
MAPREDUCE &
RESILIENT DISTRIBUTED DATASETS

Hakim WeatherspoonCS6410

1

Slides borrowed liberally from past presentations from Yiqing Hua, Mengqi(Mandy) Xia

MapReduce:
 Motivation
 Examples
 The Design and How it Works
 Performance

Resilient Distributed Datasets (RDD)
 Motivation
 Design
 Evaluation

Comparison

Outline

https://image.slidesharecdn.com/adioshadoopholasparkt3chfestdhiguero-150213043715-conversion-gate01/95/adios-hadoop-hola-spark-t3chfest-2015-9-638.jpg?cb=1423802358

RDD paper

Outline

Presenter
Presentation Notes
In 2006 Hadoop is born
The most popular MR system is Hadoop, an open-source project under development by Yahoo! and the Apache Software Foundation
Spark was initially started by Matei Zaharia at UC Berkeley's AMPLab in 2009, and open sourced in 2010
AMPLAB is a University of California, Berkeley lab focused on Big data analytics. The name stands for the Algorithms, Machines and People Lab

OSDI 2004
25,524 citations
 Jeffrey Dean -- Google Senior Fellow in the Systems and Infrastructure Group

 Sanjay Ghemawat -- Google Fellow in the Systems Infrastructure Group

“When Jeff has trouble sleeping, he Mapreduces sheep.”

ACM Prize in Computing (2012)
2012 ACM-Infosys Foundation Award

Cornell Alumni

MapReduce: Simplified Data Processing on Large Clusters

Presenter
Presentation Notes
Operating Systems Design and Implementation
Jeff, Google Brain, a system for large-scale artificial neural networks. TensorFlow, an open-source machine-learning software library.

The need to process large data distributed across hundreds or thousands of
machines in order to finish in a reasonable amount of time.

In 2003, Google published the Google File System Paper.
People want to take advantage of GFS and hide the issues of

parallelization, fault-tolerance, data distribution and load balancing from
the user.

Motivation

Presenter
Presentation Notes
While the Google File System serves as a solid basis for managing data, it does not prescribe applications to follow certain patterns or architectures. On the one hand, this freedom underlines the flexibility of GFS, on the other hand, it raises the question how applications can make efficient use of both, GFS and a cluster infrastructure
batch data processing can be implemented on top of GFS and a cluster system
MapReduce has been inspired by the idea of higher order functions, in particular the functions map (also referred to as fold) and reduce. These functions are an integral part of functional programming languages such as Lisp or Haskell, but are also commonly provided by non purelyfunctional languages such as Python

What is MapReduce?

Presenter
Presentation Notes
ETL is short for extract, transform, load, three database functions that are combined into one tool to pull data out of one database and place it into another database.

Powerful tools. MR systems are fundamentally powerful tools for ETL-style applications and for complex analytics. Additionally, they are popular for “quick and dirty” analyses and for users with limited budgets. On the other hand, if the application is query-intensive, whether semistructured or rigidly structured, then a DBMS is probably the better choice.

MapReduce is a software framework for easily writing applications which process
vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands
of nodes) of commodity hardware in a reliable, fault-tolerant manner.

https://hadoop.apache.org
MR is more like an extract-transform-load (ETL) system than a DBMS, as it quickly

loads and processes large amounts of data in an ad hoc manner. As such, it complements
DBMS technology rather than competes with it.

MapReduce and Parallel DBMSs: Friends or Foes?
Michael Stonebraker et al.

What is MapReduce?

Presenter
Presentation Notes
ETL is short for extract, transform, load, three database functions that are combined into one tool to pull data out of one database and place it into another database.

Powerful tools. MR systems are fundamentally powerful tools for ETL-style applications and for complex analytics. Additionally, they are popular for “quick and dirty” analyses and for users with limited budgets. On the other hand, if the application is query-intensive, whether semistructured or rigidly structured, then a DBMS is probably the better choice.

What is MapReduce?

Presenter
Presentation Notes
The MapReduce algorithm contains two important tasks, namely Map and Reduce. Map is a function written by the user that takes a key/value pair as input and yields a list of key/value pairs as result. digest raw data and generate (potentially very large quantities of) unaggregated intermediate results. Reduce is the second function implemented by the user. It takes a key and a list of values as input and generates a list of values as result. The primary role of reduce is thus to aggregate data. The input keys and values are drawn from a different domain than the output keys and values. For example, as we will see in the following word count example, input key is document name, value is document contents but output keys are words and values are counts. The intermediate keys and values are from the same domain as the output keys and values.
Provided these functions, the infrastructure not only transparently provides for all necessary communication between cluster nodes, it also automatically distributes and load-balances the processing among the machines, this will be further explained when Yiqing talks about the design of the system.

