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Presenter
Presentation Notes
In 2006 Hadoop is born
The most popular MR system is Hadoop, an open-source project under development by Yahoo! and the Apache Software Foundation 
Spark was initially started by Matei Zaharia at UC Berkeley's AMPLab in 2009, and open sourced in 2010
AMPLAB is a University of California, Berkeley lab focused on Big data analytics. The name stands for the Algorithms, Machines and People Lab



OSDI 2004
25,524 citations 
 Jeffrey Dean -- Google Senior Fellow in the Systems and Infrastructure Group

 Sanjay Ghemawat -- Google Fellow in the Systems Infrastructure Group

“When Jeff has trouble sleeping, he Mapreduces sheep.”

ACM Prize in Computing (2012)
2012 ACM-Infosys Foundation Award 

Cornell Alumni

MapReduce: Simplified Data Processing on Large Clusters

Presenter
Presentation Notes
Operating Systems Design and Implementation
Jeff, Google Brain, a system for large-scale artificial neural networks. TensorFlow, an open-source machine-learning software library.




The need to process large data distributed across hundreds or thousands of 
machines in order to finish in a reasonable amount of time.

In 2003, Google published the Google File System Paper.
People want to take advantage of GFS and hide the issues of 

parallelization, fault-tolerance, data distribution and load balancing from 
the user.

Motivation

Presenter
Presentation Notes
While the Google File System serves as a solid basis for managing data, it does not prescribe applications to follow certain patterns or architectures. On the one hand, this freedom underlines the flexibility of GFS, on the other hand, it raises the question how applications can make efficient use of both, GFS and a cluster infrastructure
batch data processing can be implemented on top of GFS and a cluster system
MapReduce has been inspired by the idea of higher order functions, in particular the functions map (also referred to as fold) and reduce. These functions are an integral part of functional programming languages such as Lisp or Haskell, but are also commonly provided by non purelyfunctional languages such as Python



What is MapReduce?

Presenter
Presentation Notes
ETL is short for extract, transform, load, three database functions that are combined into one tool to pull data out of one database and place it into another database.

Powerful tools. MR systems are fundamentally powerful tools for ETL-style applications and for complex analytics. Additionally, they are popular for “quick and dirty” analyses and for users with limited budgets. On the other hand, if the application is query-intensive, whether semistructured or rigidly structured, then a DBMS is probably the better choice. 



MapReduce is a software framework for easily writing applications which process 
vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands 
of nodes) of commodity hardware in a reliable, fault-tolerant manner.

https://hadoop.apache.org
MR is more like an extract-transform-load (ETL) system than a DBMS, as it quickly 

loads and processes large amounts of data in an ad hoc manner. As such, it complements 
DBMS technology rather than competes with it.

MapReduce and Parallel DBMSs: Friends or Foes?
Michael Stonebraker et al.

What is MapReduce?

Presenter
Presentation Notes
ETL is short for extract, transform, load, three database functions that are combined into one tool to pull data out of one database and place it into another database.

Powerful tools. MR systems are fundamentally powerful tools for ETL-style applications and for complex analytics. Additionally, they are popular for “quick and dirty” analyses and for users with limited budgets. On the other hand, if the application is query-intensive, whether semistructured or rigidly structured, then a DBMS is probably the better choice. 



What is MapReduce?

Presenter
Presentation Notes
The MapReduce algorithm contains two important tasks, namely Map and Reduce. Map is a function written by the user that takes a key/value pair as input and yields a list of key/value pairs as result. digest raw data and generate (potentially very large quantities of) unaggregated intermediate results. Reduce is the second function implemented by the user. It takes a key and a list of values as input and generates a list of values as result. The primary role of reduce is thus to aggregate data.  The input keys and values are drawn from a different domain than the output keys and values. For example, as we will see in the following word count example, input key is document name, value is document contents but output keys are words and values are counts. The intermediate keys and values are from the same domain as the output keys and values.
Provided these functions, the infrastructure not only transparently provides for all necessary communication between cluster nodes, it also automatically distributes and load-balances the processing among the machines, this will be further explained when Yiqing talks about the design of the system.



