
Fault-Tolerant
State Machine

Replication
Chinasa T. Okolo

Slides borrowed from Hakim Weatherspoon and Drew Zagieboylo 1

Authors

Fred Schneider
• Samuel B. Eckert Professor

of Computer Science

• AAAS, ACM, and IEEE
Fellow

• Concurrent and distributed
systems for high-integrity
and mission-critical settings

2

Outline

● Motivation

● State Machine Replication Approach

● Implementation

● Fault Tolerance

● Chain Replication

● Conclusions

3

Motivation

Client

Client

Server

X = 10
10

get(x)

get(x)
…No response

4

Motivation

• Need replication for fault tolerance

• What happens in scenarios without replication?

• Storage - Disk Failure

• Web service - Network failure

• Be able to reason about failure tolerance

• How badly can things go wrong and have our system

continue to function?

5

Motivation

Server

Client
X = 10

X = 10 X = 10

X = 10

6

Motivation

Server

X = 3X = 3

X = 3 X = 3

put(x,10)

7

Motivation

Server

X = 10X = 10

X = 10 X = 3

get(x)

10

Problem!

get(x)

3

8

Problem

How can we ensure that all replicas
are in the same state all of the time?

9

Outline

● Motivation

● State Machine Replication Approach

● Implementation

● Fault Tolerance

● Chain Replication

● Conclusions

10

State Machines

X = Yc

X = Z

f(c)• c is a
Command

11

• f is a Transition
Function

State Machine Coding

● State machines are procedures

● Client calls procedure

● Avoid loops

● Flexible structure

12

State Machine Replication

● Each starts in the same initial state

● Executes the same requests

● Requires consensus to execute in same order

● Deterministic, each will do the exact same thing

● Produce the same output

13

State Machine Replication

All non faulty servers need:

● Agreement
○ Every replica needs to accept the same set of

requests
● Order

○ All replicas process requests in the same relative
order

14

Outline

● Motivation

● State Machines

● Implementation

● Fault Tolerance

● Chain Replication

● Conclusions

15

Implementation

Agreement

• Transmitter proposes a request; if it is non-faulty
all servers will accept that request

• Transmitter can be client or server

• Client or Server can propose the request

16

Implementation

Agreement

• IC1: All non-faulty processors agree on the same
value

• IC2: If transmitter is non-faulty, agree on its value

17

Ordering

“The Order requirement can be satisfied by
assigning unique identifiers to requests and

having state machine replicas process requests
according to a total ordering relation

on these unique identifiers.”

18

Implementation

• Order

• Assign unique ids to requests and process them
in ascending order.

• How do we assign unique ids in a distributed
system?

19

Implementation
Client Generated IDs

Ordering via clocks

• Logical Clocks

• Synchronized Clocks

• Ideas from last class! [Lamport 1978]

20

Can the replicas generate
unique identifiers?

Of course!

21

Implementation
Replica Generated IDs

• 2 Phase ID generation

• Every replica proposes a candidate

• One candidate is chosen and agreed upon by all

replicas

22

Implementation
Replica Generated IDs

• When do we know a candidate is stable?

• A candidate is accepted

• No other pending requests with smaller
candidate ids

23

Stability Testing

• Stability tests for logical and synchronized clocks?

• Disadvantages

• Stability tests require all nodes to communicate

■ Logical: stabilizing requests

■ Synchronized: clock synchronization

24

Outline

● Motivation

● State Machines

● Implementation

● Fault Tolerance

● Chain Replication

● Conclusions

25

When does behavior
become faulty?

When it’s no longer consistent with
specification!

26

Fault Tolerance
• Fail-Stop

• A faulty server can be detected as faulty

• Crash Failures

• Server can stop responding without notification
(subset of Byzantine)

• Byzantine

• Faulty servers can do arbitrary, perhaps malicious
things

27

Fault Tolerance

● Fail-Stop Tolerance

○ To tolerate t failures, need t+1 servers.

