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Two Generals’ Problem
a thought experiment

A1 A2B

• ”A” can only win if A1 and A2 both attack.  If one attacks, it will be decimated
• Generals of armies A1 and A2 can only communicate through messengers
• Messengers can get intercepted and killed when trying to pass through army B



This is an “agreement” problem

• Suppose there is a deterministic protocol that 
solves the problem

• Let n be the minimal number of messages 
required

• Since messages may or may not arrive, omitting 
the last message should also work

• Therefore, n = 0
• So only possible if the generals had decided 

ahead of time (“Global Knowledge”)



2 Generals in practice

• TCP
– How do endpoints agree on state?
– When is it safe to garbage collect an endpoint?

• They have to agree on the fact that the connection has terminated
– A1 à A2: let’s terminate
– A2 à A1: ok, let’s (unfortunately, gets lost)

» A2 cannot decide to garbage collect because it may leave A1 hanging
– A1 à A2: let’s terminate (retransmission)
– A2 à A1: ok, let’s

» A2 still cannot terminate for same reason as before
» A1 receives the message, but needs to inform A2 so
» …

– In practice, time-outs are used



Keeping Replicas Synchronized

• The replicas agree on the transitions (operations) 
and the order in which to apply them

• The problem of a set of processes agreeing on 
something is called “consensus”

• Think of the sequence of transitions as a list of 
“slots”

• For each slot, State Machine Replication (SMR) 
has to solve consensus on a set of candidate 
transitions (“proposals”)



What is Consensus?

• A way for multiple participants to agree on
– the next update to perform in a replicated service
– a leader
– whether to abort or commit a transaction
– a recovery action after a failure
– the next block in a block chain

• Surprisingly hard with participant and network 
failures
– whether accidental or malicious

• Even harder in the face of asynchrony
– complete lack of bounds on latency



Consensus Formalized

• Agreement:
– if two replicas decide, they must decide the same 

proposed operation
• Validity:
– a replica can only decide an operation that was proposed 

by some replica
• without this requirement, replicas could just decide “no-op” each 

time

• Termination:
– a correct (non-crashing) replica must eventually decide 

(assuming at least one operation was proposed)



Solving consensus is hard…

Crash failures + no 
assumptions about timing Þ
solving consensus is impossible
(FLP’83, FLP’85)

decidedundecided

Off by one event



Add Network Failures…

Consistency Availability

Partition
tolerance

TAKE 2



Lower Bound on number of participants
In an asynchronous environment with crash failures, 
you need at least 2f + 1 replicas to tolerate f crash 
failures
– 2f is not enough: consider the difference between two 

groups of f processes being separated by a network 
partition and one group of those processes crashing: can 
the other group see the difference?

indistinguishability
argument

(f = 3)



Lower Bound on number of participants
In an asynchronous environment with crash failures, 
you need at least 2f + 1 replicas to tolerate f crash 
failures
– 2f is not enough: consider the difference between two 

groups of f processes being separated by a network 
partition and one group of those processes crashing: can 
the other group see the difference?

indistinguishability
argument

(f = 3)

if 2f were enough, each group could make a decision independently of the other



Other Lower Bounds

Byzantine 3f + 1

Crash 2f + 1

Fail-Stop f + 1
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Lower Bound with Byzantine Failures
In an asynchronous environment, you need at least 
3f + 1 participants to tolerate f Byzantine failures

indistinguishability
argument: 3f is not enough

(f = 3)
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Example consensus protocol
with 3f + 1 processes: setup

• Asynchronous environment
• 3f + 1 processes, at most f of which may experience a 

crash failure
– note: 3f + 1 is more than the lower bound 2f + 1

• thus this protocol will not be optimal in the number of processes

• The processes run rounds of communication
• Each process maintains a round number r and an 

estimate e
• Initially r = 0 and e is the proposal of the process.



