self):
          while choose({ False, True }):
             # Enter critical section
             await not lockTaken
             lockTaken = True
             # Critical section
             @cs: assert atLabel(cs) == { (thread, self): 1 }
10
11
             # Leave critical section
12
             lockTaken = False
13
14
       spawn thread(0)
15
       spawn thread(1)
16
```

Figure 5.3: [code/naiveLock.hny] Naïve implementation of a shared lock.

```
lockTaken = False
       def thread(self):
           while choose({ False, True }):
              # Enter critical section
              await not lockTaken
                                                wait till lock is free, then take it
              lockTaken = True
              # Critical section
              @cs: assert atLabel(cs) == { (thread, self): 1 }
10
11
              # Leave critical section
12
              lockTaken = False
13
14
       spawn thread(0)
15
       spawn thread(1)
16
```

Figure 5.3: [code/naiveLock.hny] Naïve implementation of a shared lock.

```
lockTaken = False
       def thread(self):
          while choose({ False, True }):
              # Enter critical section
             await not lockTaken
                                                wait till lock is free, then take it
             lockTaken = True
             # Critical section
             @cs: assert atLabel(cs) == { (thread, self): 1 }
10
11
              # Leave critical section
12
                                                        release the lock
             lockTaken = False
13
14
       spawn thread(0)
15
       spawn thread(1)
16
```

Figure 5.3: [code/naiveLock.hny] Naïve implementation of a shared lock.

```
lockTaken = False
      def thread(self):
         while choose({ False, True }):
            # Enter critical section
            await not lockTaken
            lockTaken = True
            # Critical section
            @cs: assert atLabel(cs) == { (thread, self): 1 }
10
11
            # Leave
                    ==== Safety violation =====
12
            lockTake
13
                    init /() [0,26-36]
                                          36 { lockTaken: False }
14
                    thread/0 [1-2,3(choose True),4-7] 8 { lockTaken: False }
      spawn thread(
15
                    thread/1 [1-2,3(choose True),4-8] 9 { lockTaken: True }
      spawn thread(
16
                    thread/0 [8-19]
                                              19 { lockTaken: True }
                    >>> Harmony Assertion (file=code/naiveLock.hny, line=10) failed
```

Figure 5.3: [code/naiveLock.hny] Naive implementation of a shared lock.

```
flags = [ False, False ]
       def thread(self):
          while choose({ False, True }):
              # Enter critical section
             flags[self] = True
              await not flags[1-self]
              # Critical section
              @cs: assert atLabel(cs) == { (thread, self): 1 }
10
11
              # Leave critical section
12
             flags[self] = False
13
14
       spawn thread(0)
15
       spawn thread(1)
16
```

Figure 5.5: [code/naiveFlags.hny] Naïve use of flags to solve mutual exclusion.

```
flags = [ False, False ]
       def thread(self):
           while choose({ False, True }):
              # Enter critical section
              flags[self] = True
                                                   enter, then wait for other
              await not flags[1 - self]
              # Critical section
              @cs: assert atLabel(cs) == { (thread, self): 1 }
10
11
              # Leave critical section
12
              flags[self] = False
13
14
       spawn thread(0)
15
        spawn thread(1)
16
```

Figure 5.5: [code/naiveFlags.hny] Naïve use of flags to solve mutual exclusion.

```
flags = [ False, False ]
       def thread(self):
           while choose({ False, True }):
              # Enter critical section
              flags[self] = True
                                                   enter, then wait for other
              await not flags[1 - self]
              # Critical section
              @cs: assert atLabel(cs) == { (thread, self): 1 }
10
11
              # Leave critical section
12
              flags[self] = False
13
14
        spawn thread(0)
15
        spawn thread(1)
16
```

Figure 5.5: [code/naiveFlags.hny] Naïve use of flags to solve mutual exclusion.

```
flags = [ False, False ]
       def thread(self):
          while choose({ False, True }):
              # Enter critical section
             flags[self] = True
              await not flags[1-self]
              # Critical section
              @cs: assert atLabel(cs) == { (thread, self): 1 }
10
11
              # Leave critical section
12
             flags[self] = False
13
14
       spawn thread(0)
15
       spawn thread(1)
16
```

Figure 5.5: [code/naiveFlags.hny] Naïve use of flags to solve mutual exclusion.