BERNARDO Who's there?
FRANCISCO Nay, answer me: stand, and unfold yourself.
BERNARDO Long live the king!
FRANCISCO Bernardo?
BERNARDO He.
FRANCISCO You come most carefully upon your hour.
BERNARDO 'Tis now struck twelve; get thee to bed,
Francisco.

…...

Example: Word Count of the Complete Work of Shakespea

map(String key, String value):
// key: document name
// value: document contents
for each word w in document:
EmitIntermediate (w, “1”);

map(“Hamlet”, “Tis now strook twelve…”)
{“tis”: “1”}
{“now”: “1”}
{“strook”: “1”}
…

Step 1: define the “mapper”

The shuffling step aggregates all results with the same key together into a single
list. (Provided by the framework)
{“tis”: “1”}
{“now”: “1”}
{“strook”: “1”}
{“the”: “1”}
{“twelve”: “1”}
{“romeo”: “1”}
{“the”: “1”}
…

{“tis”: [“1”,“1”,“1”...]}
{“now”: [“1”,“1”,“1”]}
{“strook”: [“1”,“1”]}
{“the”: [“1”,“1”,“1”...]}
{“twelve”: [“1”,“1”]}
{“romeo”: [“1”,“1”,“1”...]}
{“juliet”: [“1”,“1”,“1”...]}
…

Step 2: Shuffling

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
sum = 0
for each v in values:

result += ParseInt(v)
Emit (AsString(result))

reduce(“tis”, [“1”,“1”,“1”,“1”,“1”])
{“tis”: “5”}

reduce(“the”, [“1”,“1”,“1”,“1”,“1”,“1”,“1”...])
{“the”: “23590”}

reduce(“strook”, [“1”,“1”])
{“strook”: “2”}
...

Aggregates all the results together.

Step 3: Define the Reducer

The Design and How it Works

User-level process
running on Linux
commodity machines

Consist of Master
Server and Chunk
Server

 Files broken into
chunks, 3x
redundancy

Data transfer
between client and
chunk server

Google File System

Infrastructure

Periodically Pinged by Master
NO response = failed worker

=> task reassigned

Re-execute failed task
Notify reducers working
on this task

Re-execute incomplete
failed task

Fault Tolerance -- Worker

Master writes periodic checkpoints
→ New master can start from it
Master failure doesn’t occur often
→ Aborts the job and leave the
choice to client

Fault Tolerance -- Master

Atomic Commits of Outputs Ensures
→ Same Result with Sequential Execution of Deterministic Programs

→ Any Reduce Task will have the Same Result with a non-
Deterministic Program with Sequential Execution with a Certain Order (But
not necessarily the same one for all the reduce tasks)

Fault Tolerance -- Semantics

Locality == efficiency
Master node can schedule jobs to machines that have the data
Or as close as possible to the data

Implementation Environment:

- Storage: disks attached to machines

- File System: GFS

Locality

How many map tasks and
how many reduce tasks?

- The more the better → improves dynamic load balancing, speeds up recovery
- Master nodes has a memory limit to keep the states
- Also you probably don’t want tons of output files

Task Granularity

The machine running the
last few tasks that takes
forever

Stragglers

The machine running the
last few tasks that takes
forever

Backup execute the remaining
jobs elsewhere

Stragglers

1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

Refinements

1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

Basically with this you can
define your own fancier
mapper

Like mapping hostname

Refinements

1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

Intermediate results are
sorted in key order:

- Efficient random
lookup

- If you want it sorted

Refinements

1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

Partial merge of the data
before sending to the
network:
In the case of word count, it
can be more efficient

Refinements

1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

Supports self defined input
output type, as long as you
provide a reader interface

Refinements

1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

If you want to have auxiliary
files, make the writes atomic
and idempotent

Refinements

1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

In this mode, if multiple
failures happen on one
record, it will be skipped in
next attempt

Refinements

1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

Basically allows you debug
your mapper and reducer
locally

Refinements

1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

Informs the user of running
status

Refinements

1. Partitioning Function
2. Ordering Guarantees
3. Combiner Function
4. Input and Output Types
5. Side-effects
6. Skipping Bad Records
7. Local Execution
8. Status Information
9. Counters

Mostly used for sanity
checking.
Some counters are
computed automatically.