Protocol with 3f + 1 processes
1. Broadcast < r, e >  “vote” (including to self)

2. Wait for 2f + 1 votes  (out of 3f + 1)

– Note: because as many as f may fail, this is the maximum a 
process can safely wait for

3. If a majority of the 2f + 1 votes contains the same 
proposal, change e to that proposal

– Note: because 2f + 1 is odd, there cannot be a tie
4. If not, set e to a proposal in any of the votes received
5. If all votes contain the same proposal (unanimity), decide

that proposal
6. r := r + 1
7. Repeat (go to Step 1, starting next round)



Generic Asynchronous Consensus

r = 0 r = 1 r = 2 r = 3 r = 4
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Example Run with f = 1
Process 1 Process 2 Process 3 Process 4

Vote 0 RED RED BLUE BLUE

Receive RRB BRB RRB RBB

Vote 1 RED BLUE RED BLUE

Receive BRB BBR RRB RBR

Vote 2 BLUE BLUE RED RED

Receive BRB RBB RRB BBR

Vote 3 BLUE BLUE RED BLUE

Receive BBR BBB RBB BBB

Vote 4 BLUE BLUE BLUE BLUE

Receive BBB BBB BBB BBB

univalence



Validity?

Obvious:
– no proposals invented by the protocol
– processes always vote for one of the original 

proposals



Agreement?

By contradiction:
– two processes deciding e and e’ in the same round?

• can’t happen because they each need 2f + 1 votes for their 
proposal, and there are only 3f + 1 processes

– two proc’s deciding e in round r and e’ in round r’?
• can’t happen: if a process decides e in round r, then 2f+1 

process must have voted for e.  Thus any correct process 
must have received at least f + 1 votes for e in the same 
round, and change its estimate to e.  Hence starting in 
round r + 1, all votes will be for e and no other value can be 
decided.

f f + 1 f



Termination?

This protocol doesn’t guarantee it
– Suppose f = 1, and thus there are four processes
– In round 0, two processes propose RED and two processes 

propose BLUE.
– In round 1

• two processes receive two RED and one BLUE vote and set their 
estimate to RED

• the other two processes receive one RED and two BLUE votes 
and set their estimate to BLUE

– Status quo maintained…
• this scenario can be repeated indefinitely



FLP Impossibility Result

Fisher, Lynch, and Patterson 1985:
– There does not exist a deterministic consensus 

protocol that can guarantee all of Validity, Agreement, 
and Termination in an asynchronous environment 
that admits one or more crash failures



Proof Sketch

• Consider a correct binary determistic consensus 
protocol
– Validity, Agreement, and Termination

• Call a state of the protocol x-valent if all executions 
from that state can only decide x (x = 0 or 1)
– For example, the state in which all processes propose x is 

x-valent because of Validity
– A state in which x is already decided is also x-valent

• Call a state bivalent if it can decide either 0 or 1



Proof Sketch, cont’d

• Lemma: the protocol has an initial bivalent state
• By contradiction
– consider two initial states S0 and S1, one 0-valent and 

one 1-valent, that only differ in the proposal of some 
process p (clearly must exist)

– since protocol can tolerate one failure, there must 
exist a deciding execution from S0 in which p takes no 
steps.  Now run same execution from S1 (changing p’s 
proposal).  It’ll still decide 0, but S1 is 1-valent…



Proof Sketch, cont’d
• Consider a bivalent state and a process p such that if p

takes a step the state becomes 0-valent
• There cannot be a step by another process to a state that is 

1-valent
– What would happen if both processes took a step?
– Depends on the order, but resulting state is the same

• But since the state is bivalent, there must exists an 
execution to a 1-valent state
– So, let’s follow that path (except for the last step) instead of 

having p take a step
• Hence, we can create an infinite execution that never 

decides, contradicting Termination



Is all hope lost?

• No, protocols exist that reach termination with 
probability 1
– that is not quite as good as a guarantee

• similar to tossing a coin repeatedly: in theory it may never 
happen that heads comes up

• but it’s extremely unlikely (probability 0)

• Most consensus protocols are likely to terminate in 
one or two rounds

• Even with very weak additional assumptions, 
termination can be guaranteed
– e.g., the existence of a bound on latency, even if that 

bound is unknown



Meeting the 2f+1 lower bound

• The trick is to create a protocol that guarantees that 
if two processes vote in the same round, they vote 
for the same proposal

• One instantiation of this trick is to assign to each 
round a “leader”
– for example, the leader role could rotate among the 

processes from round to round
• Processes are allowed to abstain from voting, for 

example if they don’t hear from the leader within a 
reasonable amount of time



2f + 1 consensus protocols

• Again, round-based
• Each round consists of two phases:

1. Determine a single proposal to vote on
• For example, by leader or majority
• This may fail and is no substitute for consensus in its own 

right
2. Vote on the proposal if there is one

• Protocol decides if majority votes (for the proposal)
• Processes may abstain, so again there is no guarantee 

that a decision is made



What is Paxos?
• Paxos is a state machine replication protocol for asynchronous environments 

with crash failures [Leslie Lamport, 1989].
• It uses a consensus protocol called “Synod” that meets the lower bound

– you need 2f + 1 “acceptors” to tolerate f failures
– rounds are called “ballots”
– each ballot has a leader
– the leader determines the proposal for a ballot

• based on input from a majority of acceptors
• each acceptor reports its highest vote by ballot number, or NULL if it never voted

– the leader selects the proposal with the highest ballot number, or its own proposal 
if all acceptors report NULL

– the leader broadcasts the selected proposal and ballot number
– the acceptors vote if they have not heard from a leader of a ballot with a higher 

ballot number
– a replica decides if it learns a majority of acceptors voted on the same ballot



Why so popular?
Paxos is pragmatic:

– it meets the lower bound for number of processes needed (2f + 1)
– leader-based protocols deal well with contention (multiple 

concurrent proposals from different clients)
– Synod has an important optimization when running multiple 

instantiations so that most slots require only the second phase
• the leader can be reused from slot to slot for the first ballot
• most decision involve only three message latencies:

1. a leader broadcasting a proposal, requesting acceptors to vote
2. the acceptors voting and responding (the leader is waiting)
3. the leader learning the decision and notifying the replicas

– Synod is guaranteed to terminate if there exists a bound on
message latencies and processing times
• by doubling the timeout on waiting in each ballot



Comparison to Primary-Backup
Paxos Primary-Backup

• aka Active Replication • aka Passive Replication

• needs 2f + 1 participating processes 
(although f of those only need to be 
voting witnesses)

• needs f+1 participating processes (1 
primary and f backups)

• each replica applies all operations • only the primary applies operations, 
backups maintain only state

• does not require accurate failure 
detection

• requires accurate failure detection 
(unrealistic?)

• masks failures • failures require complicated recovery

• requires three message latencies in the 
normal case

• requires two message latencies in the 
normal case



Glossary (by way of conclusion)
Term Meaning

Acceptor voting participant in Paxos

Agreement no two processes decide differently

Asynchrony no bounds on timing

Ballot essentially the same as a round

Consensus a protocol for agreeing on a proposal

Crash process stops making transitions

Leader proposes a value in the first phase of a round

Phase part of a round

Replica a copy of a state machine

Round an exchange of messages between participants

Termination correct processes eventually decide

Validity a process can only decide a proposal



Protocol with 3f + 1 processes
1. Broadcast < r, e >  “vote” (including to self)

2. Wait for 2f + 1 votes  (out of 3f + 1)

– Note: because as many as f may fail, this is the maximum a 
process can safely wait for

3. If a majority of the 2f + 1 votes contains the same 
proposal, change e to that proposal

– Note: because 2f + 1 is odd, there cannot be a tie
4. If not, set e to a proposal in any of the votes received
5. If all votes contain the same proposal (unanimity), decide

that proposal
6. r := r + 1
7. Repeat (go to Step 1, starting next round)

Crash Tolerant



Protocol with 5f + 1 processes
1. Broadcast < r, e >  “vote” (including to self)

2. Wait for 4f + 1 votes  (out of 5f + 1)

– Note: because as many as f may fail, this is the maximum a 
process can safely wait for

3. If a majority of the 4f + 1 votes contains the same 
proposal, change e to that proposal

– Note: because 4f + 1 is odd, there cannot be a tie
4. If not, set e to a proposal in any of the votes received
5. If all votes contain the same proposal (unanimity), decide

that proposal
6. r := r + 1
7. Repeat (go to Step 1, starting next round)

Byzantine Tolerant



Example Run with f = 1
Process 1 Process 2 Process 3 Process 4 Process 5 Process 6