BERNARDO Who's there?
FRANCISCO Nay, answer me: stand, and unfold yourself.
BERNARDO Long live the king!
FRANCISCO Bernardo?
BERNARDO He.
FRANCISCO You come most carefully upon your hour.
BERNARDO 'Tis now struck twelve; get thee to bed, 
Francisco.

…...

Example: Word Count of the Complete Work of Shakespea



map(String key, String value):
// key: document name
// value: document contents
for each word w in document:
EmitIntermediate (w, “1”);

map(“Hamlet”, “Tis now strook twelve…”)
{“tis”: “1”}
{“now”: “1”}
{“strook”: “1”}
…

Step 1: define the “mapper”



The shuffling step aggregates all results with the same key together into a single 
list. (Provided by the framework)
{“tis”: “1”}
{“now”: “1”}
{“strook”: “1”}
{“the”: “1”}
{“twelve”: “1”}
{“romeo”: “1”}
{“the”: “1”}
… 

{“tis”:     [“1”,“1”,“1”...]}
{“now”:     [“1”,“1”,“1”]}
{“strook”:  [“1”,“1”]}
{“the”:     [“1”,“1”,“1”...]}
{“twelve”:  [“1”,“1”]}
{“romeo”:   [“1”,“1”,“1”...]}
{“juliet”:  [“1”,“1”,“1”...]}
… 

Step 2: Shuffling



reduce(String key, Iterator values):
// key: a word
// values: a list of counts
sum = 0
for each v in values:

result += ParseInt(v)
Emit (AsString(result))

reduce(“tis”, [“1”,“1”,“1”,“1”,“1”])
{“tis”: “5”}

reduce(“the”, [“1”,“1”,“1”,“1”,“1”,“1”,“1”...])
{“the”: “23590”}

reduce(“strook”, [“1”,“1”])
{“strook”: “2”}
...

Aggregates all the results together.

Step 3: Define the Reducer



The Design and How it Works



User-level process 
running on Linux 
commodity machines

Consist of Master 
Server and Chunk 
Server

 Files broken into 
chunks, 3x 
redundancy

Data transfer 
between client and 
chunk server

Google File System



Infrastructure



Periodically Pinged by Master
NO response = failed worker 

=> task reassigned

Re-execute failed task
Notify reducers working 
on this task

Re-execute incomplete 
failed task

Fault Tolerance -- Worker



Master writes periodic checkpoints 
→ New master can start from it
Master failure doesn’t occur often 
→ Aborts the job and leave the 
choice to client

Fault Tolerance -- Master



Atomic Commits of Outputs Ensures
→ Same Result with Sequential Execution of Deterministic Programs

→ Any Reduce Task will have the Same Result with a non-
Deterministic Program with Sequential Execution with a Certain Order (But 
not necessarily the same one for all the reduce tasks)

Fault Tolerance -- Semantics



Locality == efficiency
Master node can schedule jobs to machines that have the data
Or as close as possible to the data

Implementation Environment:

- Storage: disks attached to machines

- File System: GFS

Locality



How many map tasks and 
how many reduce tasks?

- The more the better → improves dynamic load balancing, speeds up recovery
- Master nodes has a memory limit to keep the states
- Also you probably don’t want tons of output files

Task Granularity



The machine running the 
last few tasks that takes 
forever

Stragglers



The machine running the 
last few tasks that takes 
forever

Backup execute the remaining 
jobs elsewhere

Stragglers



1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

Refinements



1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

Basically with this you can 
define your own  fancier 
mapper

Like mapping hostname 

Refinements



1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

Intermediate results are 
sorted in key order:

- Efficient random 
lookup

- If you want it sorted

Refinements



1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

Partial merge of the data 
before sending to the 
network:
In the case of word count, it 
can be more efficient

Refinements



1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

Supports self defined input 
output type, as long as you 
provide a reader interface

Refinements



1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

If you want to have auxiliary 
files, make the writes atomic 
and idempotent

Refinements



1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

In this mode, if multiple 
failures happen on one 
record, it will be skipped in 
next attempt

Refinements



1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

Basically allows you debug 
your mapper and reducer 
locally

Refinements



1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

Informs the user of running 
status

Refinements



1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

Mostly used for sanity 
checking. 
Some counters are 
computed automatically.