Refinements

Machines: dual-processor running Linux, 2-4 GB memory
Commodity Networking Hardware: 100 MB/s or 1 GB/s, averaging

less
Cluster: hundreds or thousands of machines → Common Machine

Failure
Storage: disks attached to machines
File System: GFS
Users submit jobs(consists of tasks) to scheduler, scheduler schedules to

machines within a cluster.

Implementation Environment

Using 1,800 machines
Grep: 150 sec through 1010 100-byte records
Sort: 891 sec of 1010 100-byte records

Performance

Locality helps:
 1800 machines read 1 TB

of data at peak of ~31 GB/s
 Without this, rack switches

would limit to 10 GB/s
Startup overhead is significant
for short jobs

MR_GREP

Backup helps Fault Tolerance Works

MR_SORT

MapReduce is a software framework for easily writing applications which process
vast amounts of data (multi-terabyte data-sets) in-parallel on large clusters (thousands
of nodes) of commodity hardware in a reliable, fault-tolerant manner.

https://hadoop.apache.org
MR is more like an extract-transform-load (ETL) system than a DBMS, as it quickly

loads and processes large amounts of data in an ad hoc manner. As such, it complements
DBMS technology rather than competes with it.

MapReduce and Parallel DBMSs: Friends or Foes?
Michael Stonebraker et al.

What is MapReduce?

Presenter
Presentation Notes
ETL is short for extract, transform, load, three database functions that are combined into one tool to pull data out of one database and place it into another database.

Powerful tools. MR systems are fundamentally powerful tools for ETL-style applications and for complex analytics. Additionally, they are popular for “quick and dirty” analyses and for users with limited budgets. On the other hand, if the application is query-intensive, whether semistructured or rigidly structured, then a DBMS is probably the better choice.

MapReduce greatly simplified “big data” analysis on large,
unreliable clusters

But as soon as it got popular, users wanted more:
1. More complex, multi-stage applications (e.g. iterative machine learning

& graph processing)
2. More interactive ad-hoc queries

These tasks require reusing data between jobs.

Limitations

Iterative algorithms and interactive data queries both require one thing that
MapReduce lacks:
Efficient data sharing primitives

MapReduce shares data across jobs by writing to stable storage.
This is SLOW because of replication and disk I/O, but necessary for fault

tolerance.

Limitations

Presenter
Presentation Notes
Write to hdfs and replicate to different machines to start on next stage, Overhead between stages limited by network bandwidth

Memory is much faster than disk

Goal: keep data in memory and share between jobs.

Challenge: a distributed memory abstraction that is fault tolerant and
efficient

Motivation for a new system

Presenter
Presentation Notes
Datasharing between jobs using MapReduce requires copying large amounts of data over the cluster network, whose bandwidth is far low than RAM

Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-

Memory Cluster Computing

NSDI 2012
5185 citations
Matei Zaharia, Assistant Professor, Stanford CS

Mosharaf Chowdhury, Assistant Professor, UMich EECS

Tathagata Das, Software Engineer, Databricks

Ankur Dave, PhD, UCB

Justin Ma, Software Engineer, Google

Awarded Best Paper!

Murphy McCauley, PhD, UCB

Michael J. Franklin, Professor, UCB CS

Scott Shenker, Professor, UCB CS

Ion Stoica, Professor, UCB CS

Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing

Presenter
Presentation Notes
AMPLAB is a University of California, Berkeley lab focused on Big data analytics. The name stands for the Algorithms, Machines and People Lab
Matei also co-founder and Chief Technologist of Databricks, the big data company commercializing Apache Spark

Restricted form of distributed shared memory
Immutable, partitioned collections of records
Can only be built through coarse-grained deterministic operations

i.e. Transformations (map, filter, join,…)
Efficient fault recovery using lineage

Lineage: transformations used to build a data set
Recompute lost partitions on failure using the logged functions
Almost no cost if nothing fails

Resilient Distributed Datasets

Presenter
Presentation Notes
A fine grained update would be an update to one record in a database whereas coarse grained operations are operations applied to all elements in a data set at once, for example map, reduce, flatMap, join. Spark's model takes advantage of this because once it saves a graph of transformations, it can use that to recompute as long as the original data is still there. With fine grained updates basically if you update each record out of billions separately you have to save the information to compute each update, whereas with coarse grained you can save one function that updates a billion records. Clearly though this comes at the cost of not being as flexible as a fine grained model.
Only need to log one function instead of the real data, so if nothing fails, there is almost no cost