```
flags = [ False, False ]
       def thread(self):
          while choose({ False, True }):
             # Enter critical section
5
             flags[self] = True
             await not flags[1 - self]
             # Critical section
             @cs: assert atLabel(cs) == { (thread, self): 1 }
10
11
             # Leave critical section
12
             flags[self] = False
13
                        ==== Non-terminating State ===
14
       spawn thread(0) init /() [0,36-46] 46 { flags: [False, False] }
15
       spawn thread(1)
                        thread/0 [1-2,3(choose True),4-12] 13 { flags: [True, False] }
16
                        thread/1 [1-2,3(choose True),4-12] 13 { flags: [True, True] }
                        blocked thread: thread/1 pc = 13
     Figure 5.5: [code/n
                        blocked thread: thread/0 pc = 13
```

```
turn = 0
       def thread(self):
           while choose({ False, True }):
              # Enter critical section
              turn = 1 - self
              await turn == self
7
              # Critical section
              @cs: assert atLabel(cs) == { (thread, self): 1 }
10
11
              # Leave critical section
12
13
        spawn thread(0)
14
        spawn thread(1)
15
```

Figure 5.7: [code/naiveTurn.hny] Naïve use of turn variable to solve mutual exclusion.

```
turn = 0
       def thread(self):
           while choose({ False, True }):
              # Enter critical section
                                                        after you...
              turn = 1 - self
              await turn == self
              # Critical section
              @cs: assert atLabel(cs) == { (thread, self): 1 }
10
11
              # Leave critical section
12
13
       spawn thread(0)
14
       spawn thread(1)
15
```

Figure 5.7: [code/naiveTurn.hny] Naïve use of turn variable to solve mutual exclusion.

```
turn = 0
       def thread(self):
           while choose({ False, True }):
              # Enter critical section
                                                        after you...
              turn = 1 - self
              await turn == self
                                                     wait for your turn
              # Critical section
              @cs: assert atLabel(cs) == { (thread, self): 1 }
10
11
              # Leave critical section
12
13
        spawn thread(0)
14
        spawn thread(1)
15
```

Figure 5.7: [code/naiveTurn.hny] Naïve use of turn variable to solve mutual exclusion.

```
turn = 0
       def thread(self):
          while choose({ False, True }):
             # Enter critical section
             turn = 1 - self
             await turn == self
7
             # Critical section
             @cs: assert atLabel(cs) == { (thread, self): 1 }
10
11
              # Leave critical section
12
13
       spawn thread(0)
14
       spawn thread(1)
15
                 ==== Non-terminating State ====
                   init /() [0,28-38]
                                                                          38 { turn: 0 }
 Figure 5.7: [cot thread/0 [1-2,3(choose True),4-26,2,3(choose True),4] 5 { turn: 1 }
                 thread/1 [1-2,3(choose False),4,27]
                                                                          27 { turn: 1 }
                 blocked thread: thread/0 pc = 5
```

```
sequential flags, turn
       flags = [ False, False ]
       turn = choose(\{0, 1\})
       def thread(self):
           while choose({ False, True }):
              # Enter critical section
              flags[self] = True
              turn = 1 - self
10
              await (not flags[1 - self]) or (turn == self)
11
12
              # critical section is here
13
              @cs: assert atLabel(cs) == { (thread, self): 1 }
14
15
              # Leave critical section
16
              flags[self] = False
17
18
        spawn thread(0)
19
        spawn thread(1)
20
```

Figure 6.1: [code/Peterson.hny] Peterson's Algorithm

```
sequential flags, turn
                                          latest version of Harmony only
       flags = [ False, False ]
       turn = choose(\{0, 1\})
       def thread(self):
           while choose({ False, True }):
              # Enter critical section
              flags[self] = True
              turn = 1 - self
10
              await (not flags[1 - self]) or (turn == self)
11
12
              # critical section is here
13
              @cs: assert atLabel(cs) == { (thread, self): 1 }
14
15
              # Leave critical section
16
              flags[self] = False
17
18
        spawn thread(0)
19
        spawn thread(1)
20
```

Figure 6.1: [code/Peterson.hny] Peterson's Algorithm

```
sequential flags, turn
       flags = [ False, False ]
       turn = choose(\{0, 1\})
       def thread(self):
           while choose({ False, True }):
              # Enter critical section
              flags[self] = True
              turn = 1 - self
10
              await (not flags[1 - self]) or (turn == self)
11
12
              # critical section is here
13
              @cs: assert atLabel(cs) == { (thread, self): 1 }
14
15
              # Leave critical section
16
              flags[self] = False
17
18
        spawn thread(0)
19
        spawn thread(1)
20
```

Figure 6.1: [code/Peterson.hny] Peterson's Algorithm