Refinements



Machines: dual-processor running Linux, 2-4 GB memory 
Commodity Networking Hardware: 100 MB/s or 1 GB/s, averaging 

less
Cluster: hundreds or thousands of machines → Common Machine 

Failure
Storage: disks attached to machines
File System: GFS
Users submit jobs(consists of tasks) to scheduler, scheduler schedules to 

machines within a cluster.

Implementation Environment



Using 1,800 machines
Grep: 150 sec through 1010 100-byte records
Sort: 891 sec of 1010 100-byte records

Performance



Locality helps:
 1800 machines read 1 TB 

of data at peak of ~31 GB/s
 Without this, rack switches 

would limit to 10 GB/s
Startup overhead is significant 
for short jobs

MR_GREP



Backup helps Fault Tolerance Works

MR_SORT



MapReduce is a software framework for easily writing applications which process 
vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands 
of nodes) of commodity hardware in a reliable, fault-tolerant manner.

https://hadoop.apache.org
MR is more like an extract-transform-load (ETL) system than a DBMS, as it quickly 

loads and processes large amounts of data in an ad hoc manner. As such, it complements 
DBMS technology rather than competes with it.

MapReduce and Parallel DBMSs: Friends or Foes?
Michael Stonebraker et al.

What is MapReduce?

Presenter
Presentation Notes
ETL is short for extract, transform, load, three database functions that are combined into one tool to pull data out of one database and place it into another database.

Powerful tools. MR systems are fundamentally powerful tools for ETL-style applications and for complex analytics. Additionally, they are popular for “quick and dirty” analyses and for users with limited budgets. On the other hand, if the application is query-intensive, whether semistructured or rigidly structured, then a DBMS is probably the better choice. 



MapReduce greatly simplified “big data” analysis   on large,
unreliable clusters 

But as soon as it got popular, users wanted more: 
1. More complex, multi-stage applications (e.g. iterative machine learning 

& graph processing) 
2. More interactive ad-hoc queries

These tasks require reusing data between jobs.

Limitations



Iterative algorithms and interactive data queries both require one thing that 
MapReduce lacks:
Efficient data sharing primitives

MapReduce shares data across jobs by writing to stable storage.
This is SLOW because of replication and disk I/O, but necessary for fault 

tolerance.

Limitations

Presenter
Presentation Notes
Write to hdfs and replicate to different machines to start on next stage, Overhead between stages limited by network bandwidth



Memory is much faster than disk

Goal: keep data in memory and share between jobs. 

Challenge: a distributed memory abstraction that is fault tolerant and 
efficient

Motivation for a new system

Presenter
Presentation Notes
Datasharing between jobs using MapReduce requires copying large amounts of data over the cluster network, whose bandwidth is far low than RAM



Resilient Distributed Datasets: 
A Fault-Tolerant Abstraction for In-

Memory Cluster Computing



NSDI 2012
5185 citations 
Matei Zaharia, Assistant Professor, Stanford CS

Mosharaf Chowdhury, Assistant Professor, UMich EECS

Tathagata Das,  Software Engineer, Databricks

Ankur Dave, PhD, UCB

Justin Ma, Software Engineer, Google

Awarded Best Paper!

Murphy McCauley, PhD, UCB

Michael J. Franklin, Professor, UCB CS

Scott Shenker, Professor, UCB CS

Ion Stoica, Professor, UCB CS

Resilient Distributed Datasets: A Fault-Tolerant 
Abstraction for In-Memory Cluster Computing

Presenter
Presentation Notes
AMPLAB is a University of California, Berkeley lab focused on Big data analytics. The name stands for the Algorithms, Machines and People Lab
Matei  also co-founder and Chief Technologist of Databricks, the big data company commercializing Apache Spark



Restricted form of distributed shared memory
Immutable, partitioned collections of records 
Can only be built through coarse-grained deterministic operations

i.e. Transformations (map, filter, join,…) 
Efficient fault recovery using lineage 

