
Concurrent Programming:
Critical Sections

CS 6410

[Robbert van Renesse]

Why?
o Concurrent programs are non-deterministic
- run them twice with same input, get two different answers
- or worse, one time it works and the second time it fails

o Program statements are executed non-atomically
- x += 1 compiles to something like

• LOAD x
• ADD 1
• STORE x

Concurrent Programming is Hard

2

• A new concurrent programming language
o heavily based on Python syntax to reduce

learning curve for many
• A new underlying virtual machine

it tries all possible executions of a program (or
rather, explores all possible reachable states)
until it finds a problem, if any

(this is called “model checking”)

Enter Harmony

3

Non-Determinism

4

Non-Determinism

5

#states 2
2 components, 0 bad states
No issues

#states 11
Safety Violation
T0: __init__() [0-3,17-25] { shared: True }
T2: g() [13-16] { shared: False }
T1: f() [4-8] { shared: False }
Harmony assertion failed

Critical Sections in Harmony

6

def thread(self):
while True:

… # code outside critical section
… # code to enter the critical section
… # critical section itself
… # code to exit the critical section

spawn thread(1)
spawn thread(2)
…

• How do we check mutual exclusion?
• How do we check progress?

Critical Sections in Harmony

7

def thread(self):
while True:

… # code outside critical section
… # code to enter the critical section
@cs: assert atLabel(cs) == { (thread, self): 1 }
… # code to exit the critical section

spawn thread(1)
spawn thread(2)
…

• How do we check mutual exclusion?
• How do we check progress?

Critical Sections in Harmony

8

def thread(self):
while choose({ False, True }):

… # code outside critical section
… # code to enter the critical section
@cs: assert atLabel(cs) == { (thread, self): 1 }
… # code to exit the critical section

spawn thread(1)
spawn thread(2)
…

• How do we check mutual exclusion?
• How do we check progress?

• if code to enter/exit the critical section
cannot terminate, Harmony with balk

First attempt: a naïve lock

9

First attempt: a naïve lock

10

wait till lock is free, then take it

First attempt: a naïve lock

11

wait till lock is free, then take it

release the lock

First attempt: a naïve lock

12

==== Safety violation ====
__init__/() [0,26-36] 36 { lockTaken: False }
thread/0 [1-2,3(choose True),4-7] 8 { lockTaken: False }
thread/1 [1-2,3(choose True),4-8] 9 { lockTaken: True }
thread/0 [8-19] 19 { lockTaken: True }
>>> Harmony Assertion (file=code/naiveLock.hny, line=10) failed

Second attempt: flags

13

Second attempt: flags

14

enter, then wait for other

Second attempt: flags

15

enter, then wait for other

leave

Second attempt: flags

16

Second attempt: flags

17

==== Non-terminating State ===
__init__/() [0,36-46] 46 { flags: [False, False] }
thread/0 [1-2,3(choose True),4-12] 13 { flags: [True, False] }
thread/1 [1-2,3(choose True),4-12] 13 { flags: [True, True] }
blocked thread: thread/1 pc = 13
blocked thread: thread/0 pc = 13

Third attempt: turn variable

18

Third attempt: turn variable

19

after you...

Third attempt: turn variable

20

wait for your turn

after you...

Third attempt: turn variable

21

==== Non-terminating State ===
__init__/() [0,28-38] 38 { turn: 0 }
thread/0 [1-2,3(choose True),4-26,2,3(choose True),4] 5 { turn: 1 }
thread/1 [1-2,3(choose False),4,27] 27 { turn: 1 }
blocked thread: thread/0 pc = 5

Peterson’s Algorithm: flags & turn

22

Peterson’s Algorithm: flags & turn

23

don’t check for race conditions…

Peterson’s Algorithm: flags & turn

24

“you go first”

Peterson’s Algorithm: flags & turn

25

“you go first”
wait until alone or

it’s my turn

Peterson’s Algorithm: flags & turn

26

“you go first”
wait until alone or

it’s my turn

leave

Peterson’s Algorithm: flags & turn

27

#states = 104 diameter = 5
#components: 37
no issues found

So, we proved Peterson’s Algorithm correct
by brute force, enumerating all possible
executions. We now know that it works.

But how does one prove it by deduction?
so one might understand why it works…

28

• Need to show that, for any execution, all
states reached satisfy mutual exclusion
o in other words, mutual exclusion is invariant
invariant = predicate that holds in every reachable state

What and how?