```
sequential flags, turn
       flags = [ False, False ]
       turn = choose(\{0, 1\})
       def thread(self):
           while choose({ False, True }):
              # Enter critical section
              flags[self] = True
                                              'you go first"
              turn = 1 - self
10
                                                                        wait until alone or
              await (not flags[1 - self]) or (turn == self)
11
                                                                           it's my turn
12
              # critical section is here
13
              @cs: assert atLabel(cs) == { (thread, self): 1 }
14
15
              # Leave critical section
16
              flags[self] = False
17
18
        spawn thread(0)
19
        spawn thread(1)
20
```

Figure 6.1: [code/Peterson.hny] Peterson's Algorithm

```
sequential flags, turn
       flags = [ False, False ]
       turn = choose(\{0, 1\})
       def thread(self):
           while choose({ False, True }):
              # Enter critical section
              flags[self] = True
                                              'you go first"
              turn = 1 - self
10
                                                                        wait until alone or
              await (not flags[1 - self]) or (turn == self)
11
                                                                           it's my turn
12
              # critical section is here
13
              @cs: assert atLabel(cs) == { (thread, self): 1 }
14
15
              # Leave critical section
16
              flags[self] = False
17
18
        spawn thread(0)
19
        spawn thread(1)
20
```

Figure 6.1: [code/Peterson.hny] Peterson's Algorithm

```
sequential flags, turn
       flags = [ False, False ]
       turn = choose(\{0, 1\})
       def thread(self):
          while choose({ False, True }):
             # Enter critical section
             flags[self] = True
             turn = 1 - self
10
             await (not flags[1 - self]) or (turn == self)
12
             # critical section is here
13
             @cs: assert atLabel(cs) == { (thread, self): 1 }
14
15
             # Leave critical section
16
                                     \#states = 104 diameter = 5
             flags[self] = False
17
                                     #components: 37
18
       spawn thread(0)
19
                                     no issues found
       spawn thread(1)
20
```

Figure 6.1: [code/Peterson.hny] Peterson's Algorithm

So, we proved Peterson's Algorithm correct by brute force, enumerating all possible executions. We now know *that* it works.

But how does one prove it by deduction? so one understands why it works...

What and how?

Need to show that, for any execution, all states reached satisfy mutual exclusion
in other words, mutual exclusion is invariant invariant = predicate that holds in every reachable state

How to prove an invariant?

- Need to show that, for any execution, all states reached satisfy the invariant
- Sounds similar to sorting:
 - Need to show that, for any list of numbers, the resulting list is ordered
- Let's try proof by induction on the length of an execution

Proof by induction

You want to prove that some *Induction Hypothesis* IH(n) holds for any n:

- o Base Case:
 - show that IH(0) holds
- Induction Step:
 - show that if IH(i) holds, then so does IH(i+1)

Proof by induction in our case

To show that some IH holds for an execution E of any number of steps:

- o Base Case:
 - show that IH holds in the initial state(s)
- Induction Step:
 - show that if IH holds in a state produced by E,
 then for any possible next step s, IH also holds in
 the state produced by E + [s]

But there's a problem

- How do we characterize a "state produced by E"?
 - o or how do we characterize a *reachable state*?
- Instead, it's much easier if we proved a so-called "inductive invariant":
 - o Base Case:
 - show that IH holds in the initial state(s)
 - Induction Step:
 - show that if IH holds in *any* state, then for any possible next step, IH also holds in the resulting state

First question: what should IH be?

- Obvious answer: mutual exclusion itself
 - \circ if T0 is in the critical section, then T1 is not
 - without loss of generality...
 - \circ Formally: $T0@cs \Rightarrow \neg T1@cs$
- Unfortunately, this won't work…

State before T1 takes a step:

```
sequential flags, turn
                                                     flags = [ True, True ]
       flags = [ False, False ]
                                                     turn = 1
       turn = choose(\{0, 1\})
       def thread(self):
          while choose({ False, True }):
             # Enter critical section
             flags[self] = True
             turn = 1 - self
10
             await (not flags[1 - self]) or (turn == self)
11
12
             # critical section is here
13
             @cs: assert atLabel(cs) == { (thread, self): 1 }
15
             # Leave critical section
16
             flags[self] = False
17
                                                  mutual exclusion holds
18
       spawn thread(0)
19
       spawn thread(1)
```

Figure 6.1: [code/Peterson.hny] Peterson's Algorithm

State after T1 takes a step:

```
sequential flags, turn
                                                     flags = [ True, True ]
       flags = [ False, False ]
                                                     turn = 1
       turn = choose(\{0, 1\})
       def thread(self):
          while choose({ False, True }):
             # Enter critical section
             flags[self] = True
             turn = 1 - self
10
             await (not flags[1 - self]) or (turn == self)
11
12
             # critical section is here
13
             @cs: assert atLabel(cs) == \{ (thread, self): 1 \}
15
             # Leave critical section
16
             flags[self] = False
17
                                                  mutual exclusion violated
18
       spawn thread(0)
19
       spawn thread(1)
```

Figure 6.1: [code/Peterson.hny] Peterson's Algorithm

So, is Peterson's Algorithm broken?

No, it'll turn out this prior state cannot be reached from the initial state (see later)

```
sequential flags, turn
                                                     flags = [True, True]
       flags = [ False, False ]
                                                     turn = 1
       turn = choose(\{0, 1\})
       def thread(self):
          while choose({ False, True }):
             # Enter critical section
             flags[self] = True
             turn = 1 - self
10
             await (not flags[1 - self]) or (turn == self)
11
12
             # critical section is here
13
             @cs: assert atLabel(cs) == { (thread, self): 1 }
15
             # Leave critical section
16
             flags[self] = False
17
                                                  mutual exclusion holds
18
       spawn thread(0)
19
       spawn thread(1)
20
```

Figure 6.1: [code/Peterson.hny] Peterson's Algorithm

Useful and obvious but insufficient invariant

```
sequential flags, turn
                                           Tx@cs \Rightarrow flags[x]
       flags = [ False, False ]
       turn = choose(\{0, 1\})
       def thread(self):
          while choose({ False, True }):
             # Enter critical section
             flags[self] = True
             turn = 1 - self
10
             await (not flags[1 - self]) or (turn == self)
11
12
             # critical section is here
13
             @cs: assert atLabel(cs) == { (thread, self): 1 }
14
15
             # Leave critical section
16
             flags[self] = False
17
                                                  mutual exclusion holds
18
       spawn thread(0)
19
       spawn thread(1)
20
```

Figure 6.1: [code/Peterson.hny] Peterson's Algorithm

What else do we expect to hold @cs?

```
sequential flags, turn
       flags = [ False, False ]
       turn = choose(\{0, 1\})
       def thread(self):
          while choose({ False, True }):
              # Enter critical section
             flags[self] = True
             turn = 1 - self
10
             await (not flags[1 - self]) or (turn == self)
11
12
             # critical section is here
13
             @cs: assert atLabel(cs) == { (thread, self): 1 }
14
15
             # Leave critical section
16
             flags[self] = False
17
                                                   mutual exclusion holds
18
       spawn thread(0)
19
       spawn thread(1)
20
```

Figure 6.1: [code/Peterson.hny] Peterson's Algorithm

Another obvious IH to try

Based on the await condition:

$$T0@cs \Rightarrow \neg flags[1] \lor turn = 0$$

• Promising because if $T0@cs \wedge T1@cs$ then

$$\begin{array}{l} T0@cs \Longrightarrow \neg flags[1] \lor turn = 0 \land \\ T1@cs \Longrightarrow \neg flags[0] \lor turn = 1 \end{array} \} \Rightarrow \begin{cases} turn = 0 \land \\ turn = 1 \end{cases}$$

- ⇒ False (therefore mutual exclusion)
- Unfortunately, this is not an invariant...

Another obvious IH to try

Based on the await condition:

$$T0@cs \Rightarrow \neg flags[1] \lor turn = 0$$

45

State before T1 takes a step:

```
sequential flags, turn
                                                    flags = [ True, False ]
       flags = [ False, False ]
                                                    turn = 1
       turn = choose(\{0, 1\})
       def thread(self):
          while choose({ False, True }):
            # Enter critical section
             flags[self] = True
             turn = 1 - self
10
             await (not flags[1 - self]) or (turn == self)
11
12
             # critical section is here
13
             @cs: assert atLabel(cs) == { (thread, self): 1 }
15
                                 T0@cs \Rightarrow \neg flags[1] \lor turn = 0 holds
             # Leave critical
16
             flags[self] = False
17
18
       spawn thread(0)
19
                                            note: this is a reachable state
       spawn thread(1)
20
```

Figure 6.1: [code/Peterson.hny] Peterson's Algorithm

State after T1 takes a step:

```
sequential flags, turn
                                                       flags = [ True, True ]
       flags = [ False, False ]
                                                       turn = 1
       turn = choose(\{0, 1\})
       def thread(self):
           while choose({ False, True }):
              # Enter critical section
            \mathit{flags}[\mathit{self}] = \mathtt{True}
              turn = 1 - self
              await (not flags[1 - self]) or (turn == self)
11
12
              # critical section is here
13
              @cs: assert atLabel(cs) == { (thread, self): 1 }
15
                                  T0@cs \Rightarrow \neg flags[1] \lor turn = 0 violated
              # Leave critical
16
              flags[self] = \texttt{False}
17
18
       spawn thread(0)
19
                                          note: this is also a reachable state
        spawn thread(1)
```

Figure 6.1: [code/Peterson.hny] Peterson's Algorithm

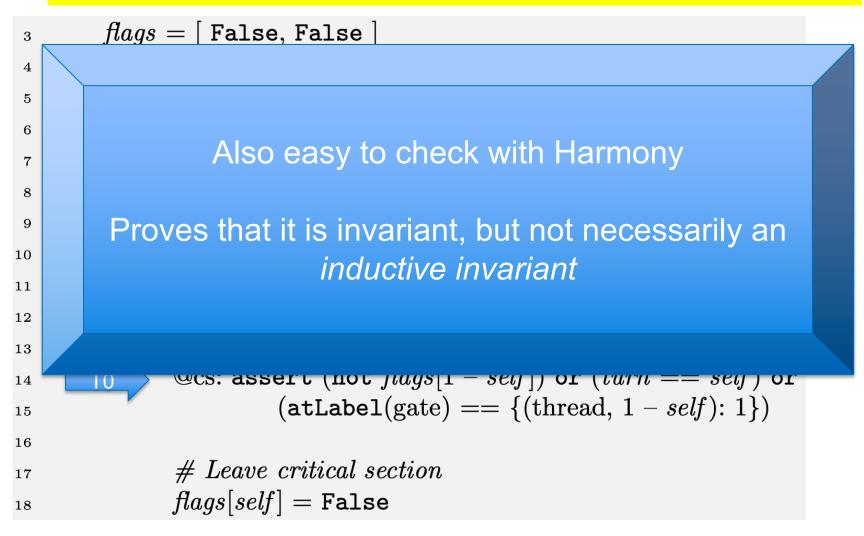
But suggests an improved hypothesis

$T0@cs \Rightarrow \neg flags[1] \lor turn = 0 \lor T1@gate$

```
flags = [ False, False ]
3
        turn = choose(\{0, 1\})
5
        def thread(self):
           while choose({ False, True }):
              # Enter critical section
8
              flags[self] = True
9
              @gate: turn = 1 - self
10
              await (not flags[1-self]) or (turn == self)
11
12
              # Critical section
13
              @cs: assert (not flags[1-self]) or (turn == self) or
14
                        (atLabel(gate) == \{(thread, 1 - self): 1\})
15
16
              # Leave critical section
17
              flags[self] = False
18
```

But suggests an improved hypothesis

 $T0@cs \Rightarrow \neg flags[1] \lor turn = 0 \lor T1@gate$



Inductive Invariance Proof

Let *I* be the induction hypothesis:

```
I \triangleq T0@cs \Rightarrow \neg flags[1] \lor turn == 0 \lor T1@gate
```

I clearly holds in the initial state because $\neg T0@cs$ (false implies anything)

We are going to show: if I holds in a state (reachable or not), then I also holds in any state after either T0 or T1 takes a step

Tricky Case 1:

 $\neg T0@cs$ and T0 takes a step so that T0@cs

This must mean that $\neg flags[1] \lor turn = 0$ before the step (see code line 11)

```
await (not flags[1 - self]) or (turn == self)

# critical\ section\ is\ here

@cs: assert atLabel(cs) == { (thread, self): 1 }
```

But then $\neg flags[1] \lor turn = 0$ still holds after the step

So $T0@cs \Rightarrow \neg flags[1] \lor turn = 0 \lor T1@gate$

Tricky Case 2:

To@cs and T1 takes a step

This must mean that before the step