○ As long as 1 server remains, we’re OK!

○ Only need to participate in protocols with other

live servers

28

Fault Tolerance

Byzantine Failures
To tolerate t failures, need 2t + 1 servers

● Protocols now involve votes

○ Can only trust server response if the majority of
servers say the same thing

● t + 1 servers need to participate in replication
protocols

29

Takeaways

• Can represent deterministic distributed system as
Replicated State Machine

• Each replica reaches the same conclusion about
the system independently

• Formalizes notions of fault-tolerance in SMR

30

Discussion

• Why is State Machine Replication so important?

• What is the best case scenario in terms of
replications for fault tolerance?

• Is the state machine approach still feasible?

31

Outline

● Motivation

● State Machines

● Implementation

● Fault Tolerance

● Chain Replication

● Conclusions

32

Chain Replication

Authors

● Robert Van Renesse

○ Senior Researcher at Cornell

○ ACM Fellow and Ukelele

enthusiast

○ Systems and Networking

● Fred Schneider

33

Chain Replication

• Fault Tolerant Storage Service

• Requests:

• Update(x, y) => set object x to value y

• Query(x) => read value of object x

34

Chain Replication

X = 3

X = 3

X = 3

X = 3

35

Chain Replication

X = 3X = 3 X = 3 X = 3

Head Tail

Client

get(x) 3

36

Chain Replication

X = 3X = 3 X = 3 X = 3

Head Tail

Client

put(x,30)

37

Chain Replication

X = 3X = 30 X = 3 X = 3

Head Tail

Client

put(x,30)

Req. UID

r0 1

1) Head assigns uid

38

Chain Replication

X = 30X = 30 X = 3 X = 3

Head Tail

Client

put(x,30)

Req. UID

r0 1

Req. UID

r0 1

2) Head sends message
to next node

39

Chain Replication

X = 30X = 30 X = 30 X = 3

Head Tail

Client

put(x,30)

Req. UID

r0 1

Req. UID

r0 1

Req. UID

r0 1

3) Repeat until
 tail is reached

40

X = 30X = 30 X = 30 X = 30

Head Tail

Client

put(x,30)

Req. UID

r0 1

Req. UID

r0 1

Req. UID

r0 1

Req. UID

r0 1

x= 30 4) respond to client with
success

Chain Replication

41

Chain Replication
Assumptions

● No partition tolerance

● High throughput

● Fail-stop processors

● A universally accessible, failure resistant or
replicated Master

42

Chain Replication
How does Chain Replication implement State

Machine Replication?

• Agreement

• Only Update modifies state, can ignore Query

• Client always sends update to Head. Head
propagates request down chain to Tail.

• Everyone accepts the request!

43

Chain Replication

How does Chain Replication implement State
Machine Replication?

• Order

• Unique IDs generated implicitly by Head’s ordering

• FIFO order preserved down the chain

• Tail interleaves Query requests

44

Chain Replication
Fault Tolerance

● Trusted Master

○ Fault-tolerant state machine

○ Trusted by all replicas

○ Monitors all replicas & issues commands

45

Chain Replication
Fault Tolerance

● Head Fails

○ Master assigns 2nd node as Head

● Intermediate Node Fails

○ Master coordinates chain link-up

● Tail Fails

○ Master assigns 2nd to last node as Tail

46

Outline

● Motivation

● State Machines

● Implementation

● Fault Tolerance

● Chain Replication

● Conclusions

47

Conclusions
• Implements the “exercise left to the reader” hinted at by

Lamport’s paper

• Provides some of the concrete details needed to actually
implement this idea

• But still a fair number of details in real implementations that
would need to be considered

• Chain replication illustrates a “simple” example with fully
concrete details

• A key contribution that bridges the gap between academia and
practicality for SMR

48

Chain Replication
Discussion

• Comparison to other primary/backup protocols?

• What are the tradeoffs of Chain Replication?

• Latency

• Consistency

• Any thoughts on the Trusted Master system?

49