29

• Need to show that, for any execution, all
states reached satisfy the invariant

• Sounds similar to sorting:
o Need to show that, for any list of numbers, the

resulting list is ordered

• Let’s try proof by induction on the length of
an execution

How to prove an invariant?

30

You want to prove that some Induction
Hypothesis IH(n) holds for any n:
o Base Case:
- show that IH(0) holds
o Induction Step:
- show that if IH(i) holds, then so does IH(i+1)

Proof by induction

31

To show that some IH holds for an
execution E of any number of steps:
o Base Case:
- show that IH holds in the initial state(s)
o Induction Step:
- show that if IH holds in a state produced by E,

then for any possible next step s, IH also holds in
the state produced by E + [s]

Proof by induction in our case

32

• How do we characterize a “state produced by E”?
o or how do we characterize a reachable state?
• Instead, it’s much easier if we proved a so-called

“inductive invariant”:
o Base Case:
- show that IH holds in the initial state(s)

o Induction Step:
- show that if IH holds in any state, then for any possible next

step, IH also holds in the resulting state

But there’s a problem

33

• Obvious answer: mutual exclusion itself
o if 𝑇0 is in the critical section, then 𝑇1 is not
- without loss of generality…
o Formally: 𝑇0@𝑐𝑠 ⟹¬𝑇1@𝑐𝑠

• Unfortunately, this won’t work…

First question: what should IH be?

34

State before T1 takes a step:

35

T0

T1

flags = [True, True]
turn = 1

mutual exclusion holds

State after T1 takes a step:

36

T0

flags = [True, True]
turn = 1

T1

mutual exclusion violated

So, is Peterson’s Algorithm broken?

37

No, it’ll turn out this prior state cannot be
reached from the initial state (see later)

38

T0

T1

flags = [True, True]
turn = 1

mutual exclusion holds

Useful and obvious but insufficient invariant

39

𝑇𝑥@𝑐𝑠 ⇒ 𝑓𝑙𝑎𝑔𝑠[𝑥]

mutual exclusion holds

What else do we expect to hold @cs?

40

? ? ?

mutual exclusion holds

• Based	on	the	await condition:
𝑇0@𝑐𝑠 ⟹ ¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 = 0

• Promising because if 𝑇0@𝑐𝑠 ∧ 𝑇1@𝑐𝑠 then
!𝑇0@𝑐𝑠 ⟹ ¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 = 0 ∧

𝑇1@𝑐𝑠 ⟹ ¬𝑓𝑙𝑎𝑔𝑠 0 ∨ 𝑡𝑢𝑟𝑛 = 1 ⇒ 6𝑡𝑢𝑟𝑛 = 0 ∧
𝑡𝑢𝑟𝑛 = 1

⟹ False (therefore mutual exclusion)

• Unfortunately, this is not an invariant…

Another obvious IH to try

41

• Based	on	the	await condition:
𝑇0@𝑐𝑠 ⟹ ¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 = 0

• Promising because if 𝑇0@𝑐𝑠 ∧ 𝑇1@𝑐𝑠 then
!𝑇0@𝑐𝑠 ⟹ ¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 = 0 ∧

𝑇1@𝑐𝑠 ⟹ ¬𝑓𝑙𝑎𝑔𝑠 0 ∨ 𝑡𝑢𝑟𝑛 = 1 ⇒ 6𝑡𝑢𝑟𝑛 = 0 ∧
𝑡𝑢𝑟𝑛 = 1

⟹ False (therefore mutual exclusion)

• Unfortunately, this is not an invariant…

Another obvious IH to try

42

Easy to check with Harmony
Just run it with the following:

@cs: assert (not flags[1 - self]) or (turn == self)

State before T1 takes a step:

43

T0

T1

flags = [True, False]
turn = 1

𝑇0@𝑐𝑠 ⟹ ¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 = 0 holds

note: this is a reachable state

State after T1 takes a step:

44

T0

T1

flags = [True, True]
turn = 1

𝑇0@𝑐𝑠 ⟹ ¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 = 0 violated

note: this is also a reachable state

But suggests an improved hypothesis

45

𝑇0@𝑐𝑠 ⟹ ¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 = 0 ∨ 𝑇1@𝑔𝑎𝑡𝑒

T0

T1

But suggests an improved hypothesis

46

𝑇0@𝑐𝑠 ⟹ ¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 = 0 ∨ 𝑇1@𝑔𝑎𝑡𝑒

T0

T1

Also easy to check with Harmony

Proves that it is invariant, but not necessarily an
inductive invariant

Let 𝐼 be the induction hypothesis:
𝐼 ≜ 𝑇0@𝑐𝑠 ⟹ ¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 == 0 ∨ 𝑇1@𝑔𝑎𝑡𝑒