```
\neg flags[1] \lor turn = 0 \lor T1@gate (by IH).
```

So, 3 cases to consider:

- $\neg flags[1] \Rightarrow flags[1]$
 - \rightarrow this means T1@gate after the step

```
# Enter\ critical\ section
flags[self] = True
@gate: turn = 1 - self
```

- $turn = 0 \Rightarrow turn = 1$
 - → can't happen (only *T*0 sets *turn* to 1)
- $T1@gate \Rightarrow \neg T1@gate$
 - \rightarrow this means turn = 0 after step
- So, $T0@cs \Rightarrow \neg flags[1] \lor turn = 0 \lor T1@gate$

Finally, prove mutual exclusion

```
T0@cs \land T1@cs \Longrightarrow
\begin{cases} \neg flags[1] \lor turn = 0 \lor T1@gate \\ \neg flags[0] \lor turn = 1 \lor T0@gate \end{cases}
               \Rightarrow turn = 0 \land turn = 1
                               \Rightarrow False
```

Finally, prove mutual exclusion

$$T0@cs \land T1@cs \Rightarrow$$

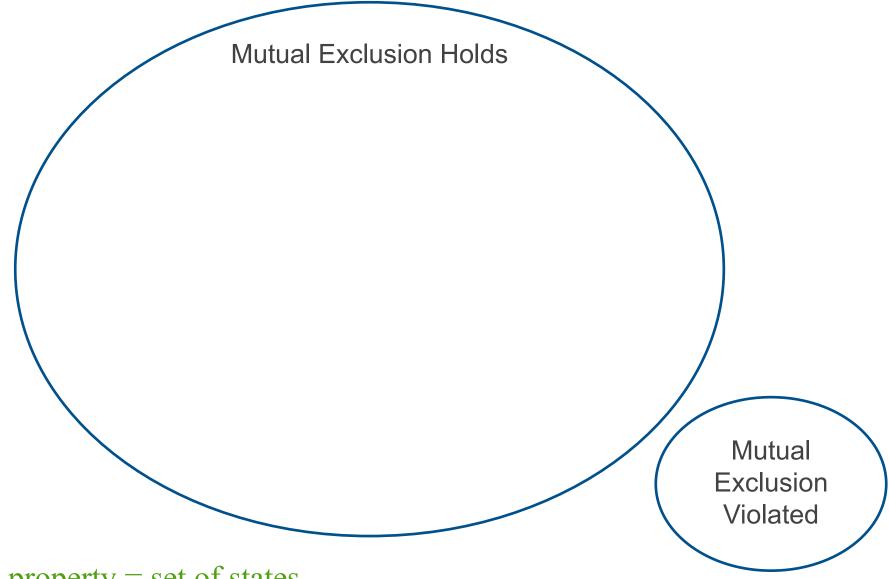