Vote 0 RED RED BLUE BLUE BLUE RED/BLUE

Receive RRRBB BRBBB RRRBB RRBBB RRRBB

Vote 1 RED BLUE RED BLUE RED RED/BLUE

Receive BRRBB BBRRB RRRRB RBRRR RRRBB

Vote 2 BLUE BLUE RED RED RED RED/BLUE

Receive BBRRB RRBBB BRRBB BBBRR RRRBB

Vote 3 BLUE BLUE BLUE BLUE BLUE RED/BLUE

Receive BBBBR BBBBB RBBBB BBBBB BBRBB

Vote 4 BLUE BLUE BLUE BLUE BLUE RED/BLUE

Receive BBBBB BBBRB BBBBB BRBBB BBRBB



TRANSLATING CRASH TOLERANT 
PROTOCOLS INTO BYZANTINE 
TOLERANT PROTOCOLS



Plan

• Introduce OARCAST
• Show how OARCAST can be used to translate any 

crash tolerant protocol into a Byzantine tolerant 
one



OARCAST
• Ordered Authenticated Reliable Broadcast
• 1 sender,  N receivers
• Properties:

1. Persistence: if sender is correct, all correct receivers will receive all 
the sender’s messages

2. Relay: if one correct receiver delivers a message, all correct 
receivers will deliver the same message

3. Authenticity: if sender is correct and does not send m, no correct
receiver will deliver m

4. FIFO: if sender is correct, correct receivers deliver its messages in 
the order sent

5. Order: if two correct receivers deliver m1 and m2, then they 
deliver m1 and m2 in the same order (even if the sender is 
Byzantine)



OARCAST Protocol

38
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sender

orderer1

orderer2

orderer3

orderer4

receiver1

receiver2

Receiver delivers on receipt 
of 2f+1 matching messages

• All messages signed and contain sequence number
• 3f+1 orderers, check seq numbers and echo



OARCAST Protocol

• All messages signed and contain sequence number
• 3f+1 orderers, check seq numbers and echo

39
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sender

orderer1

orderer2

orderer3

orderer4

receiver1

receiver2

if needed

Receiver delivers on receipt 
of 2f+1 matching messages



OARCAST Persistence

If sender is correct, all correct receivers will receive 
all its messages

• All correct orderers will receive the sender’s 
messages in the correct order

• As there are at least 2f+1 correct orderers, all 
receivers will receive at least 2f+1 matching 
echoes for each of the sender’s messages



OARCAST Relay

If one correct receiver delivers a message, all 
correct receivers will deliver the same message

• All correct orderers echo each other’s messages 
to one another, and then onto receivers

• If one correct receiver receivers 2f+1 matching 
echoes, all correct receivers receive 2f+1 
matching echoes



OARCAST Authenticity

If sender and receiver are correct, and sender 
delivers a message, then the sender sent it

• All messages are signed, so receivers can reject 
any message not signed by sender



OARCAST FIFO

If sender is correct, correct receivers deliver 
messages in the order sent

• All messages contain a sequence number and are 
signed by the sender



OARCAST Order
Correct receivers deliver messages in the same order

• By contradiction: suppose R1 delivers x before y, and R2 
delivers y before x

• Then 2f+1 orderers must have echoed x, and 2f+1 orderers
must have echoed y

• Since there are only 3f+1 orderers, f+1 orderers must have 
echoed both x and y

• At least one of these orderers must be correct
• Correct orderers check sequence numbers and don’t echo 

messages twice



Translation

• Start with a crash tolerant protocol
– N participants

• Create N copies of the protocol
• Run each copy on a single machine using a simulated 

network on the machine
• Keep the various copies in synch with one another

– use N instantiations of OARCAST
– each is used to order incoming messages to a participant

• only payload needed is the source identifier of the message as message 
content is generated by the machine itself



Example



Example



Example

OAR
CAST

OAR
CAST

OAR
CAST



Simulation within a machine

• Each machine simulates all participants
• One is the “coordinator” participant
• When the coordinator participant receives a 

simulated message from some peer p, the machine 
OARCASTs p to the other machines
– other non-deterministic events must be OARCAST also

• Each machine delivers messages to each participant
in the order it receives OARCASTs to that participant



Net Result

• Each correct machine delivers the same messages 
to the same (simulated) participants

• A Byzantine machine that is ”caught” acts like a 
crashed machine in the simulation 

à All correct machines run the same simulation



Dealing with output

• Byzantine machines can still generate bad output
• Output can be trusted if at least f+1 machines 

generate the same output


