Fault- [olerant
State Machine

Replication

Chinasa T. Okolo

Slides borrowed from Hakim Weatherspoon and Drew Zagieboylo

Authors

Fred Schneider

e Samuel B. Eckert Professor
of Computer Science

o AAAS, ACM, and IEEE
Fellow

e (Concurrent and distributed
systems for high-integrity
and mission-critical settings

Outline

Motivation

State Machine Replication Approach
Implementation

Fault Tolerance

Chain Replication

Conclusions

Motivation

Server

10 AN
- | ‘Q
Clent — * % y

get(x)
...NoO response
ﬁ;t(x)

Client

Motivation

e Need replication for fault tolerance
e What happens in scenarios without replication?
e Storage - Disk Failure
e \Web service - Network failure
e Be able to reason about failure tolerance
e How badly can things go wrong and have our system

continue to function?

Motivation

Motivation

Motivation

Problem

How can we ensure that all replicas
are in the same state all of the time?

Outline

Motivation

State Machine Replication Approach
Implementation

Fault Tolerance

Chain Replication

Conclusions

10

e CIS A

e fis a Transition

State Machines

Command

Function

11

State Machine Coding

e State machines are procedures
e (Client calls procedure
e Avoid loops

e [lexible structure

12

State Machine Replication

e Each starts in the same Initial state
e [EXxecutes the same requests

e Requires consensus to execute in same order

e Deterministic, each will do the exact same thing

e Produce the same output

13

State Machine Replication

All non faulty servers need:

e Agreement
o Every replica needs to accept the same set of
requests
e Order
o All replicas process requests in the same relative
order

14

Outline

Motivation
State Machines
Implementation

Fault Tolerance

Chain Replication

Conclusions

15

Implementation

Agreement

e [ransmitter proposes a request; if it is non-faulty
all servers will accept that request

e [ransmitter can be client or server

e (Client or Server can propose the request

16

Implementation

Agreement

e |C1: All non-faulty processors agree on the same
value

o |C2: If transmitter is non-faulty, agree on its value

17

Ordering

“The Order requirement can be satisfied by
assigning unique identifiers to requests and

having state machine replicas p
according to a total orderi
on these unigue ident

‘'OCESS requests
Ng relation

flers.”

18

Implementation

e Order

e Assign unigue ids to requests and process them
IN ascending order.

e How do we assign unigue ids in a distributed
system??

19

Implementation
Client Generated IDs

Ordering via clocks
e | ogical Clocks
e Synchronized Clocks

e |deas from last class! [Lamport 19/8]

20

Can the replicas generate
unique identifiers®

Of course!

21

Implementation
Replica Generated |Ds

e 2 Phase ID generation
e [very replica proposes a candidate

¢ (One candidate is chosen and agreed upon by all

replicas

22

Implementation
Replica Generated |Ds

* \When do we know a candidate is stable?
e A candidate is accepted

e No other pending requests with smaller
candidate ids

23

Stability Testing

e Stability tests for logical and synchronized clocks?
e Disadvantages
e Stability tests require all nodes to communicate
m Logical: stabilizing requests

m Synchronized: clock synchronization

24

Outline

Motivation
State Machines
Implementation

Fault Tolerance

Chain Replication

Conclusions

25

When does behavior
become faulty”?

When it’s no longer consistent with
specification!

260

Fault Tolerance

e Fail-Stop
o A faulty server can be detected as faulty
e Crash Failures

e Server can stop responding without notification
(subset of Byzantine)

e Byzantine
e [aulty servers can do arbitrary, pernaps malicious
things

27

Fault Tolerance

e Fail-Stop Tolerance
o To tolerate t failures, need t+17 servers.
o As long as 1 server remains, we're OK!
o Only need to participate in protocols with other

live servers

28

Fault Tolerance

Byzantine Failures
To tolerate t failures, need 2t + 1 servers

e Protocols now involve votes

o Can only trust server response if the majority of
servers say the same thing

e {+ 71 servers need to participate in replication
protocols

29

lakeaways

e (Can represent deterministic distributed system as
Replicated State Machine

e Each replica reaches the same conclusion about
the system independently

e Formalizes notions of fault-tolerance in SMR

30

DISCusSsIon

e \Why is State Machine Replication so important”

e \What is the best case scenario in terms of
replications for fault tolerance”?

¢ |s the state machine approach still feasible”?

31

Outline

Motivation
State Machines
Implementation

Fault Tolerance

Chain Replication

Conclusions

32

Chain Replication

Authors

Robert Van Renesse
o Senior Researcher at Cornell

o ACM Fellow and Ukelele

enthusiast
o Systems and Networking

Fred Schneider

33

Chain Replication

« [ault Tolerant Storage Service
 Requests:
o Update(x, y) => set object x to value y

o Query(x) => read value of object x

34

Chain Replication

Chain Replication

Client

36

Chain Replication

out(x,30)

Client 37

Chain Replication

out(x,30)

1) Head assigns uid

Client 38

Chain Replication

out(x,30)

2) Head sends message
to next node
Client 39

Chain Rep\ication

put(x,30) 3) Repeat unti

tall Is reached
Client 40

Chain Replication

"S-o | Reg. UID
] . \
Tail
\

x=30 " 4) respond to client with

| SUCCESS
Client “

Chain Replication
Assumptions

e No partition tolerance
e High throughput
e [all-stop processors

e A universally accessible, failure resistant or
replicated Master

42

Chain Replication

How does Chain Replication implement State
Machine Replication?

o Agreement
e Only Update modifies state, can ignore Query

e (Client always sends update to Head. Head
propagates request down chain to Tail.

e [Everyone accepts the request!

43

Chain Replication

How does Chain Replication implement State
Machine Replication?

e Order
e Unique IDs generated implicitly by Head’s ordering
e FFO order preserved down the chain

e Tail interleaves Query requests

44

Chain Replication
Fault Tolerance

e [rusted Master
o Fault-tolerant state machine
o Trusted by all replicas

o Monitors all replicas & issues commands

45

Chain Replication
Fault Tolerance

e Head Fails

o Master assigns 2nd node as Head
¢ Intermediate Node Fails

o Master coordinates chain link-up
e Tail Fails

o Master assigns 2nd to last node as Tall

46

Outline

Motivation
State Machines
Implementation

Fault Tolerance

Chain Replication

Conclusions

47

Conclusions

¢ |mplements the “exercise left to the reader” hinted at by
Lamport’s paper

e Provides some of the concrete details needed to actually
implement this idea

e But still a fair numlber of details in real implementations that
would need to be considered

e Chain replication illustrates a “simple” example with fully
concrete detalls

e A key contribution that bridges the gap between academia and
practicality for SMR

48

Chain Replication
Discussion

e (Comparison to other primary/backup protocols?

e \Vhat are the tradeoffs of Chain Replication?

e [atency

e (Consistency

e Any thoughts on the Trusted Master system?

49