$$\{\neg flags[1] \lor turn = 0 \lor T1@gate \land \neg flags[0] \lor turn = 1 \lor T0@gate \land$$

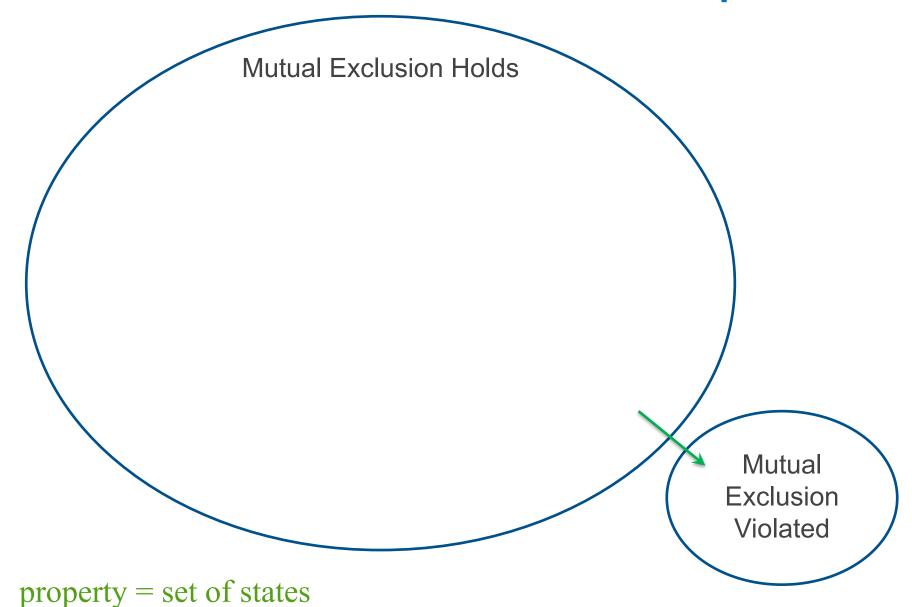
$$\Rightarrow turn = 0 \land turn = 1$$

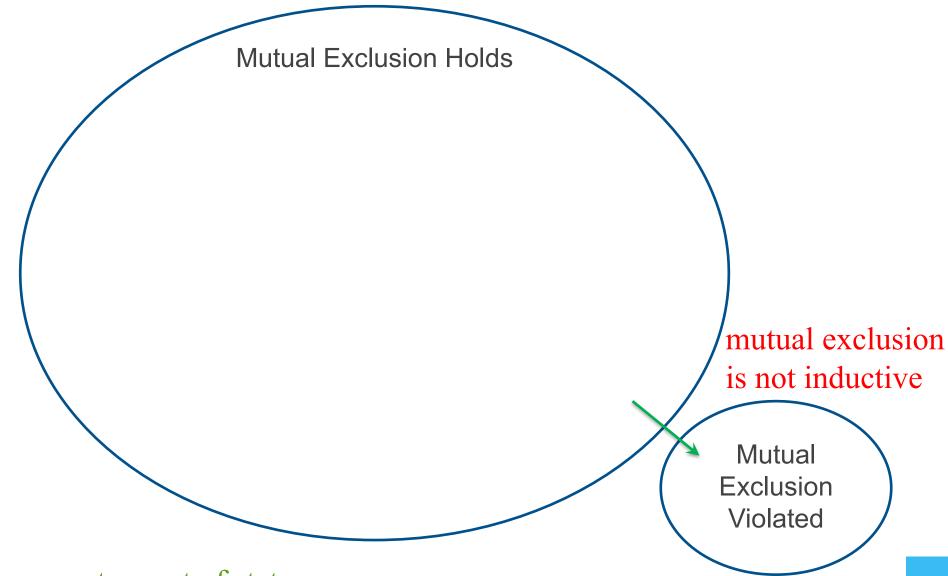
$$\Rightarrow False$$

Now we can see why this state cannot be reached!

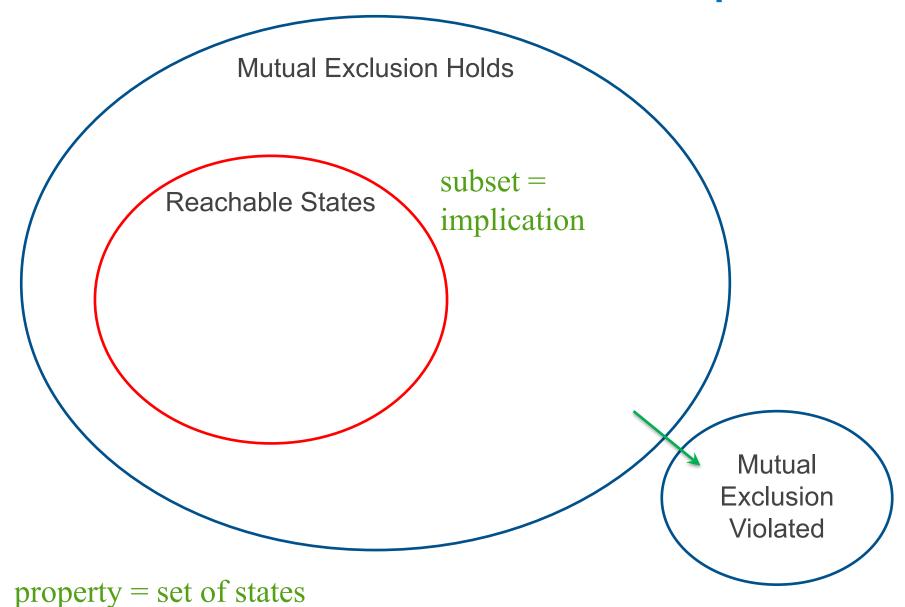
```
sequential flags, turn
                                                       flags = [ True, True ]
       flags = [ False, False ]
                                                       turn = 1
       turn = choose(\{0, 1\})
       def thread(self):
          while choose({ False, True }):
              # Enter critical section
             flags[self] = True
             turn = 1 - self
10
             await (not flags[1 - self]) or (turn == self)
11
12
             # critical section is here
13
             @cs: assert atLabel(cs) == { (thread, self): 1 }
15