Provides:
1. Resilient Distributed Datasets (RDDs)
2. Operations on RDDs:transformations (build new RDDs), actions

(compute and output results)
3. Control of each RDD’s

a. Partitioning (layout across nodes)
b. Persistence (storage in RAM, on disk, etc)

Spark Programming Interface

Presenter
Presentation Notes
Open source, use Scala programming language. Persistent in memory or checkpoint to disk

on MapReduce on Spark RDD

Iterative Operations

Presenter
Presentation Notes
Hadoop file system, go to disk, read from disk , replicated

on MapReduce on Spark RDD

Interactive Operations

Presenter
Presentation Notes
Each query needs disk I/O which also suffers from overhead

Spark outperforms Hadoop by up to 20x
in iterative machine learning and
graph applications.

Evaluation

Presenter
Presentation Notes
Hadoopbinmem is a hadoop deployment that converts the input data into a low-overhead binary format in the first iteration to elimiate text parsing in later ones, and stores it in an in-momery HDFS instance

When nodes fail, Spark
can recover quickly by
rebuilding only the lost
RDD partitions.

Evaluation

Presenter
Presentation Notes
Evaluated the cost of reconstructing RDD partitions using lineage after a node failure in the k-means application. Running times for 10 iterations of k-means on a 75-node cluster in normal operating scenario, with one where a node fails at the start of the 6th iteration.

1. RDDs are best suited for batch applications that apply the same
operation to all elements of a dataset. RDDs are not suitable for
applications that make asynchronous fine-grained updates to shared
state.

1. Spark loads a process into memory and keeps it for the sake of
caching. If the data is too big to fit entirely into the
memory, then there could be major performance degradations.

Limitations

MapReduce vs Spark

1. MapReduce
a. A simple and powerful interface that enables automatic parallelization and distribution of large-scale

computations.
b. Achieves high performance on large clusters of commodity PCs.
c. Implemented based on Google’s infrastructure. (highly engineered accordingly)
d. The frequent disk I/O and data replication limits its usage in iterative algorithm and interactive data

queries.

2. Spark RDD
a. A Fault-Tolerant Abstraction for In-Memory Cluster Computing
b. Recovers data using lineage instead of replication
c. performs much better on iterative computations and interactive data queries.
d. Large memory consumption is the main bottleneck.

Perspective

1. “Take a close look at MapReduce”, Xuanhua Shi
2. “MapReduce: Simplified Data Processing on Large Clusters”, Jeffery

Dean and Sanjay Ghemawat
3. “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In

Memory Cluster Computing”, Matei Zaharia et al.

Reference

 Project: next step is the Survey Paper due next Friday

 MP1 Milestone #3 due Monday

 Read and write a review:
 Required: Shielding Applications from an Untrusted Cloud with Haven. Andrew

Baumann and Marcus Peinado and Galen Hunt. In the 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI). Broomfield, CO, October 2014, pp.
267—283.

 Optional: Logical Attestation: An Authorization Architecture For Trustworthy
Computing. Emin Gun Sirer, Willem de Bruijn, Patrick Reynolds, Alan Shieh, Kevin Walsh,
Dan Williams, and Fred B. Schneider. In Proceedings of the Symposium on Operating
Systems Principles (SOSP), Cascais, Portugal, October 2011.

Next Time

	MapReduce & �Resilient Distributed Datasets
	Outline
	Outline
	MapReduce: Simplified Data Processing on Large Clusters
	Motivation
	What is MapReduce?
	What is MapReduce?
	What is MapReduce?
	Example: Word Count of the Complete Work of Shakespeare
	Step 1: define the “mapper”
	Step 2: Shuffling
	Step 3: Define the Reducer
	The Design and How it Works
	Google File System
	Infrastructure
	Fault Tolerance -- Worker
	Fault Tolerance -- Master
	Fault Tolerance -- Semantics
	Locality
	Task Granularity
	Stragglers
	Stragglers
	Refinements
	Refinements
	Refinements
	Refinements
	Refinements
	Refinements
	Refinements
	Refinements
	Refinements
	Refinements
	Implementation Environment
	Performance
	MR_GREP
	MR_SORT
	What is MapReduce?
	Limitations
	Limitations
	Motivation for a new system
	Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory Cluster Computing

	Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing
	Resilient Distributed Datasets
	Spark Programming Interface
	Iterative Operations
	Interactive Operations
	Evaluation
	Evaluation
	Limitations
	MapReduce vs Spark
	Perspective
	Reference
	Next Time