Lineage: transformations used to build a data set
Recompute lost partitions on failure using the logged functions
Almost no cost if nothing fails

Resilient Distributed Datasets

Presenter
Presentation Notes
A fine grained update would be an update to one record in a database whereas coarse grained operations are operations applied to all elements in a data set at once, for example map, reduce, flatMap, join. Spark's model takes advantage of this because once it saves a graph of transformations, it can use that to recompute as long as the original data is still there. With fine grained updates basically if you update each record out of billions separately you have to save the information to compute each update, whereas with coarse grained you can save one function that updates a billion records. Clearly though this comes at the cost of not being as flexible as a fine grained model.
Only need to log one function instead of the real data, so if nothing fails, there is almost no cost



Provides:
1. Resilient Distributed Datasets (RDDs)
2. Operations on RDDs:transformations (build new RDDs), actions 

(compute and output results)
3. Control of each RDD’s

a. Partitioning (layout across nodes)
b. Persistence (storage in RAM, on disk, etc)

Spark Programming Interface

Presenter
Presentation Notes
Open source, use Scala programming language. Persistent in memory or checkpoint to disk



on MapReduce on Spark RDD

Iterative Operations 

Presenter
Presentation Notes
Hadoop file system, go to disk, read from disk , replicated



on MapReduce on Spark RDD

Interactive Operations 

Presenter
Presentation Notes
Each query needs disk I/O which also suffers from overhead



Spark outperforms Hadoop by up to 20x 
in iterative machine learning and 
graph applications.

Evaluation

Presenter
Presentation Notes
Hadoopbinmem is a hadoop deployment that converts the input data into a low-overhead binary format in the first iteration to elimiate text parsing in later ones, and stores it in an in-momery HDFS instance



When nodes fail, Spark 
can recover quickly by 
rebuilding only the lost 
RDD partitions.

Evaluation

Presenter
Presentation Notes
Evaluated the cost of reconstructing RDD partitions using lineage after a node failure in the k-means application. Running times for 10 iterations of k-means on a 75-node cluster in normal operating scenario, with one where a node fails at the start of the 6th iteration. 



1. RDDs are best suited for batch applications that apply the same 
operation to all elements of a dataset. RDDs are not suitable for 
applications that make asynchronous fine-grained updates to shared 
state.

1. Spark loads a process into memory and keeps it for the sake of 
caching. If the                  data is too big to fit entirely into the 
memory, then there could be major performance degradations. 

Limitations



MapReduce vs Spark



1. MapReduce 
a. A simple and powerful interface that enables automatic parallelization and distribution of large-scale 

computations.
b. Achieves high performance on large clusters of commodity PCs.
c. Implemented based on Google’s infrastructure. (highly engineered accordingly)
d. The frequent disk I/O and data replication limits its usage in iterative algorithm and interactive data 

queries.

2.    Spark RDD
a. A Fault-Tolerant Abstraction for In-Memory Cluster Computing
b. Recovers data using lineage instead of replication
c. performs much better on iterative computations and interactive data queries.
d. Large memory consumption is the main bottleneck.

Perspective



1. “Take a close look at MapReduce”,  Xuanhua Shi
2. “MapReduce: Simplified Data Processing on Large Clusters”, Jeffery 

Dean and Sanjay Ghemawat
3. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In 

Memory Cluster Computing”,  Matei Zaharia et al.

Reference



 Project: next step is the Survey Paper due next Friday

 MP1 Milestone #3 due Monday

 Read and write a review:
 Required: Shielding Applications from an Untrusted Cloud with Haven.  Andrew 

Baumann and Marcus Peinado and Galen Hunt.  In the 11th USENIX Symposium on 
Operating Systems Design and Implementation (OSDI). Broomfield, CO, October 2014, pp. 
267—283.

 Optional: Logical Attestation: An Authorization Architecture For Trustworthy 
Computing. Emin Gun Sirer, Willem de Bruijn, Patrick Reynolds, Alan Shieh, Kevin Walsh, 
Dan Williams, and Fred B. Schneider. In Proceedings of the Symposium on Operating 
Systems Principles (SOSP), Cascais, Portugal, October 2011.

Next Time
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