             # Leave critical section
16
             flags[self] = False
17
18
       spawn thread(0)
19
       spawn thread(1)
```

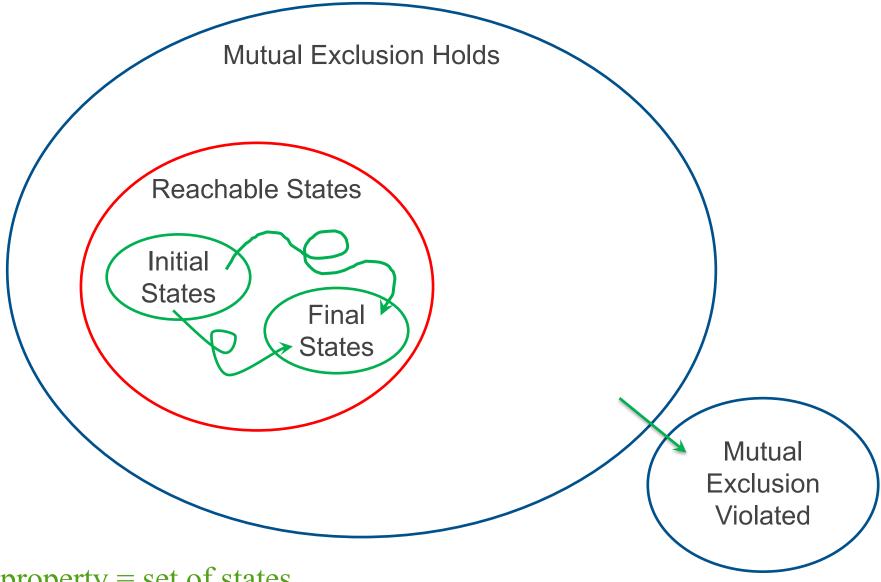


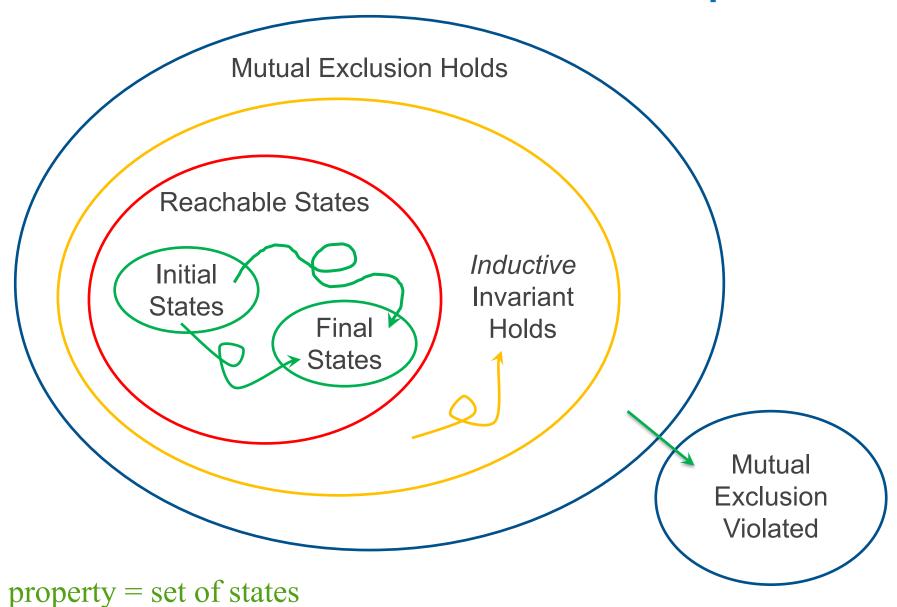




property = set of states







Swapping lines 9 and 10?

```
sequential flags, turn
       flags = [ False, False ]
       turn = choose(\{0, 1\})
       def thread(self):
           while choose({ False, True }):
              # Enter critical section
              flags[self] = True
              turn = 1 - self
10
              await (not flags[1 - self]) or (turn == self)
11
12
              # critical section is here
13
              @cs: assert atLabel(cs) == { (thread, self): 1 }
14
15
              # Leave critical section
16
              flags[self] = False
17
18
        spawn thread(0)
19
        spawn thread(1)
20
```

Figure 6.1: [code/Peterson.hny] Peterson's Algorithm