𝐼 clearly holds in the initial state because
¬𝑇0@𝑐𝑠 (false implies anything)

We are going to show: if 𝐼 holds in a state
(reachable or not), then 𝐼 also holds in any
state after either 𝑇0 or 𝑇1 takes a step

Inductive Invariance Proof

47

¬𝑇0@𝑐𝑠 and 𝑇0 takes a step so that 𝑇0@𝑐𝑠
This must mean that ¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 = 0
before the step (see code line 11)

But then ¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 = 0 still holds after
the step

So

Tricky Case 1:

48

𝑇0@𝑐𝑠 ⟹ ¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 = 0 ∨ 𝑇1@𝑔𝑎𝑡𝑒
☑

𝑇0@𝑐𝑠 and 𝑇1 takes a step
This must mean that before the step
¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 = 0 ∨ 𝑇1@𝑔𝑎𝑡𝑒 (by IH).

So 3 cases to consider:
• ¬𝑓𝑙𝑎𝑔𝑠 1 ⇒ 𝑓𝑙𝑎𝑔𝑠 1
è this	means	𝑇1@𝑔𝑎𝑡𝑒 after the step
• 𝑡𝑢𝑟𝑛 = 0⇒ 𝑡𝑢𝑟𝑛 = 1
è can’t	happen	(only	𝑇0 sets	turn to	1)
• 𝑇1@𝑔𝑎𝑡𝑒 ⇒¬ 𝑇1@𝑔𝑎𝑡𝑒
è this	means	turn =	0	after	step

So

Tricky Case 2:

49
𝑇0@𝑐𝑠 ⟹ ¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 = 0 ∨ 𝑇1@𝑔𝑎𝑡𝑒☑

𝑇0@𝑐𝑠 ∧ 𝑇1@𝑐𝑠 ⟹

*¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 = 0 ∨ 𝑇1@𝑔𝑎𝑡𝑒
¬𝑓𝑙𝑎𝑔𝑠 0 ∨ 𝑡𝑢𝑟𝑛 = 1 ∨ 𝑇0@𝑔𝑎𝑡𝑒 ∧

⟹ 𝑡𝑢𝑟𝑛 = 0 ∧ turn = 1
⟹ 𝐹𝑎𝑙𝑠𝑒

Finally, prove mutual exclusion

50

𝑇0@𝑐𝑠 ∧ 𝑇1@𝑐𝑠 ⟹

*¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 = 0 ∨ 𝑇1@𝑔𝑎𝑡𝑒
¬𝑓𝑙𝑎𝑔𝑠 0 ∨ 𝑡𝑢𝑟𝑛 = 1 ∨ 𝑇0@𝑔𝑎𝑡𝑒 ∧

⟹ 𝑡𝑢𝑟𝑛 = 0 ∧ turn = 1
⟹ 𝐹𝑎𝑙𝑠𝑒

Finally, prove mutual exclusion

51

QED

Now we can see why this state cannot be reached!

52

T0

T1

flags = [True, True]
turn = 1

𝑇0@𝑐𝑠 ⟹ ¬𝑓𝑙𝑎𝑔𝑠 1 ∨ 𝑡𝑢𝑟𝑛 = 0 ∨ 𝑇1@𝑔𝑎𝑡𝑒 ✕

Review in Pictures: State Space

53

Mutual Exclusion Holds

Mutual
Exclusion
Violated

property = set of states

Review in Pictures: State Space

54

Mutual Exclusion Holds

Mutual
Exclusion
Violated

property = set of states

Review in Pictures: State Space

55

Mutual Exclusion Holds

Mutual
Exclusion
Violated

property = set of states

mutual exclusion
is not inductive

Review in Pictures: State Space

56

Reachable States

Mutual Exclusion Holds

Mutual
Exclusion
Violated

property = set of states

subset =
implication

Review in Pictures: State Space

57

Initial
States

Reachable States

Mutual Exclusion Holds

Mutual
Exclusion
Violated

Final
States

property = set of states

Review in Pictures: State Space

58

Initial
States

Reachable States

Mutual Exclusion Holds

Mutual
Exclusion
Violated

Final
States

Inductive
Invariant

Holds

property = set of states

Swapping lines 9 and 10?

59

